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ABSTRACT Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In
mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal
cell cancer result in the accumulation of intracellular fumarate—an inhibitor of a-ketoglutarate-dependent dioxygenases. Fumarase
promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and
inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as
a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We
observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of
fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1D
mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate
conferring resistance to DNA replication stress in htz1D mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and
increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate,
sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the
htz1D mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by
affecting chromatin modification states, thereby promoting genome integrity.
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ALL organisms have developed mechanisms to detect,
signal and repair damaged DNA to ensure accurate

and complete duplication, and inheritance of their genome.
Genomic instability is a major driver of tumorigenesis, and
multiple factors contribute to genome instability, including
failure to properly repair damaged DNA caused by endoge-
nous sources like errors during DNA replication or exogenous

agents including ultraviolet (UV) light or chemicals. Per-
turbed replication contributes to early genomic instability
in cancers (Bartkova et al. 2005; Gorgoulis et al. 2005), and
replication stress can promote tumorigenesis in mice
(Bilousova et al. 2005). In the past few years, metabolic en-
zymes and metabolites including fumarate hydratase (also
called fumarase) and fumarate, succinate dehydrogenase
(SDH) and succinate, as well as isocitrate dehydrogenase
(IDH) and R-2-hydroxyglutarate (R-2-HG) have emerged as
modulators of DNA damage responses in bacteria, yeast, and
mammals (Yogev et al. 2010; Jiang et al. 2015; Singer et al.
2017; Sulkowski et al. 2017, 2018; Leshets et al. 2018).

Fumarase is a well-characterized TCA cycle enzyme found
in the mitochondria that catalyzes the reversible reaction of
converting fumarate tomalate (Woods et al. 1988). Fumarase
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is also present in the cytosol in organisms ranging from yeast
to humans (Tolley and Craig 1975; Akiba et al. 1984; Yogev
et al. 2011). In yeast, both cytosolic and mitochondrial fuma-
rase are encoded by a single gene, FUM1 (Wu and Tzagoloff
1987). Yeast Fum1p contains an N-terminal sequence that is
processed in themitochondrial matrix (Stein et al. 1994; Sass
et al. 2001). Rapid folding of mature Fum1p inhibits its im-
port into mitochondria, and a subset of processed fumarase is
released back into the cytosol by retrogrademovement (Knox
et al. 1998; Karniely and Pines 2005).

Fumarase alsoacts as a tumor suppressor, anddefects in the
gene encoding fumarase (FH) in humans are commonly
found in hereditary leiomyomatosis and renal cell can-
cer (HLRCC) (Launonen et al. 2001; Kiuru et al. 2002;
Tomlinson et al. 2002; Lehtonen et al. 2004; Menko et al.
2014) as well as in glioblastomas, neuroblastomas, and other
cancers (Khalil 2007; Fieuw et al. 2012). Recent studies have
provided a link between fumarase plus the metabolite fuma-
rate and genome integrity, revealing a previously underap-
preciated way in which such metabolic defects have the
potential to contribute to tumorigenesis. Among the first
evidence for the role of fumarase in maintaining genome
integrity in eukaryotes emerged from studies in the budding
yeast Saccharomyces cerevisiae that showed fumarase pro-
motes growth upon exposure to various types of DNA dam-
age, and that fumarate, but not malate, suppresses double-
stranded DNA break (DSB) sensitivity of cells lacking the cy-
tosolic form of fumarase (Yogev et al. 2010). Recently, yeast
fumarase has been shown to promote homologous recombi-
nation through interaction with, and stabilization of, Sae2p,
which is associated with the MRX complex at DSBs during
DNA end resection (Leshets et al. 2018).

Chromatin modifications, including histone methylation,
also play a central role in regulationofDNAdamage responses
for various types of DNA damage in organisms ranging from
yeast to humans (House et al. 2014; Hauer and Gasser 2017),
and recent studies have begun to uncover links between met-
abolic enzymes plus metabolites, including fumarase plus
fumarate, and chromatin during DNA damage responses. Fu-
marate can modulate histone methylation by acting as a
competitive inhibitor of a-ketoglutarate (a-KG)-dependent
dioxygenases, including JmjC-domain-containing histone de-
methylases (Xiao et al. 2012; Jiang et al. 2015). During DSB
repair by nonhomologous end joining (NHEJ) in humans,
fumarase is recruited to chromatin at the site of DSBs through
DNA-PK-dependent phosphorylation as well as interaction
with the histone variant H2A.Z (Jiang et al. 2015). H2A.Z
transiently becomes associates with DSBs (Kalocsay et al.
2009; Xu et al. 2012) through the actions of the H2A.Z/
Htz1p-specific chromatin remodeling complexes SWR1C
and INO80C (Krogan et al. 2003; Mizuguchi et al. 2004;
Papamichos-Chronakis et al. 2006, 2011; van Attikum et al.
2007; Lademann et al. 2017). Mammalian H2A.Z and the
budding yeast ortholog Htz1p can promote DNA repair by
NHEJ as well as homologous recombination (Papamichos-
Chronakis et al. 2011; Xu et al. 2012). In human cells, fumarase

is proposed to produce high local concentrations of fumarate
at sites of DNA damage as the activity of fumarase can be de-
tected in chromatin fractions after exposure to irradiation, IR,
and fumarate (but not malate) improves repair by NHEJ
through inhibition of the H3 K36-specific lysine demethylase
KDM2B (Jiang et al. 2015). Moreover, nuclear localization of
human fumarase or depletion of KDM2B promotes cell sur-
vival after exposure to IR (Jiang et al. 2015).

Deletion of FUM1 in yeast, and loss of the catalytic activity
of fumarase in human cells, or loss of function mutations in
fumarase in HLRCC tumors, cause accumulation of fumarate
to high cellular levels (several hundred-fold increase in yeast,
millimolar levels in humans) (Arikawa et al. 1999; Pollard
et al. 2005; Lin et al. 2011; Sulkowski et al. 2018). Also,
elevated levels of fumarate or succinate [another competitive
inhibitor of a-KG-dependent dioxygenases (Xiao et al. 2012;
Laukka et al. 2016)] correlate with elevated levels of DSBs in
patient-derived HLRCC and SDH-related hereditary paragan-
glioma and pheochromocytoma, SDH PGL/PCC (Sulkowski
et al. 2018). However, how such changes in metabolite avail-
ability affect DNA repair and other cellular functions is poorly
understood.

Here, we explored the relationship between yeast Fum1p,
the metabolite fumarate, and Htz1p during DNA replication
stress. We demonstrate that yeast fumarase was induced, and
enriched in the nuclei upon treatment with hydroxyurea
(HU), and observed synthetic genetic interaction upon ex-
posure to HU in cells lacking FUM1 and HTZ1. We further
demonstrate that exogenous fumarate suppressed the DNA
replication stress sensitivity of htz1D mutants in a manner
independent of modulating nucleotide pools, but dependent
on components required for activation of the intra-S phase
checkpoint, also known as the S Phase checkpoint. In the
presence of fumarate, intra-S phase checkpoint activation
and adaptation (as measured by phosphorylation status of
Rad53p) remained largely intact. Consistent with fumarate
promoting histone methylation to confer resistance to DNA
replication stress, deletion of the JmjC domain-containing
Jhd2p, a H3 K4 demethylase (Liang et al. 2007; Seward
et al. 2007; Tu et al. 2007), was sufficient to confer resistance
to HU in htz1Dmutants, and this suppression required H3 K4
methylation. Moreover, loss of FUM1, or addition of exoge-
nous fumarate, inhibited Jhd2p-dependent demethylation of
H3 K4 in vivo. Together, our findings highlight a fumarate-
sensitive role for Jhd2p and histone methylation in responses
to DNA replication stress as well as link Htz1p to proper
processing of replicative intermediates through the DNA
replication checkpoint during intra-S phase checkpoint
activation.

Materials and Methods

Yeast strains and plasmid construction

Yeast strains and plasmids used in this study are listed in
Supplemental Material, Table S1 and Table S2, respectively.
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Oligonucleotides used to generate yeast strains or plasmids
are listed in Table S3. Yeast strains containing deletions of
open reading frames were generated by standard PCR-based
gene disruption strategies (Guthrie and Fink 1991). Strains
expressing histone mutants were made by plasmid shuffling
(Adams et al. 1998).

Growth assay of sensitivity to DNA damaging agents

Cells were grown overnight in rich (YPD) medium, diluted
to 104 cells/ml, and 3 ml of 10-fold serial dilutions were
spotted onto YPD containing 23PBS (274 mM NaCl, 16 mM
Na2HPO4, 4 mM KH2PO4, 5.4 mM KCl) with or without noted
amounts of HU or camptothecin, or were exposed to indi-
cated doses of UV in the presence or absence of monoethyl
fumarate (Cat. no. 128422; Sigma). Images were taken after
2–3 days of growth at 30�. The ethyl ester modification
on fumarate facilitates cell permeability (MacKenzie et al.
2007). This ethyl group can then be removed by cytosolic
esterases, releasing the metabolite fumarate.

Preparation of yeast nuclear extracts

Nuclear extracts were prepared from 200 ml cultures grown
in YPD to an OD600 of 0.6 and treated with or without
200 mM HU for 3 hr as described by Miller et al. (2008).
Briefly, cells were harvested, washed with ice-cold water and
resuspended in 3 ml of spheroplasting buffer (1 mM sor-
bitol, 50 mM potassium phosphate pH 6.5, 14 mM b-
mercaptoethanol). Next, cells were pelleted, resuspended
in 3 ml of spheroplasting buffer containing 5 mg/ml of lyti-
case (Cat. no. L4025; Sigma), and then incubated at 30�
until spheroplasted. Sepheroplasted cells were pelleted at
5000 3 g for 5 min at 4�, and thenwashed in 3 ml of sphero-
plasting buffer. Cells were pelleted, resuspended in 5 ml of
lysis buffer (18% Ficoll 400, 20 mM potassium phosphate
pH 6.8, 1 mM MgCl2, 0.5 mM EDTA, 1 mM PMSF, 1 mg/ml
Leupeptin/Pepstatin mix), lysed with 20 strokes using a Dounce
homogenizer, and separated by centrifugation at 3000 3 g for
10 min to remove cell debris. The nuclei were pelleted at
50,000 3 g for 30 min at 4� using a SW-41 rotor. Nuclei were
resuspended in 200 ml of NP buffer (0.34 mM sucrose, 20 mM
KCl, 5 mMMgCl2, 1 mM PMSF, 1.0 mg\ml Leupeptin/Pepsta-
tin mix) for storage at 4�.

Preparation of whole cell extracts

Threemillilitersof yeast culturesgrownovernight inYPDtoan
OD600 of 0.8 were harvested, flash frozen on dry ice, and
stored at 280�. Cell pellets were resuspended in 250 ml of
2.0 M NaOH containing 8% b-mercaptoethanol, incu-
bated on ice for 5 min, and pelleted by centrifugation at
14,500 3 g at 4� for 2 min. Cell pellets were resuspended
in 250 ml of high salt extraction buffer (40 mM HEPES
NaOH pH 7.5, 350 mM NaCl, 0.1% Tween 20, 10% glyc-
erol), and repelleted by centrifugation at 14,500 3 g at 4�
for 2 min. Pellets were resuspended in 23SDS sample buffer
(200 mM Tris-HCl pH 6.8, 20% SDS, 20% glycerol, 0.08%
bromophenol blue, 10% b-mercaptoethanol), prior to loading

onto 7 or 12% SDS-PAGE gels for immunoblotting (see
below).

Immunoblotting

Analyses of Fum1-GFP localization: Whole cell extracts or
nuclear fractionswere prepared from logarithmically growing
cultures (as described above) from indicated genotypes and
treated with or without 200 mM HU for 3 hr, and separated
by electrophoresis on 12% SDS-PAGE gels. Following elec-
trophoresis, proteins were transferred to PVDF membrane
that had been presoaked in methanol for 5 min followed
by soaking in transfer buffer (25 mM Tris and 1.44% glycine
pH 8.3, 20%methanol, 0.02% SDS). Next, membranes were
incubated with 5% milk in PBS-T (137 mM NaCl, 10 mM
phosphate, 2.7 mM KCl, 0.1%Tween 20) for 1 hr at room
temperature followed by incubation with anti-GFP antibody
(ab290, 1:5000 in 2% milk in PBS-T; Abcam) overnight
at 4�. Membranes were washed three times in PBS-T for
10 min each. ECL anti-rabbit Horseradish-peroxidase-linked
IgG (NA934, 1:10,000; Amersham) was used as secondary anti-
body.Membranes were washed again as above and visualized
by adding 1 ml Luminata Crescendo Western HRP Substrate
(Cat. no. WBLUR0500; Millipore) on the membrane for
1 min followed by imaging using the ChemiDoc XRS+. Blots
were then quantified using Image Lab software. Membranes
were stripped by 0.2 M NaOH at room temperature
and reprobed with anti-Proliferating Cell Nuclear Antigen
(1:10,000) antibody (Daganzo et al. 2003; Franco et al.
2005) and ECL anti-rabbit Horseradish-peroxidase-linked
IgG (NA934, 1:10,000; Amersham) as secondary antibody.
Fold enrichment of Fum1pwas calculated relative to PCNA as
shown in Figure 1 legend.

Analyses of H3 methylation levels: Logarithmically growing
cultures (1 3 107 cells) were harvested before and after a
6-hr treatment with 5 mM monoethyl fumarate. Whole cell
extracts were prepared as described above, and separated on
12% SDS-PAGE gels. Transfer and blocking steps were per-
formed as described above, and membranes were incubated
with anti-H3K4me3 antibody (39159, 1:5000; Active Motif).
Membranes were washed, incubated with ECL anti-rabbit
secondary antibody, developed and imaged as described
above. Membranes were stripped and reprobed using anti-
H3 antibody (ab1791, 1:5000; Abcam), H3 K4me2 antibody
(07-030, 1:5000; EMD Millipore), H3 K36me3 (ab9050,
1:5000; Abcam, or 9763S, 1:1000; Cell Signaling Technol-
ogy), or H3 K79me3 (ab195500, 1:5000; Abcam) for 1 hr at
room temperature or overnight at 4�. ECL anti-rabbit horse-
radish-peroxidase-linked IgG (NA934, 1:10,000; Amersham)
were used as secondary antibody, and blots were washed,
developed, and imaged as above.

Analyses of FLAG-Jhd2p levels: Indicated strains carrying
plasmids for expression of FLAG-Jhd2p (Mersman et al.
2009) were grown in selective media (lacking leucine), and
1 3 107 cells from logarithmically growing cultures were
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harvested. Whole cell extracts were prepared as described
previously and loaded on 10% SDS-PAGE gels. Transfer
and blocking steps were done as above and membranes
were incubated with anti-FLAG antibody (ab1162,
1:5000; Abcam) for 1 hr at room temperature. Membranes
were washed, incubated with ECL anti-rabbit horseradish-
peroxidase-linked IgG (NA934, 1:10,000; Amersham), de-
veloped and imaged as above. Next, membranes were
stripped and reprobed using anti-PGK1 antibody (A-
6457, 1:5000; Molecular Probes) for 1 hr at room temper-
ature, washed, incubated with ECL anti-mouse horserad-
ish-peroxidase-linked IgG (NA931, 1:10,000; Amersham)
as secondary antibody, and developed and imaged as de-
scribed earlier.

Analyses of Rad53p phosphorylation: Logarithmically
growing cells were treated with noted amounts of DNA
damaging agents with or without 5 mMmonoethyl fumarate
in YPD containing 23 PBS. Aliquots of 3 3 107 cells were
collected before treatment, plus 30 min, 1 hr and then every
2 hr after treatment for 8 hr, and whole cells extracts were
prepared as described above, then loaded onto 7% SDS-
PAGE gels. Proteins were transferred to PVDF membranes
as described above. Membranes were blocked in 5% milk in
PBS-T for 1 hr at room temperature, then incubated with
anti-Rad53p antibodies (ab104232, 1:2000; Abcam) over-
night at 4�. Membranes were washed three times in
PBS-T for 10 min each, followed by incubation with ECL
anti-rabbit Horseradish-peroxidase-linked IgG (NA934,

1:10,000; Amersham). Blots were developed and imaged as
described above.

Analysis of JHD2 mRNA expression by qRT-PCR

Indicated strains carrying an empty vector or a plasmid for
overexpression of FLAG-JHD2 were grown in selective me-
dium (Complete Supplement Medium lacking leucine). Log-
arithmically growing cultures (53 107 cells) were harvested
as described by Schmitt et al. (1990). Total RNA (1 mg) was
incubated with 1 U DNaseI (M6101; Promega) for 1 hr at
37�, and DNase I was inactivated by addition of stop solution
(20 mM EGTA, pH 8.0) and incubation at 65� for 10 min.
DNase I-treated RNAwas used for cDNA synthesis using ran-
dom hexamer primers, and 200 unit M-MLV reverse tran-
scriptase (28025013; Thermofisher). cDNAs were diluted
1:100 and used to analyze transcript levels by qPCR using
primers listed in Table S3 and SYBR Green PCR master
mix (A25741; Fisher Scientific) following manufacturer’s in-
structions. Quantification was analyzed by the comparative
CT method. Average and SD of three independent experi-
ments were reported.

Analysis of cell cycle by flow cytometry

Logarithmically growing cells with the indicated genotypes
were grown at 30� in richmedium (YPD) to OD600�0.4. Cells
were arrested in G1 by addition of a-factor at final concen-
tration of 10 mg/ml for 3 hr. Cells were washed three times
with YPD, resuspended in YPD containing 23 PBS and
100 mg/ml protease, and treated with 100 or 200 mM HU,

Figure 1 Fumarate can complement sensitivity of
htz1D mutants to DNA replication stress. (A and
B) Expression of Fum1p is induced, and Fum1p
becomes enriched in the nuclear fraction upon
exposure to hydroxyurea, HU. Yeast expressing
Fum1-GFPp were incubated in the absence or
presence of 200 mM HU at 30� for 3 hr. Whole
cell extracts (A), or nuclear fractions (B) were an-
alyzed by immunoblotting using anti-GFP, and
anti-PCNA antibodies. A representative immuno-
blot and fold enrichment of Fum1p from two in-
dependent experiments is shown. Levels of Fum1-
GFPp were normalized to levels of PCNA (loading
control), then expressed relative to signal that
was observed in the absence of HU, which
was set to 1. Fold enrichment of Fum1p ¼
ðFum1p=PCNAÞindicated sample ðFum1p=PCNAÞno HU.
(C) Genetic interaction between fum1D and
htz1D mutants. (D) The effect of exogenous fu-
marate on DNA replication stress in mre11D,
rad50D and xrs2D mutants. (C and D) Cells with
genotypes as indicated were grown overnight in
rich (YPD) medium, then 3 ml of 10-fold serial
dilutions were spotted onto YPD medium contain-
ing the indicated concentrations of fumarate and/
or HU, and incubated at 30� for 2 days prior to
imaging.
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with or without 5 mMmonoethyl fumarate. One ml aliquots
of cells were collected prior to HU treatment, and again every
20 min after release from G1 for 4 hr. Cells were pelleted by
centrifugation, resuspended in 70% ethanol, and incubated
at room temperature for 1 hr before storing overnight at 4�.
Cells were then washed twice in FACS buffer (200 mM Tris-
HCl pH 7.5, 20 mM EDTA), and resuspended in 100 ml of
FACS buffer containing 0.1% RNase, then incubated for 2 hr
at 37�. Cells were washed with 13 PBS, and incubated in
100 ml of propidium iodide solution (0.05 mg/ml propi-
dium iodide in 13 PBS) overnight in the dark at 4�. Prior
to analysis, 400 ml of 13PBS was added to each sample.
Samples were briefly sonicated (Branson Sonifier 450;
VWR Scientific) and analyzed by Beckman Coulter Cytoflex
S, and FlowJo software (version 7.6.5).

Statistical analysis

H3 K4 me3 and H3 K4me2 levels were normalized to H3
levels, and JHD2 trancript levels were normalized to ACT1.
Assays were conducted in at least triplicate, and statistical
analyses for immunoblots and qRT-PCR were conducted us-
ing the Wilcoxon Rank Sum test with MSTAT v6.3 (https://
mcardle.wisc.edu/mstat/).

Data availability

Strains and plasmids are available upon request. The authors
affirm that all data necessary for confirming the findings
of the article are present within the article, figures and tables.
Supplemental material available at FigShare: https://doi.
org/10.25386/genetics.8109437.

Results

Loss of FUM1 suppresses sensitivity to replication stress
in htz1 mutants

Fumarase has previously been implicated in DSB repair
(Yogev et al. 2010; Jiang et al. 2015; Leshets et al. 2018;
Sulkowski et al. 2018). To assess the impact of fumarase on
responses to DNA replication stress, we first analyzed expres-
sion and cellular localization of Fum1p in S. cerevisiae upon
exposure to HU. Logarithmically growing yeast expressing
Fum1p C-terminally tagged with GFP were treated with HU
for 3 hr, and expression and nuclear localization of Fum1p
were monitored by quantitative protein blots. As shown in
Figure 1A, after treatment with HU, Fum1p levels in whole
cell extracts increased more than twofold, and Fum1p be-
came enriched in the nuclear fraction by more than fivefold
(Figure 1B). This further enrichment of Fum1p in the nuclear
fraction implied DNA replication stress had triggered locali-
zation of Fum1p to the nucleus (see also Yogev et al. 2010).

In humans, fumarase is recruited to chromatin during
NHEJ-mediated repair of DSBs through interaction with the
histone variant H2A.Z, and depletion of H2A.Z reduces en-
richment of fumarase at sites of DSB (Jiang et al. 2015). In
yeast, Htz1p promotes genome stability and chromosome

segregation (Krogan et al. 2004; Kalocsay et al. 2009). Sim-
ilarly, the chromatin remodeling complexes SWR1C and
INO80C, which regulate the deposition and eviction of
Htz1p, also contribute to genome integrity (Krogan et al.
2003; Mizuguchi et al. 2004; Papamichos-Chronakis et al.
2006, 2011; van Attikum et al. 2007; Lademann et al. 2017).

To explore the relationship between Htz1p and yeast fu-
marase during DNA replication stress, we examined genetic
interactions in cells lacking HTZ1 and/or FUM1 in growth
assays of 10-fold serial dilutions onto rich medium lacking
or containing HU. Thus, differences in growth by one spot,
after normalizing to no treatment controls, reflect phenotypic
differences on the order of around one magnitude in this
assay. In the presence of HU, htz1D, but not fum1D, mutants
exhibited growth defects relative to wild-type yeast and rel-
ative to the absence of HU (Figure 1C first vs. third panel),
and this growth defect of the htz1D mutants was suppressed
by complementation with exogenous expression of HTZ1
(Figure S1 top row, first vs. third and fifth panels). This sen-
sitivity of htz1D mutants in the presence of HU was sup-
pressed in fum1D htz1D mutants (Figure 1C first vs. third
panel), and restored by the exogenous expression of FUM1
in fum1D htz1Dmutants (Figure S1 bottom row, first vs. third
and fifth panels), implying that loss of FUM1 had partially
bypassed a requirement for HTZ1 during replication stress.

Exogenous fumarate suppresses the DNA replication
stress sensitivity of htz1D mutants

As deletion of FUM1 causes accumulation of fumarate in the
cell (Pollard et al. 2005; Lin et al. 2011), the above observa-
tion (Figure 1C) raised the possibility that elevated levels of
fumarate caused by deletion of FUM1 had conferred resis-
tance to HU in the htz1D fum1D mutants. To test this possi-
bility, we compared growth of htz1D mutants to wild-type
yeast in the presence and absence of HU, and with or without
adding exogenous fumarate to the growth medium at con-
centrations comparable to the levels found in HLRCC tumors
(Pollard et al. 2005). As shown in Figure 1C (third vs. fourth
panel), the addition of exogenous fumarate largely sup-
pressed the sensitivity of htz1D mutants to HU as well as
further enhanced growth of htz1D fum1D mutants in HU.
Similar to htz1D mutants, strains lacking SWR1 exhibited
growth defects relative to wild-type on rich (YPD) medium
as well as medium containing HU, and the sensitivity of
swr1D mutants to HU was also partially suppressed by the
addition of exogenous fumarate (Figure S2). Exogenous fu-
marate alone did not adversely affect the number of colonies
in the absence of HU in these experiments; however, colony
sizes of all strains tested decreased in the presence of exog-
enous fumarate (e.g., Figure 1). The cause of this decrease in
colony size is unknown.

To assess further the effect of exogenous fumarate on
sensitivity to DNA replication stress, we repeated our growth
assays using cells lacking RAD52 or components of the MRX
complex. Rad52p promotes loading of the nucleoprotein
filament recombinase Rad51p onto ssDNA and strand
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exchange at DSBs, and is essential for homology-dependent
DNA repair (Game and Mortimer 1974; New et al. 1998;
Shinohara and Ogawa 1998; Pâques and Haber 1999;
Symington 2002). In Schizosaccharomyces pombe, Rad52
is also required for recombination-independent restart of
replication from terminally arrested forks in which nascent
DNA is protected by Rad51 from excessive ssDNA forma-
tion by the exonucleases Exo1 or Mre11, and for properly
merging a converging fork with a terminally arrested fork
(Hashimoto et al. 2010; Lambert et al. 2010; Schlacher
et al. 2011, 2012; Iraqui et al. 2012; Higgs et al. 2015; Ait
Saada et al. 2017). In contrast to what had been observed
for htz1Dmutants, addition of exogenous fumarate did not
suppress the sensitivity to HU in cells lacking RAD52 (Fig-
ure 1C). Genes encoding the MRX complex are also mem-
bers of the RAD52 epistasis group. The MRX complex,
consisting of Mre11p, Rad50p, and Xrs2p, acts as a major
DSB sensor, but also functions to stabilize components of
the replication machinery at stalled forks (Lisby et al. 2004;
Tittel-Elmer et al. 2009). Like rad52D mutants, mre11D,
rad50D, and xrs2D mutants exhibited severe growth de-
fects in the presence of HU, and addition of exogenous
fumarate did not suppress these defects (Figure 1D and
Figure S3). These results indicated that fumarate comple-
mented sensitivity to DNA replication stress created by the
absence of the histone variant, but not Rad52p or the MRX
complex.

Suppression of the DNA replication stress sensitivity of
htz1D mutants by fumarate is not due to modulation of
nucleotide pools

Exposure to HU results in stalled replication forks via inhibi-
tion of ribonucleotide reductase, which leads to depletion
of nucleotide pools (Krakoff et al. 1968). This depletion is
thought to result in the creation of stretches of ssDNA at
stalled forks that become coated with RPA, which is required
to recruit Mec1p-Ddc2p and promote activation of the kinase
Mec1p, and activation of the intra-S phase checkpoint (Zou
and Elledge 2003). Therefore, we tested the possibility that
fumarate had promoted growth of htz1D mutants upon ex-
posure to HU by modulating the nucleotide pools. We
first tested whether increasing the dNTP pool by deletion of
SML1, which encodes an inhibitor of ribonucleotide reduc-
tase (Zhao et al. 1998; Chabes et al. 1999), could promote
growth of htz1Dmutants in the presence of HU by comparing
wild-type, sml1D, htz1D, and sml1D htz1Dmutants in growth
assays. Instead, we observed a negative synthetic genetic in-
teraction in the absence of SML1 and HTZ1 as the sml1D
htz1D mutants exhibited a severe growth defect in rich me-
dium (YPD) compared to the sml1D or htz1D single mutants,
whereas the growth of sml1D htz1D mutants in the presence
of HU was comparable to that of htz1D mutants (Figure 2A
first vs. third panel). Addition of exogenous fumarate sup-
pressed the sensitivity to DNA replication stress of both
htz1D and sml1D htz1D mutants (Figure 2A third vs. fourth
panel), implying that fumarate suppressed the sensitivity to

HU through a mechanism independent of elevating nucleo-
tide pools.

Fumarate is also a product in the purine nucleotide cycle,
and can function as a weak inhibitor of adenylosuccinate
lyase,which converts adenylosuccinate into adenosinemono-
phosphate (AMP)plus fumarate in the purinenucleotide cycle
(Barnes and Bishop 1975) (Figure 2B). This raised the pos-
sibility that regulation of AMP production by inhibition of
adenylosuccinate lyase activity and/or accumulation of
adenylosuccinate upon addition of exogenous fumarate had
suppressed the sensitivity of htz1Dmutants to HU. Therefore,
we tested whether decreased production of adenylosuccinate
and disruption of the purine nucleotide cycle by deletion of
the gene encoding adenylosuccinate synthase (ADE12) could
block fumarate-dependent suppression of the sensitivity of
htz1D mutants to HU. As shown in Figure 2C, ade12D mu-
tants did not exhibit growth defects compared to wild type in
presence of HU, whereas ade12D htz1Dmutants were hyper-
sensitive to HU relative to wild-type yeast or htz1D mutants,
indicating a negative synthetic genetic interaction during
DNA replication stress. However, addition of exogenous fu-
marate to the medium partially suppressed the sensitivity of
ade12D htz1D mutants to HU, indicating that adenylosucci-
nate and the integrity of the purine nucleotide cycle were
dispensable for fumarate-mediated suppression in htz1Dmu-
tants. Taken together, these results implied that fuma-
rate suppressed the sensitivity to DNA replication stress of
htz1D mutants independently of modulating nucleotide
levels.

Loss of JHD2 phenocopies fumarate-dependent
suppression of DNA replication stress sensitivity in
htz1D mutants

Fumarate is a competitive inhibitor of a-KG dependent diox-
ygenases, including JmjC domain-containing protein de-
methylases (Xiao et al. 2012; Yang et al. 2013; Jiang et al.
2015). Histone H3 K4, H3 K36, and H3 K79 methylation play
important roles in maintaining genome stability including
during DNA replication, DNA damage responses and repair,
as well as in activation of DNA damage checkpoints (Wysocki
et al. 2005; Lazzaro et al. 2008; Faucher andWellinger 2010;
Rizzardi et al. 2012; Jha and Strahl 2014; Pai et al. 2014).
Therefore, we hypothesized that fumarate had suppressed
the sensitivity to DNA replication stress in htz1D mutants in
the above experiments by modulating the levels of histone
lysine methylation through inhibition of one or more JmjC
domain-containing histone demethylases. We reasoned that
if inhibition of a JmjC histone demethylase by fumarate pro-
moted growth upon DNA replication stress in the htz1D mu-
tants, then deletion of that histone demethylase might act
similarly. Therefore, we tested the sensitivity of mutants lack-
ing individual JmjC histone demethylases to HU in the pres-
ence or absence of HTZ1, including cells lacking JHD1
(removes H3 K36me2 and me1; Tsukada et al. 2006; Fang
et al. 2007; Tu et al. 2007), JHD2 (removes H3 K4me3 and
me2; Ingvarsdottir et al. 2007; Liang et al. 2007; Tu et al.
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2007), RPH1 (removes H3 K36me3 and me2; Kim and
Buratowski 2007; Tu et al. 2007), ECM5 (unknown target)
or GIS1 (predicted to remove H3 K36 methylation; Tu et al.
2007; Kwon and Ahn 2011; Sein et al. 2015) (Figure 3A).

When grown on richmedium (YPD), smaller colonieswere
observed in htz1D, jhd1D htz1D, rph1D htz1D, ecm5D htz1D,
and gis1D htz1Dmutants compared towild-type, whereas the
colony sizes of jhd2D htz1D mutants were similar to wild-
type, implying that deletion of JHD2 complemented growth
defects caused by loss of HTZ1 (Figure 3B first panels). In
contrast to htz1Dmutants, deletion of single histone demeth-
ylases did not result in sensitivity to HU compared to wild-
type (Figure 3B first vs. third panels). jhd1D htz1D mutants
were as sensitive to HU as htz1D mutants, whereas rph1D
htz1D, ecm5D htz1D, and gis1D htz1D mutants were slightly
more sensitive toHU compared to htz1Dmutants. In contrast,
jhd2D htz1D mutants showed no sensitivity to HU compared
to wild type, and deletion of JHD2 relieved the sensitivity of
htz1D mutants to DNA replication stress (Figure 3B first vs.
third panels). Addition of exogenous fumarate had no further
effect on sensitivity of jhd2D htz1D mutants to DNA replica-
tion stress. In contrast, deletion of RPH1, ECM5, or GIS1 in
strains lacking HTZ1 resulted in sensitivity to exogenous

fumarate alone (Figure 3B first vs. second panels). This sensi-
tivity precluded our ability to determine the impact of loss of
RPH1, ECM5 or GIS1 on fumarate-dependent suppression of
sensitivity to HU in the htz1D mutants under the conditions
tested. Overall, the results of our analyses indicate that de-
letion of JHD2 was sufficient to alleviate the sensitivity to
replication stress of htz1D mutants, and implied that inhibi-
tion of the histone demethylase Jhd2p by fumarate may have
conferred resistance to DNA replication stress in the htz1D
mutants by promoting histone H3 K4 methylation.

Toexplore this possibility,we compared sensitivity toHU in
wild type or htz1D mutants lacking chromosomal copies of
genes encoding histones H3/H4 and expressing wild-type
H3/H4 or H3 mutants in which lysine methylation sites had
been mutated to arginine plus wild-type H4 from a plasmid.
Yeast lacking H3 K4 methylation showed growth defects in
the presence of HU, consistent with previously reported sen-
sitivity of set1D orH3K4Rmutants toHU(Faucher andWellinger
2010). In contrast, yeast lacking H3 K36 or H3 K79 methyl-
ation did not (Figure 4, first vs. third panel), consistent with
previously reported lack of sensitivity of set2D mutants
(Biswas et al. 2008; Jha and Strahl 2014), and dot1D or H3
K79R mutants to HU (Rossodivita et al. 2014; Stulemeijer

Figure 2 Fumarate-mediated suppression of sensi-
tivity to DNA replication stress of htz1D mutants is
independent of modulation of nucleotide pools. (A)
Fumarate suppresses the sensitivity to DNA replica-
tion stress of htz1D mutants in the absence of an
inhibitor of ribonucleotide reductase. (B) Fumarate is
a product in the purine nucleotide synthesis cycle. In
the purine nucleotide cycle, aspartate becomes con-
verted to fumarate in a two-stage reaction, which is
facilitated by hydrolysis of GTP. This two-stage re-
action involves generation of adenylosuccinate from
inosine monophosphate (IMP) and aspartate, which
is then converted to fumarate and adenosine mono-
phosphate (AMP). This reaction is followed by de-
amination of AMP to IMP by AMP deaminase. (C)
Fumarate suppresses the sensitivity to DNA replica-
tion stress of htz1D mutants in the absence of
adenylosuccinate synthase (ADE12). Strains with
genotypes as indicated in (A and C) were ana-
lyzed in serial dilution growth assays as described
in Figure 1.
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et al. 2015). Moreover, we observed synthetic growth defects
between htz1D andH3 K4Ror H3 K36Rmutants when grown
on rich medium (YPD) relative to single mutants or wild type
(Figure 4, first panel), consistent with previous reports of
synthetic growth defects between set1D and htz1D mutants
(Venkatasubrahmanyam et al. 2007), or set2D and swr1D
mutants (Fuchs et al. 2012). These growth defects were ex-
acerbated in the presence of HU (Figure 4, first vs. third
panel). In contrast, no growth defects were observed in
htz1D H3 K79R relative to htz1D mutants in rich medium,
but htz1D K79R mutants were hypersensitive to DNA repli-
cation stress relative to either single mutant (Figure 4, first vs.
third panel). Addition of fumarate suppressed the sensitivity
to DNA replication stress of wild-type strains expressing H3
K4R as well as htz1D strains expressing H3 K4R, H3 K36R or
H3 K79R mutants, but to varying degrees (Figure 4). To-
gether, these results implied that fumarate could suppress
sensitivity to replication stress caused by defects in multiple
methylation events, and that methylation of an individual
residue was not solely required for this suppression. We have
been unable to generate and test triple mutants lackingHTZ1
with histone H3 K4R,K36R or H3 K4R,K79R as these mutant
combinations appear to be lethal. Together, these data were
consistent with fumarate-dependent suppression function-
ing through multiple pathways involving different histone
methylation sites, or nonhistone protein methylation (see
Discussion).

Suppression of DNA replication stress sensitivity of
htz1D mutants by deletion of JHD2 requires H3
K4 methylation

In addition to methylated H3 K4 being enriched in transcrip-
tionally active regions, bothmethylated H3 K4 and Set1p, the

sole H3 K4-specific methyltransferase in yeast, become
enriched at DSB sites, and mutants lacking SET1 show
growth defects in the presence of HU as well as genotoxic
agents that induce DSBs (Faucher and Wellinger 2010). To
test whether suppression of sensitivity to HU in jhd2D htz1D
mutants observed in Figure 3 required methylated H3 K4,
synthetic interaction analyses were conducted using wild-
type yeast, plus htz1D, jhd2D, and jhd2D htz1D mutants
expressing wild-type H3/H4 or H3 mutants in which individ-
ual lysine methylation sites had been mutated to arginine
plus H4 from a plasmid. These analyses, shown in Figure 5,
indicated that the observed increase in colony size in jhd2D
htz1D mutants compared to htz1D mutants when grown on
rich medium (YPD) did not require H3 K4 (Figure 5, top row,
first panel), H3 K36 (Figure 5, middle row, first panel) or H3
K79 (Figure 5, bottom row, first panel) methylation, implying
a histone methylation-independent role for Jhd2p in promot-
ing growth exists. However, unlike jhd2D htz1D mutants
expressing wild-type histones, jhd2D htz1Dmutants express-
ing H3 K4Rwere as sensitive to HU as htz1Dmutants express-
ing H3 K4R (Figure 5, top row, third panel compared to first).
In contrast, jhd2D htz1D mutants expressing H3 K36R (Fig-
ure 5, middle row, third panel compared to first) or H3 K79R
mutants (Figure 5, bottom row, third panel compared to first)
were not sensitive to HU, similar to jhd2D htz1D mutants
expressing wild-type H3/H4. Together, these findings were
consistent with jhd2D-dependent suppression of growth sen-
sitivity in htz1D mutants upon DNA replication stress requir-
ing H3 K4, but not H3 K36 or H3 K79methylation. Consistent
with our results in Figure 3 and Figure 4, addition of exoge-
nous fumarate partially suppressed the sensitivity of jhd2D
htz1D H3 K4R mutants to HU (Figure 5), implying that fu-
marate could confer resistance to DNA replication stress by

Figure 3 Loss of JmjC domain-containing histone
demethylase Jhd2p suppresses the sensitivity to
DNA replication stress of htz1D mutants. (A) En-
hancing histone methylation by deletion of histone
demethylase(s) or enzyme inhibition by fumarate.
(B) Genetic interaction analyses between htz1D mu-
tants and histone demethylase mutants. Strains
with indicated genotypes were analyzed in serial
dilution growth assays as described in Figure 1.

638 F. Saatchi and A. L. Kirchmaier

http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000001161/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003704/overview
http://www.yeastgenome.org/locus/S000002742/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000001161/overview
http://www.yeastgenome.org/locus/S000001161/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview
http://www.yeastgenome.org/locus/S000003880/overview
http://www.yeastgenome.org/locus/S000005372/overview


multiple mechanisms, one of which was H3 K4 methylation-
independent.

Fumarate is a modulator of Jhd2p activity and H3
K4me3 levels

Collectively, the above findings led us to predict that elevated
H3 K4 methylation levels, via either deletion of JHD2 or ex-
posure to exogenous fumarate, could suppress replication
stress sensitivity in htz1D mutants. To test whether exoge-
nous fumarate could inhibit Jhd2p activity, we analyzed the
effect of exogenous fumarate on H3 K4 methylation in wild-
type or htz1D strains overexpressing FLAG-Jhd2p as this
background facilitates detection of changes in methylation
states of H3 K4 because endogenously expressed Jhd2p is
subject to efficient proteosomal degradation (Mersman
et al. 2009). Logarithmically growing cultures from strains
harboring an empty vector or a plasmid for overexpression of
FLAG-Jhd2p were harvested before and after exposure to
fumarate for 6 hr, and whole cell extracts were used to ana-
lyze global levels of H3 K4me3 or H3 K4me2 relative to H3 in
immunoblots. As shown in Figure 6, overexpression of FLAG-
Jhd2p results in reduced levels of H3 K4me3 in both wild
type (see also Mersman et al. (2009)) and htz1D mutants
(P = 0.029 and 0.050, respectively) (Figure 6, A and B) as
well as H3 K4me2 (Figure 6, C and D) in htz1D mutants
(P = 0.029). This difference in effect on H3 K4me2 levels
in wild-type cells vs. htz1D mutants may have been due to
enhanced overexpression of JHD2 mRNA from the heterolo-
gous PYK1 promoter in htz1D mutants (Figure S4A), which
led to enhanced overexpression of FLAG-Jhd2p (Figure S4, B
and C). In contrast, expression of JHD2 mRNA from its en-
dogenous promoter was similar in wild-type cells and htz1D
mutants containing vector alone (Figure S4A).

After treatment with fumarate, the global levels of H3
K4me3 in wild-type yeast or htz1D mutants overexpressing
FLAG-Jhd2p, as well as H3 K4me2 in htz1D mutants over-
expressing FLAG-Jhd2p were significantly increased relative
to in the absence of fumarate (P = 0.029, 0.05 and 0.029,
respectively; see also Figure S5, A and B), implying that fu-
marate had inhibited Jhd2p in vivo. A similar significant in-
crease in H3 K4me2 levels was observed in fum1D htz1D
relative to htz1D mutants overexpressing FLAG-Jhd2p (Fig-
ure S5; P = 0.029). In contrast to H3 K4 methylation, global

levels of H3 K36me3 or H3 K79me3 were not affected by
exposure to fumarate or loss of FUM1 in these experiments
(Figure 6, C and D, or Figure S5A, respectively). Together,
these results were consistent with previous reports of eleva-
tion of H3 K4 methylation levels in mammalian cells upon
treatment with fumarate or siRNA targeting fumarase (Xiao
et al. 2012).

The impact of fumarate on cell cycle progression and
checkpoint activation upon DNA replication stress

Like wild-type yeast, htz1D and swr1D mutants do not accu-
mulate spontaneous DSBs as measured by Pulsed-Field Gel
Electrophoreses (Morillo-Huesca et al. 2010), and, upon re-
lease into HU, htz1D and swr1D mutants exhibit wild-type
replication bubbles and forks, with no evidence of accumula-
tion of stalled, broken, or recessed forks at, or near, early
origins by two-dimensional (2D) gel analyses, indicating ini-
tiation and fork progression per se in these mutants is rela-
tively normal (Dhillon et al. 2006; Srivatsan et al. 2018).
Also, like in wild type, late origins fail to fire in HU in
htz1D mutants, consistent with late origin firing being nega-
tively regulated by Rad53p via proper intra-S phase check-
point activation in HU in the absence of Htz1p (Dhillon et al.
2006). However, although the early and late origin replica-
tion program is conserved (Dhillon et al. 2006), the timing of
origin firing is delayed in htz1Dmutants (Dhillon et al. 2006),
and loss of HTZ1 or SWR1 delays completion of replication
relative to wild type (Dhillon et al. 2006; Srivatsan et al.
2018). In addition, although htz1D mutants exhibit a de-
creased rate of progression through S phase, the efficiency
of checkpoint-dependent cell cycle arrest in early S phase in
HU (Dhillon et al. 2006), and recovery from exposure to HU
in htz1Dmutants remains similar to wild type (Srivatsan et al.
2018). To test whether fumarate affected cell cycle kinetics in
htz1D mutants, we analyzed cell cycle progression of wild-
type yeast and htz1D mutants in the presence or absence of
HU and/or fumarate. To do so, we first synchronized the cells
in G1 with a-factor before releasing into rich medium with or
without HU or fumarate. Cells were harvested before, and at
20-min intervals after release, and their DNA content was
analyzed by flow cytometry. As shown in Figure S6, addition
of HU slowed progression of both wild-type yeast and htz1D
mutants through S phase, as expected. In the absence of HU,

Figure 4 Fumarate-dependent suppression of sen-
sitivity to DNA replication stress of strains expressing
H3 mutants with lysine to arginine mutations at H3
K4, K36, or K79. Strains with genotypes as indi-
cated were analyzed in serial dilution growth assays
as described in Figure 1.
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fumarate did not dramatically affect the cell cycle profile of
wild-type yeast or the htz1Dmutants during the first S phase.
These results implied fumarate did not function by promoting
entry into Start in the htz1D mutants via eliminating a delay
in the induction of G1 cyclins (Dhillon et al. 2006). In the
presence of HU, addition of fumarate also did not dramati-
cally affect the cell cycle profile in wild-type yeast or htz1D
mutants during the first cell cycle.

Reports of defects in phosphorylation of Rad53p in htz1D
mutants in response to DNA damage (Dhillon et al. 2006;
Kalocsay et al. 2009) prompted us to assess the impact of
fumarate on the DNA damage checkpoint activation and de-
activation as well. We analyzed checkpoint responses by
monitoring the phosphorylation status of Rad53p in wild-
type yeast and htz1D mutants grown in rich medium follow-
ing exposure to HU in the presence or absence of exogenous
fumarate (Figure S7). Cultures were first synchronized in G1

by addition of a-factor, then released into HU-containing
growth medium containing or lacking fumarate. Cells were
then collected before and every 30 min to 2 hr after addition
of HU for a total of 8 hr. The phosphorylation status of
Rad53p was then analyzed from each timepoint by immuno-
blotting using Rad53p-specific antibodies and whole cell ex-
tracts. As shown in Figure S7, phosphorylated Rad53p was
detected within 1 hr of treatment with HU in wild-type yeast
and htz1D mutants in the presence or absence of fumarate,
indicating that exogenous fumarate had little or no impact on
activation of Rad53p. In htz1D mutants, phosphorylated
Rad53p diminished after 6 hr of treatment with HU,whereas
phosphorylated Rad53p was still detectable in wild-type

yeast, indicating that htz1Dmutants had defects in maintain-
ing checkpoint activation, and had adapted to DNA replica-
tion stress earlier than had wild-type. Addition of fumarate
did not dramatically affect this early checkpoint deactiva-
tion. Taken together, checkpoint activation and deactivation
in wild-type yeast or htz1D mutants were largely unaf-
fected upon addition of exogenous fumarate under these
conditions.

Suppression of sensitivity to DNA replication stress of
htz1D mutants by fumarate requires intra-S phase
checkpoint sensors and mediators

The intra-S phase checkpoint consists of two branches: the
DNA damage checkpoint (DDC) and the DNA replication
checkpoint (DRC). In both DDC and DRC, induced phosphor-
ylation of Rad53p is dependent on signaling events that act
upstream of the sensor Mec1p kinase, which is recruited to
ssDNA coated with RPA via Mec1p’s interacting partner
Ddc2p (Rouse and Jackson 2002; Zou and Elledge 2003),
although DDC tends to be a slower, sustained response,
whereas DRC is rapid, but transient (Pardo et al. 2016). In
DDC, Mec1p uses the adaptor Rad9p to transduce the signal
to Rad53p in response to DNA damage (Weinert and Hartwell
1988; Gilbert et al. 2001; Sweeney et al. 2005) [see Pardo
et al. (2016) for review]. In contrast, Mrc1p travels with
the DNA replication fork (Katou et al. 2003; Lou et al.
2008; Komata et al. 2009), and acts as a “threshold-driven”
sensor during DRC. Upon phosphorylation by Mec1p, Mrc1p
mediates a signal to Rad53p that is strong enough to activate
the intra-S phase checkpoint only when numerous forks are
impeded (Alcasabas et al. 2001; Tanaka and Russell 2001,

Figure 5 Impact of histone methylation, loss of
JHD2 and exogenous fumarate on sensitivity to
DNA replication stress of htz1D mutants. Strains
with indicated genotypes were analyzed in serial di-
lution growth assays as described in Figure 1.
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2004; Duncker et al. 2002; Shimada et al. 2002; Osborn and
Elledge 2003; Tercero et al. 2003; Smolka et al. 2006; Xu
et al. 2006; Chen and Zhou 2009) [see Pardo et al. (2016)
for review]. DDC and DRC appear to regulate downstream
targets somewhat differently during intra-S phase checkpoint
activation. For example, MRC1 is required to inhibit late or-
igin firing in HU and MMS, whereas RAD9 is not (Alcasabas
et al. 2001; Bacal et al. 2018).

Multiple factors act as DNA damage sensors for both the
DDC and DRC branches of the intra-S phase checkpoint
signaling pathway to activate Mec1p, including the Ddc1p–
Mec3p–Rad17p complex, and Rad24p. Ddc1p–Mec3p–
Rad17p is analogous to the 9-1-1 complex in mammals.
Rad24p is the large subunit of an alternative RF-C complex
that loads Ddc1p–Mec3p–Rad17p onto DNA at the 59 junc-
tion between RPA-bound ssDNA and dsDNA (Majka and
Burgers 2003; Zou et al. 2003; Furuya et al. 2004), such as those
present at Okazaki fragments. Loss of these factors results in
defects in or loss of phosphorylation of Rad53p upon DNA
replication stress (Paciotti et al. 1998; Shimomura et al.
1998; Kondo et al. 1999; Alcasabas et al. 2001; Gilbert
et al. 2001).

To test whether the fumarate-dependent resistance to HU
in htz1Dmutants required sensors of the checkpoint signaling
pathway, we examined sensitivity to replication stress in
strains in which components of the intra-S phase checkpoint

had been deleted. We found that deletion of RAD17, RAD24,
or DDC1 from wild-type did not result in sensitivity to HU
under the conditions tested, and their deletion in htz1D mu-
tants did not increase the sensitivity of htz1D mutants to HU
(Figure 7A, first vs. third panel). However, deletion of RAD17,
RAD24, or DDC1 prevented fumarate-dependent resistance
to HU in the htz1Dmutants (Figure 7A), indicating the 9-1-1
complex was required for fumarate to confer resistance to
DNA replication stress. Similarly, cells lacking the DDC me-
diator Rad9p (the ortholog of mammalian 53BP1) did not
exhibit sensitivity to HU under the conditions tested, and
inactivation of DDC by loss of RAD9 instead partially restored
growth of htz1D mutants in HU. Addition of exogenous fu-
marate did not enhance this effect (Figure 8).

We also assessed the impact of loss of HTZ1 and/or expo-
sure to fumarate on DRC. Deletion of the DRC mediator
MRC1 (Figure 7A, bottom row, first vs. third panel) caused
a growth defect inmedium containing HU (see also Alcasabas
et al. 2001; Tanaka and Russell 2001; Osborn and Elledge
2003), andmrc1D htz1Dmutants showed enhanced sensitiv-
ity to HU as compared to wild-type yeast or htz1D mutants
[see also Srivatsan et al. (2018) for mrc1D swr1D mutants],
implying that the presence of Htz1p was critical to limit ab-
normal replication intermediates when Mrc1p was not pre-
sent to stabilize the fork. We therefore repeated these growth
assays using a lower concentration of HU to assess the effect

Figure 6 Fumarate modulates levels of JDH2-
dependent H3 K4 methylation. Wild-type yeast and
htz1D mutants carrying an empty vector or a plas-
mid for overexpression of FLAG-Jhd2p were grown
logarithmically in selective medium with or without
5 mM fumarate. (A and C) Whole cell extracts of
strains with indicated genotypes were analyzed in
at least three independent experiments by immuno-
blotting against H3 K4me3 (A), or H3 K4me2,
H3K36me3, H3 K79me3 (C) and H3 (loading con-
trol). (B and D) Levels of H3 K4me3 (B) or H3 K4me2
(D) were normalized to H3, and expressed relative
to that observed in wild-type with vector (vec),
which was set to 1 (Avg. 6 STD, n = 3; represen-
tative independent experiments shown in (A and C).
The level of H3 K4me3 or H3 K4me2 relative to H3
was calculated as ðH3 K4meX=H3Þsample

ðH3 K4meX=H3ÞWT þ vec. The statis-
tical analysis was performed using Wilcoxon Rank
Sum test and P-value # 0.05 is shown by *.
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of fumarate on this sensitivity (Figure 7B); however, addi-
tion of fumarate to the growth medium could not suppress
the sensitivity of mrc1D htz1D mutants to HU. Together,
these results implied that the resistance to replication
stress conferred to htz1Dmutants by exposure to fumarate
required several intact intra-S phase checkpoint sensors
and mediators, and were consistent with fumarate having
promoted a different step in the intra-S phase checkpoint
signaling pathway that had been compromised by loss of
HTZ1.

We next examined the relationship between SGS1 and
HTZ1 plus fumarate (Figure 9A). Sgs1p, a 39–59 RecQ heli-
case and yeast ortholog of the Bloom Syndrome protein
BLM, is a stable component of the replication fork, where
it interacts with RPA and Dna2p (Cejka et al. 2010;
Hegnauer et al. 2012). Upon intra-S phase checkpoint ac-
tivation with HU, Sgs1p binds Rad53p, stabilizes DNA pol
a and DNA pol e association with the stalled forks, and may
contribute to fork stability by reversing recessed forks
and preventing inappropriate recombination by resolving
strand exchange (Cobb et al. 2003; Versini et al. 2003;
Bjergbaek et al. 2005; Bernstein et al. 2009, 2010;
Hegnauer et al. 2012). When phosphorylated by Mec1p,
Sgs1p functions in the DRC pathway with Mrc1p to acti-
vate Rad53p, although Sgs1p’s helicase activity per se is not

required for this phosphorylation event (Bjergbaek et al.
2005; Hegnauer et al. 2012). In the absence of replication
stress, sgs1Dmutants grew with similar efficiency as wild
type, whereas sgs1D htz1D mutants exhibited a growth
defect relative to either single mutant in the absence
of replication stress (Figure 9A, first panel). Growth de-
fects of sgs1D and sgs1D htz1D mutants in HU could not
be suppressed by the addition of fumarate (Figure 9A,
third vs. fourth panel), implying that Htz1p was critical
for ensuring survival during replication stress in the ab-
sence of Sgs1p, like the other DRC component Mrc1p
(Figure 7). However, fumarate could not bypass this role
of Htz1p.

While Sgs1p is epistatic to Mrc1p in activation of
Rad53p, Sgs1p also binds Rad51p (Wu et al. 2001) and
functions in a pathway parallel to Mrc1p during replica-
tion fork recovery to stabilize association of DNA polymer-
ase e at forks (Bjergbaek et al. 2005). As Sgs1p-dependent
stabilization of DNA polymerase e at forks requires the
helicase activity of Sgs1p as well as Rad51p, this pathway
has been proposed to be involved in resolving reversed
forks and promoting recombination-dependent restart of
forks, prompting us to examine the relationship between
Htz1p and factors involved in processing forks for replica-
tion restart.

Figure 7 Fumarate-dependent suppression of sen-
sitivity to DNA replication stress of htz1D mutants
requires components of the intra-S phase check-
point. (A) The 9-1-1 complex and the 9-1-1 loader
Rad24p are required for fumarate to suppress the
sensitivity to DNA replication stress of htz1D mu-
tants. (A and B) htz1D mutants require the DRC
mediator Mrc1p during DNA replication stress.
Strains with genotypes as indicated were analyzed
as described in Figure 1.
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Suppression of sensitivity to DNA replication stress of
htz1D mutants by fumarate and end resection

During replication stress, MRN-Ctp1, the S. pombe ortholog of
MRX-Sae2p, facilitates replication restart in a DSB-indepen-
dent pathway by limiting uncontrolled resection by the exo-
nuclease Exo1 at terminally arrested forks (Teixeira-Silva et al.
2017). In the absence of DSBs at stalled forks, short-range
resection by MRN-Ctp1 creates ssDNA gaps that enable load-
ing of RPA, Rad52, and Rad51, as well as replication restart
(Lambert et al. 2010; Tsang et al. 2014; Nguyen et al. 2015;
Teixeira-Silva et al. 2017). To test whether the fumarate-
dependent resistance to HU in the htz1D mutants could be
related to fork resection and restart, we revisited sensitivity
to replication stress in strains in which components of theMRX
complex had been deleted (Figure 9B). In the absence of rep-
lication stress, rad50D, xrs2D, andmre11Dmutants grewwith
similar efficiency as wild-type, and rad50D htz1D, xrs2D
htz1D, andmre11D htz1Dmutants grewwith similar efficiency
as htz1Dmutants (Figure 9B, first panel), consistent with pre-
vious reports that loss of HTZ1 does not inherently result in
accumulation of broken forks (Dhillon et al. 2006; Srivatsan
et al. 2018). Consistent with a critical role of theMRX complex
in processing replicative intermediates arising during replica-
tion stress, cells lacking RAD50, XRS2 or MRE11 were hyper-
sensitive to HU relative to wild-type or htz1D mutants. In
contrast, deletion of HTZ1 in rad50D or xrs2D, but not
mre11D mutants partially suppressed their sensitivity to HU
(Figure 9B, first vs. third panel), and addition of exogenous
fumarate further suppressed this sensitivity, but only in the
absence of HTZ1 (Figure 9B). The significance of this differ-
ence in phenotypes between the subunits of the MRX complex
is not understood. However, upon g-irradiation, Mre11p can
form weak nuclear foci in the absence of XRS2, and is nuclear
in cells lacking RAD50 (Lisby et al. 2004), plus a Rad50-
independent function of Mre11 in repair of DSBs has previ-
ously been documented in Archaea (Kish and DiRuggiero
2008). Regardless, these results implied chromatin composi-
tion impacted the fate of arrested forks in the absence of a
functional MRX complex, and, therefore, viability.

Sae2p and the exonuclease Exo1p promote survival dur-
ing replication stress by counteracting the formation of aber-
rant branched structures at stalled forks associated with DSB
formation and fork collapse (Colosio et al. 2016). Sae2p stim-
ulates Mre11p and promotes end resection with the MRX
complex during DSB repair (Lengsfeld et al. 2007; Mimitou
and Symington 2008; Cannavo and Cejka 2014), and facili-
tates release of the MRX complex from DNA ends to promote

repair (Puddu et al. 2015). Sae2p promotes processing of
structures mimicking replicative intermediates in vitro, and
appears to have functions distinct from Mre11p in counter-
acting reversed fork cleavage (Colosio et al. 2016; Ghodke
and Muniyappa 2016). Exo1p can resect nascent strands in
reversed forks, thereby limiting their formation into struc-
tures that could lead to DSBs (Colosio et al. 2016). In S.
pombe, long-range resection at terminally arrested forks re-
quires Exo1 [but not Rqh1 (Sgs1p)] and is Ctp1 (Sae2p)-
dependent (Teixeira-Silva et al. 2017). When examining the
relationship between SAE2, EXO1, and HTZ1 plus fumarate,
we found sae2D and exo1D mutants grew with similar effi-
ciency as wild-type, and sae2D htz1D plus exo1D htz1D mu-
tants grew with similar efficiency as htz1D mutants on rich
medium (Figure 9A, first panel). sae2D mutants were mildly
sensitive to HU, and sae2D htz1D mutants were more sensi-
tive than either single mutant to replication stress (Figure 9A,
first vs. third panel). However, like in htz1D mutants, fuma-
rate fully suppressed the hypersensitivity of sae2Dmutants to
replication stress, and partially suppressed the hypersensitiv-
ity of sae2D htz1Dmutants (Figure 9A, third vs. fourth panel),
consistent with exposure to fumarate leading to bypass of a
defect caused by the absence of either Sae2p or Htz1p. Unlike
sae2D mutants, cells lacking EXO1 [in which resection of a
regressed, terminally arrested fork would be expected to be
limited as in Schizosaccharomyces pombe (Teixeira-Silva et al.
2017)] grew similar to wild-type on HU, indicating Exo1p
was not required to process/restart stalled forks under the
conditions tested [Figure 9A, see also Doerfler and Schmidt
(2014)]. exo1D htz1D and htz1Dmutants were similarly sen-
sitive to replication stress, implying that limiting resection by
Exo1p and Htz1p function may fall in the same pathway at
replication forks (see Adkins et al. 2013) for exo1D swr1D
interactions with UV and zeocin). This defect in exo1D
htz1D mutants was partially suppressed by exogenous fuma-
rate (Figure 9A third vs. fourth panel). Together, these results
were consistent with exposure to fumarate having enabled
bypass of defects related to processing stalled forks.

Suppression of sensitivity to DNA replication stress of
htz1D mutants by fumarate is independent of
displacement of Ku from replicative intermediates

YKU70 encodes a component of the Ku complex, which is best
known for its ability to bind DSB ends and promote NHEJ
(Boulton and Jackson 1996). Ku70p also has a NHEJ-
independent function during replication stress, in which Ku70p
binds reversed forks to regulate end resection by limiting

Figure 8 htz1D mutants do not require the DDC
mediator Rad9p during DNA replication stress.
Strains with genotypes as indicated were analyzed
as described in Figure 1.
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homology-directed repair (Foster et al. 2011; Teixeira-Silva
et al. 2017). At terminally arrested forks in S. pombe, MRN-
Ctp1, is proposed to displace Ku via short-range resec-
tion. This short-range resection is Ctp1-dependent and
Exo1-independent, and Exo1 is not required for replication
restart at stalled forks lacking DSBs (Teixeira-Silva et al.
2017). However, in the absence of Ku70, Rad50, and Ctp1
are no longer required to promote initial resection of a stalled
fork lacking a DSB. Instead, stalled forks now can be resected
by Exo1, but HR-mediated fork restart becomes delayed.
Consistent with conservation of this process, loss of YKU70
in budding yeast suppresses MMS sensitivity and mildly sup-
presses HU sensitivity of mre11 nuclease dead and sae2D
mutants (Foster et al. 2011).

To test the relationship between YKU70, HTZ1, and fuma-
rate during replication stress, we conducted analogous
growth assays in htz1D strains containing or lacking
YKU70. However, the sensitivity to replication stress of
htz1D mutants did not require YKU70, and fumarate could
suppress the sensitivity to HU of htz1D mutants similarly in
the presence and absence of YKU70 (Figure S8). These re-
sults implied fumarate did not suppress sensitivity to replica-
tion stress in the htz1D mutants by promoting removal of Ku
from ends of reversed forks, but rather suppressed a Ku70p-
independent defect in the htz1D mutants.

Varying effects of fumarate and loss of FUM1 on
sensitivity to UV and camptothecin in htz1D mutants

Exposure to UV can create lesions, including pyrimidine
dimers and (6–4) photoproducts, throughout the cell cycle.

These lesions are repaired by multiple pathways, depending
on their location and their presence during different points in
the cell cycle, including Nucleotide Excision Repair (NER),
through either transcription-coupled NER or Global Genome
NER pathways (Waters et al. 2015). However, if UV lesions
are present in S phase, they can result in arrest of replication
forks and uncoupling of the replicative helicase from DNA
polymerase (Byun et al. 2005), in contrast to HU, in which
the fork remains intact and travels slowly (Sogo et al. 2002).
Such UV lesions can be repaired by multiple postreplicative
repair strategies that are error prone, involving specialized
translesion synthesis DNA polymerases, or error free, involv-
ing template switching, fork regression, and gap-filling
(Boiteux et al. 2013). To test the impact of loss of HTZ1
and exposure to fumarate on sensitivity to UV, we compared
growth of htz1Dmutants to wild-type yeast in untreated cells
vs. after exposing cells to UV, and with or without adding
exogenous fumarate. As shown in Figure S9A (top row, first
vs. third panel), htz1Dmutants were sensitive to exposure to
UV (see also Deng et al. 2005). This UV sensitivity could be
suppressed by expression of HTZ1 exogenously (Figure S9A
top row, first vs. third panels), but not via deletion of FUM1
(Figure S9A top row, first vs. third panels) or the addition of
exogenous fumarate (Figure S9A top row, third vs. fourth
panels). Loss of FUM1 also did not alter sensitivity to UV
relative to wild-type (Figure S9A row, first vs. third panels),
nor did exposure to exogenous fumarate (Figure S9A, third
vs. fourth panels).

We next evaluated the impact of fumarate and FUM1 on
sensitivity to camptothecin. Camptothecin is a topoisomerase

Figure 9 Impact of loss of HTZ1 and exogenous
fumarate on sensitivity to DNA replication stress of
mutants with defects in DRC and processing and
restart of aberrant replication forks. (A) Fumarate
suppresses the sensitivity to DNA replication stress
in cells lacking EXO1, or SAE2 in the presence or
absence of HTZ1. (B) Loss of HTZ1 confers resis-
tance to DNA replication stress of cells lacking
subunits of the MRX complex, and fumarate en-
hances this effect. Strains with genotypes as indi-
cated were analyzed as described in Figure 1.
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I (TopI) inhibitor that causes ssDNA nicks by stabilizing
TopI cleavage complexes and preventing them from religat-
ing DNA. This then results in replication-dependent forma-
tion of DSBs on the leading strand when forks collide with
the TopI cleavage complexes (Covey et al. 1989; Hsiang
et al. 1989; Strumberg et al. 2000). Thus, camptothecin
activates the RAD9-dependent (Lancelot et al. 2007) DDC
branch of the intra-S phase checkpoint, in contrast to the
DRC-related pathway implicated in relation to HU discussed
above. As shown in Figure S9B (top row, panels one and
three) htz1D mutants were hypersensitive to camptothecin
(see also Deng et al. 2005), and this sensitivity was sup-
pressed by the addition of exogenously expressed HTZ1.
In contrast to what had been observed for HU, this sensitiv-
ity was increased by loss of FUM1. Cells lacking both FUM1
and HTZ1 were hypersensitive to camptothecin relative to
either single mutant or wild type, but this sensitivity could
be partially suppressed by the addition of exogenous fuma-
rate (Figure S9B first vs. third and fourth rows). Together,
these results imply that FUM1 and fumarate influence repair
of multiple forms of DNA damage, but not all repair path-
ways (see Discussion).

Discussion

Collectively, our findings are consistent with a role for me-
tabolism in maintaining genome integrity. Here, we demon-
strated that yeast fumarase, and fumarate, the product of
catalysis by fumarase, act as intra-S phase checkpoint re-
sponse factors (summarized in Table 1). Consistent with fu-
marate promoting replication fork integrity, we found that an
increase in cellular levels of fumarate by deletion of FUM1, or
addition of exogenous fumarate relieved the sensitivity to
replication stress of yeast lacking HTZ1 (Figure 1 and Figure
S1), or SWR1 (Figure S2). Evidence from our genetic studies
are consistent with fumarate conferring resistance to HU by
modulation of histone methylation levels primarily through
inhibition of the JmjC domain-containing histone demethyl-
ase Jhd2p (Figure 3) rather than via modulation of nucleo-
tide pools (Figure 2), cell cycle progression (Figure S6), or
checkpoint activation (Figure S7). We have shown that de-
letion of JHD2 suppressed the sensitivity of htz1Dmutants to
replication stress (Figure 3 and Figure 5), and exogenous
fumarate, or loss of FUM1, could modulate H3 K4 methyl-
ation levels in vivo (Figure 6 and Figure S5). These results are
consistent with elevated histone H3 K4 methylation confer-
ring resistance to replication stress in htz1D mutants. Our
findings revealed fumarate could also promote resistance to
replication stress through a second pathway in htz1D mu-
tants that was H3 K4 methylation- or JHD2-independent
(Figure 4 and Figure 5), implying that multiple mechanisms
exist by which fumarate promoted growth during replication
stress. Synthetic interaction analyses with intra-S phase
checkpoint factors were consistent with the sensitivity to rep-
lication stress of htz1D mutants, and suppression of this sen-
sitivity by fumarate, being primarily associated with defects

in one or more events involved in processing and restart of
intact, stalled forks, rather than recognition of damage or
activation of the intra-S phase checkpoint (Figure 7, Figure
8, Figure 9, Figure S3, Figure S7, Figure S8, and Table 1).

In humans, fumarase has been described as a tumor sup-
pressor where its loss has been associated with stabilization
of HIF1-a under normoxic conditions through inhibition of
a-KG-dependent prolyl hydroxylases (Tomlinson et al. 2002;
Isaacs et al. 2005; Koivunen et al. 2007; Gaude and Frezza
2014; Laurenti and Tennant 2016). However, a growing body
of evidence points toward an additional integral role of this
tumor suppressor in responses to DNA damage. In the past
few years, a direct link between fumarase deficiency and
genome instability has emerged from studies in yeast as well
as inmammalian cells. Yeast expressing Fum1p exclusively in
mitochondria are sensitive to ionizing radiation, HU, and
DSBs created by expression of the HO endonuclease (Yogev
et al. 2010; Leshets et al. 2018), and exhibit dramatically
reduced stability of Sae2p, leading to defects in resection at
HO-mediated DSBs (Leshets et al. 2018). Fum1p binds Sae2p
in vitro and in vivo (Leshets et al. 2018); however, whether
the catalytic activity of Fum1p, in addition to binding, is re-
quired to stabilize Sae2p has yet to be tested. In this study, we
have demonstrated that Fum1p acted as an intra-S phase
checkpoint response factor that became induced and
enriched in the nucleus upon exposure to stress during
DNA replication [Figure 1, see also Yogev et al. (2010)],
and that fumarate could suppress sensitivity to DNA replica-
tion stress in yeast lacking SAE2 (Figure 9A), collectively
implying Fum1p promotes genome integrity both through
stabilizing Sae2p, and through the production of fumarate
to modulate chromatin modification states. Interestingly, hu-
man fumarase also becomes enriched in chromatin extracts
after exposure to ionizing radiation, and is recruited to DSBs
created by the restriction endonuclease I-SceI (Jiang et al.
2015). Upon induction of a DSB in human cells, chromatin
association of fumarase is facilitated by its interaction with
H2A.Z, but whether CtIP (Sae2p) is also required is un-
known. During DSB repair by NHEJ, chromatin-associated
fumarase promotes association of the NHEJ factor Ku70 by
production of fumarate and inhibition of KDM2B, a histone
demethylase that targets H3 K36 methylation (Jiang et al.
2015). In contrast, during the intra-S phase checkpoint re-
sponse in budding yeast, sensitivity to replication stress in
htz1D mutants was independent of YKU70, and fumarate
promoted resistance to replication stress in htz1D mutants
through a YKU70-independent pathway (Figure S8) that in-
volved inhibition of Jhd2p, a H3 K4-specific demethylase
(Figure 3, Figure 4, Figure 5, and Figure 6). As fumarate
could also suppress the sensitivity to DNA replication stress
of htz1D sae2D mutants, which contained FUM1 but lacked
these anticipated partners for targeting Fum1p to sites of
damage (Figure 9A), our findings are consistent with amodel
(Figure 10) in which a critical role of fumarase during the
DNA replication stress response is to modify chromatin
composition by generating fumarate to inhibit Jhd2p, and
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potentially other dioxygenases (Figure 3, Figure 4, Figure 5,
and Figure 6).

Additional investigation will be required to decipher the
mechanism(s) by which modulation of H3 K4 methylation by
fumarate contributes to resistance to HU, but our data are
consistent with a role for this modification in facilitating
processing and restart of stalled forks (Figure 9). While rep-
lication fork reversal during replication stress protects ge-
nome stability by facilitating replication restart, reversed
forks resemble one end of a DSB, and are susceptible to ex-
cessive resection of nascent strands, resulting in genome in-
stability (Thangavel et al. 2015; Zellweger et al. 2015;
Giannattasio and Branzei 2017; Quinet et al. 2017; Menin
et al. 2018). Thus, mechanisms induced during intra-S phase
checkpoint activation also serve to limit resection during rep-
lication restart (Sogo et al. 2002; Rossi et al. 2015). Prece-
dence exists for a role of H3 K4 methylation in intra-S phase
checkpoint response and replication restart. In budding
yeast, cells lacking SET1 and expressing wild-type H3 or H3
K4R are similarly sensitive to replication stress, and set1D
mutants exhibit a defect in recovery from exposure to HU
as well as defects in recruiting YKu80p to DSBs (Faucher
and Wellinger 2010). In mammals, SETD1A localizes to rep-
lication forks, and SETD1A-dependent H3 K4 methylation at
forks stalled with HU protects such compromised forks from
excessive Dna2-dependent resection via promoting histone

mobilization by the chaperone FANCD2, and by negatively
regulating the remodeler CHD4. This, in turn, promotes re-
cruitment of RAD51, or RAD51 filament stability, at stalled or
arrested forks in HU orMMS (Higgs et al. 2018). Additionally,
SETD1A may play a role in the mammalian transcriptional
response during DDR, but the impact of this effect is unclear
(Arndt et al. 2018; Higgs et al. 2018; Hoshii et al. 2018).
Other examples for a role of H3 K4methylation in fork restart
during the intra-S phase checkpoint response can be found
with the mammalian H3 K4-specific methyltransferases
MLL2/3, which also function at stalled forks by enhancing
recruitment of MRE11 and influencing fork processing in the
absence of BRCA2 (Ray Chaudhuri et al. 2016; Higgs et al.
2018), as well as in the H3 K4- and K36-specific methyltrans-
ferase Metnase, which participates in restarting stalled forks
after arrest in HU (De Haro et al. 2010). The relationship
between these methyltransferases, H2A.Z, and fumarate at
stalled forks in mammals awaits investigation.

Prior to the identification of H2A.Z as a binding partner of
human fumarase (Jiang et al. 2015), Htz1p/H2A.Z had been
identified as a participant in responses to DNA damage in
yeast and human cells (Mizuguchi et al. 2004; Dhillon et al.
2006; Kalocsay et al. 2009; Xu et al. 2012; Adkins et al. 2013),
and yeast HTZ1 had been found to exhibit synthetic genetic
interactions with various DNA damage response factors in-
cludingMEC1,MRC1, RAD53, and EXO1 (Figure 7 and Figure

Table 1 Summary of genetic interactions between htz1D and DNA replication stress response components or histone demethylases

Function Mutant tested

Genetic interaction
with htz1D on
rich medium

Genetic interaction
with htz1D on HU

Suppression of
HU sensitivity
by fumarate in

wild-type background

Suppression of
HU sensitivity
by fumarate in

htz1D background

Sensor of DNA replication stress rad17D Nonea None N/Db Noc

ddc1D None None N/D No
rad24D None None N/D No

Mediator of checkpoint signaling mrc1D None 2d N/D No
rad9D None +d N/D N/D

DNA processing factor exo1D None None N/D Yesc

sgs1D — N/D No No
sae2D None — Yes Yes
yku70D None None N/D Yes
mre11D None — No No
rad50D None + No Yes
xrs2D None + No Yes
rad52D Not testede Not tested No Not tested

JmjC domain enzyme jhd1D None None N/D Yes
jhd2D + + N/D N/D
rph1D NONEf — N/D No
gis1D NONE None N/D No
ecm5D NONE None N/D No

Other fum1D None + N/D Yes
swr1D Not tested Not tested Yes Not tested
sml1D — + N/D Yes
ade12D None — N/D Yes

a No genetic interaction observed.
b Not detectable under conditions of assay.
c No detectable suppression (No), or suppression (Yes) of HU sensitivity by fumarate.
d Negative (2), or positive (+) genetic interaction.
e Mutant was not tested.
f No genetic interaction on rich medium, negative genetic interaction on rich medium containing fumarate.
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9, and see Pan et al. 2006; Collins et al. 2007; Adkins et al.
2013). During DSB repair, this histone variant is transiently
incorporated around DSBs (Kalocsay et al. 2009), and Htz1p
as well as the chromatin remodeling complexes SWR1C and
INO80C, which regulate deposition of Htz1p onto chromatin,
are involved in NHEJ, homologous recombination, and fork
stability (Kobor et al. 2004; Papamichos-Chronakis et al.
2006, 2011; van Attikum et al. 2007; Papamichos-Chronakis
and Peterson 2008; Xu et al. 2012; Adkins et al. 2013). Like in
htz1D mutants, fumarate suppresses the sensitivity to repli-
cation stress of swr1D mutants (Figure S2), which are defec-
tive in incorporation of Htz1p into nucleosomes (Krogan et al.
2003; Kobor et al. 2004; Mizuguchi et al. 2004).

The chromatin remodeler INO80C is a target of the DRC;
INO80C binds and is phosphorylated by Rad53p (Morrison
et al. 2007; Chen et al. 2010; Poli et al. 2016), and partici-
pates in removal of Htz1p adjacent to DSBs (van Attikum
et al. 2007; Lademann et al. 2017), which promotes Rad51p
presynaptic filament formation for homologous recombina-
tion (Lademann et al. 2017). Together with Mec1p and the
PAF1 complex, INO80C has also been implicated in replica-
tion fork progression and restart during collisions between
the replication and transcription machinery through a mech-
anism that involves eviction of the initiating form (phosphor-
ylated on Ser 5) of RNA PolI from DNA during replication
stress in HU (Poli et al. 2016). Consistent with this observa-
tion, during recovery from HU, DSBs in mec1 mutants are
more likely to occur within genes induced by replica-
tion stress (Hoffman et al. 2015). How the substrate of
INO80C—nucleosomes containing Htz1p, such as those
found at transcriptional start sites—affect the efficiency of
resolving such collisions is unknown. Interestingly, the
PAF1 complex is also essential for monubiquitination of
H2B at promoters by Bre1p-Rad6p (Wood et al. 2003).
Bre1p-Rad6p, in turn, is required for H3 K4 methylation by

COMPASS/Set1p (Dover et al. 2002; Sun and Allis 2002;
Krogan et al. 2003; Ng et al. 2003; Wood et al. 2003) and
for association of COMPASS with RNA Pol II (Krogan et al.
2003). htz1D H3 K4R mutants exhibit synthetic growth de-
fects (Figure 4 and Venkatasubrahmanyam et al. 2007), and
set1D and H3 K4R mutants exhibit growth defects in HU
(Figure 4 and Figure 5 and Faucher and Wellinger 2010).
In addition, loss of FUM1 or exogenous fumarate promoted
H3 K4 methylation (Figure 6 and Figure S5), and fumarate
suppressed sensitivity of htz1D mutants to HU through a
JHD2-dependent pathway (Figure 3). Thus, it is tempting
to speculate that, by promoting H3 K4methylation, fumarate
could facilitate processing of such replication-transcription
machinery collisions occurring in the htz1D mutants during
replication stress.

In addition to having growth defects upon exposure toHU,
set1D mutants display an increased rate of plasmid loss rela-
tive to wild-type that could be suppressed by multiple copies
of an origin of replication on a plasmid in mini-chromosome
maintenance assays (Faucher and Wellinger 2010; Rizzardi
et al. 2012). Additionally, H3 K4me2 andme3 are enriched at
origins of replication and H3 K4 methylation promotes effi-
cient origin function (Rizzardi et al. 2012). As htz1Dmutants
show delays in origin firing (Dhillon et al. 2006), these ob-
servations collectively support amodel inwhich high levels of
H3 K4 methylation (by deletion of JHD2 or inhibition of
Jhd2p by elevated levels of cellular fumarate) could promote
firing from inefficient or late origins to complement htz1D-
dependent delays in replication during replication stress.
Such amechanism could involve instilling characteristics nor-
mally associated with early origins to late origins to advance
timing of firing, or bypass of the Mrc1p-activated Rad53p
inhibitory signal during DDR that normally blocks late origin
firing in HU. However, we did not observe dramatic fumarate-
dependent effects on cell cycle progression during replication

Figure 10 Model: Fumarate promotes cell survival
in htz1D mutants upon DNA replication stress by
inhibition of the JmjC domain-containing histone
demethylase Jhd2p.
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stress in htz1Dmutants (Figure S6), and this scenario would
require late origin regulation in yeast to be somewhat differ-
ent than in mammalian cells, which require SETD1A to pre-
vent late origin firing after exposure to MMS during the DRC
response (Higgs et al. 2018).

Thus, we instead favor a model in which fumarate confers
resistance to replication stress primarily by bypassing a defect
in replication fork processing and restart caused by the ab-
sence of HTZ1 through upregulating histone methylation, in
part, by inhibition of Jhd2p (Figure 10). However, a second
possible mechanism by which growth defects of htz1D mu-
tants during replication stress may be suppressed by fuma-
rate is by complementing defects in spindle assembly. In
addition to inducing DNA replication stress, HU can cause
defects in spindle formation (Liu et al. 2008). Moreover,
Htz1p localizes to pericentric chromatin, and htz1D mutants
show defects in spindle assembly and sensitivity to benomyl
(Krogan et al. 2004; Keogh et al. 2006), but, like wild-type
cells, arrest in HU with short mitotic spindles, a single nu-
cleus, and large buds (Dhillon and Kamakaka 2000).

Future studies will also be required to reveal whether
fumarase and fumarate can act in histone methylation in-
dependent pathway(s) tomodulate cellular responses toDNA
damage and replication stress. For example, fumarate has the
potential to regulate protein function (e.g., Blatnik et al.
2008) through reacting with cysteine residues to create
a post-translational modification known as succination
(Alderson et al. 2006). In fact, high levels of protein succina-
tion have been found in tumors with fumarase deficiency
from patients with HLRCC (Bardella et al. 2011), but poten-
tial regulatory roles of protein succination on cysteine re-
sidues during responses to DNA damage largely await
characterization.

Collectively, the results of this study and others (Yogev
et al. 2010; Leshets et al. 2018) indicate that cellular re-
sponses to DNA replication stress are sensitive to fumarate,
and imply that metabolism is intimately linked to the intra-S
phase checkpoint response. Consistent with our findings,
other studies have reported that addition of exogenous an-
tagonists of a-KG including fumarate, succinate, or the onco-
metabolite R-2-HG as well as expression of tumor derived FH,
SDH, or IDHmutants cause a global increase of histone meth-
ylation levels (Xu et al. 2011; Xiao et al. 2012). Moreover,
fumarate, succinate and 2-HG can modulate numerous cellu-
lar functions ranging from gene expression and silencing to
DNA damage responses (Xu et al. 2011; Xiao et al. 2012;
Jiang et al. 2015; Janke et al. 2017; Sulkowski et al. 2017).
Thus, changes in metabolite availability through normal sig-
nal relay pathways, exogenous sources or genetic metabolic
defects have the potential to impact genome integrity upon
DNA replication stress by regulation of histone methylation,
supporting a model in which metabolites broadly play crucial
roles as chemical messengers in signaling pathways trigger-
ing cellular responses to various types of stress—the exam-
ples illustrated herein being DNA replication stress and DNA
damage.
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