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ABSTRACT. Objective: The opioid epidemic in the United States
has led to unprecedented increases in morbidity and mortality, posing
a serious public health crisis. Although twin and family studies, as well
as genome-wide association studies (GWAS), all identify significant ge-
netic factors contributing to opioid dependence, no studies to date have
estimated marker-based heritability estimates of opioid dependence. The
goal of the current study was to use a large, genetically imputed, case/
control sample of 4,064 participants (after quality control and imputa-
tion) with genome-wide data to estimate the unbiased heritability tagged
by single nucleotide polymorphisms (SNPs). Method: Study data were
part of the Genome-wide Study of Heroin Dependence obtained via the
Database for Genotypes and Phenotypes (dbGaP). Genomic-Related-
ness-Matrix Restricted Maximum Likelihood with adjustment for minor
allele frequency (MAF) and linkage disequilibrium (LD; GREML-

LDMS) was used to determine the variation in opioid dependence
attributable to common SNPs from imputed data. Mixed linear models
were used in an exploratory GWAS to assess effects of single SNPs.
Results: At least 45% of the variance in opioid dependence according
to the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition, was attributable to common SNPs, after stratifying to account
for differences in MAF and LD across the genome. Most of the genetic
variance was tagged by SNPs in the 1%–9% MAF range and in low LD
with other SNPs in the region. Two markers in LOC101927293 survived
multiple-testing correction (i.e., q value < .05). Conclusions: Nearly half
of the variation in opioid dependence can be attributed to common SNPs.
Most of this variation is due to rare variants in low LD with other mark-
ers in the region. (J. Stud. Alcohol Drugs, 80, 319–330, 2019)
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THE UNPRECEDENTED INCREASES in morbidity and
mortality associated with the opioid epidemic are indica-

tive of the worst drug epidemic in U.S. history (Kolodny et
al., 2015). According to the Department of Health and Hu-
man Services, in 2015, 33,091 people died from overdosing
on opioids (Rudd et al., 2016). This staggering mortality
rate reflects more than a 4-fold increase since 1999 (Centers
for Disease Control and Prevention, 2016). In 2015, 12.5
million people misused prescription opioids (2.1 million
people for the first time), and 828,000 people used heroin
(135,000 of these for the first time; Center for Behavioral
Health Statistics and Quality [2015 National Survey on Drug
Use and Health: Detailed Tables, 2016]). Opioid use cuts
across all age, economic, and racial groups (Manchikanti et
al., 2012), underscoring the need for studies that can aid in
identifying individuals who are at risk for developing opioid
dependence.

Twin and family studies provide evidence for the genetic
liability of various opioid use–related phenotypes. Stud-
ies have estimated a heritability (i.e., the extent to which
genetic variation accounts for phenotypic variation) of 43%
for lifetime risk of opioid dependence in males (Tsuang
et al., 1996, 2001), approximately 50% for lifetime opioid
use (Karkowski et al., 2000; Kendler et al., 1999, 2000),
and 49%–69% for various opioid use subtypes (Sun et al.,
2012). In one study, consisting of all males, opioid abuse had
a large contribution of genetic factors not shared by other
substances including cannabis, stimulants, sedatives, and
psychedelics, sharing only half of its total variance with the
common vulnerability across all substances (Tsuang et al.,
1998).

Contrary to legalized substances (i.e., alcohol, tobacco,
and cannabis [in some states]), there have been fewer
genome-wide and candidate-gene association studies for
opioid dependence phenotypes. A review of published lit-
erature using a combination of search terms —for example,
“(alcohol OR tobacco) OR (cannabis OR marijuana)) AND
(GWAS [genome-wide association studies] or candidate
gene)” for legalized substances; “(opioid or heroin) AND
(GWAS or candidate gene)” for opioid/heroin—in PubMed
(search completed in July 2018) revealed 3,154 studies
of alcohol, tobacco, or cannabis/marijuana versus 321 for
heroin/opioid phenotypes. As reviewed by Jensen (2016),
only three GWAS identified markers that achieved genome-
wide significance (e.g., p < 5 × 10-8) for opioid dependence
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(Gelernter et al., 2014; Li et al., 2015; Nelson et al., 2016).
The results of several studies indicate genetic susceptibility
for opioid dependence in dopaminergic, glutamatergic, and
opioid receptors, neurotrophins, as well as potassium and
calcium transport and signaling mechanisms (Gelernter et
al., 2014; Mistry et al., 2014; Nelson et al., 2016; Saxon et
al., 2005). Recently, a GWAS on a homogeneous sample of
Han Chinese found evidence for an association of opioid
dependence with several variants in previously unidentified
genes; however, none reached significance at the genome-
wide level (Kalsi et al., 2016).

Furthermore, despite the moderate heritability estimates
of drug use in twin studies, genetic variants identified in
molecular studies of substance use phenotypes explain only
a small proportion of the phenotypic variance in substance
use behaviors (Ducci & Goldman, 2012), leaving a great
deal of genetic variation unaccounted for by GWAS to date.
Termed “missing heritability,” this unaccounted-for variation
represents the gap between the observed heritability of a
trait from family and twin studies and the observed amount
of genetic variance explained by genetic markers (Manolio
et al., 2009). One potential reason for missing heritability
may be due to variants with small effects that do not reach
significance at the genome-wide level (i.e., p < 5 × 10-8).
However, genetic variance estimates derived from common
single nucleotide polymorphisms (SNPs) have consistently
been found to be smaller than genetic variance estimated
from family-based studies, especially for psychiatric and
substance use disorders (Yang et al., 2015). Other potential
reasons for missing heritability include insufficient sample
sizes to detect significant effects, inflated family-based esti-
mates, and poor tagging of rare causal variants by commonly
used genotyping arrays (Evans et al., 2018).

With the growing number of GWAS in psychiatric re-
search, the rarity of large effect findings, and the advance-
ment of methodology and technology to analyze molecular
array data, it has become evident that genetic association
studies require very large samples (e.g., thousands of cases/
controls) to achieve adequate power to detect significant
effects (Sullivan, 2010). This is especially true for pheno-
types, such as opioid dependence, that have relatively low
prevalence rates in the population. Therefore, consortia and
data repositories for which large sets of genetic data must
be pooled to increase sample size have become essential for
the advancement of psychiatric genetic research. Statisti-
cal methods that aggregate genetic effects within or across
large, genome-wide molecular studies can begin to parse
sources of genetic variation, which may help to address the
issue of missing heritability (Vinkhuyzen et al., 2013). Such
approaches may transcend the limitations of GWAS and
candidate gene studies, which typically ignore the polygenic
architecture of additive behaviors.

For example, a recent meta-analysis of the OPRM1 variant
rs1799971 (A118G) with drug dependence and nonspecific

drug dependence suggested that there are protective effects of
the G allele on nonspecific drug dependence (Schwantes-An
et al., 2016). Unfortunately, the results are obfuscated by the
fact that the meta-analytic approach did not account for the
effects of other loci, making it difficult to conclude whether
these effects are biased because of polygenicity.

A plausible solution to deriving less biased SNP/
gene effects is the use of mixed linear models such as
Genomic-Relatedness-Matrix Restricted Maximum Likeli-
hood (GREML), which forgoes identification of individual
variants for estimating the phenotypic variance that is ac-
counted for by genome-wide SNPs by using an SNP-derived
genetic relationship matrix to estimate heritability (Lee et
al., 2011). Furthermore, to gain even more insight into the
genetic variation underlying complex traits, SNP array data
can be genetically imputed using reference panels that can
contribute additional variants not captured by the SNPs on
commonly used arrays. Yang et al. (2015) found that large
portions of genetic variation in human height and body mass
index (BMI) can be captured via genetic imputation using
the 1000 Genomes (1KG) Reference Panel (Genomes Proj-
ect et al., 2010) of SNP-array–based genotype data, suggest-
ing that missing heritability for height and BMI is negligible.
These findings suggest that 1KG imputation can account for
a large amount of variation explained by common and rare
genetic variants beyond what might be captured on SNP ar-
rays, leading to more accurate estimates of heritability and
minimizing missing heritability that stems from SNP arrays
that do not tag causal variants.

However, SNP-based estimates of heritability (h2
SNP) can

be biased if the linkage disequilibrium (LD; the nonrandom
association of alleles at multiple loci) between causal vari-
ants and other variants differs, and this bias can be mediated
by minor allele frequency (MAF; Yang et al., 2017). For
example, GREML has most commonly been used to estimate
a single genetic component associated with variation in a
trait (i.e., GREML-SC), but the value will be overestimated
if causal variants are more common than markers used in the
analyses and underestimated if causal variants are rarer than
those markers used in the analyses (Yang et al., 2015). One
solution to correct for this type of bias is to stratify SNP-
based heritability estimates based on LD and MAF in a joint
model (i.e., GREML-LDMS), which has been shown to be
unbiased by the MAF and LD properties of causal variants,
performs better than alternative methods of SNP-heritability
estimation, and is recommended for use on whole genome or
imputed data (Evans et al., 2018; Yang et al., 2015).

Given the paucity of molecular research examining opioid
dependence, the current study aimed to use the 1KG refer-
ence panel to genetically impute case/control repository data
obtained via the National Institutes of Health Database of
Genotypes and Phenotypes in order to (a) derive unbiased
estimates of the additive genetic influences on opioid de-
pendence and (b) investigate the extent to which differences
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in MAF and LD impact the heritability estimate obtained
from genetically imputed data. Based on observed patterns
with other substance use phenotypes (Palmer et al., 2015a,
2015b), we hypothesized that the SNP-based heritability
would account for at least one half of the genetic variance
previously observed in twin studies and that variants with
lower MAF in regions of low LD would explain the largest
proportions of variance.

Method

Sample

The sample consisted of secondary data from 6,487 par-
ticipants between ages 18 and 78 (M = 40, SD = 11) assessed
for substance use and included in the Genome-Wide Asso-
ciation Study of Heroin Dependence as part of the National
Human Genome Research Institute’s Gene Environment As-
sociation Study Initiative (Database for Genotypes and Phe-
notypes [dbGaP]; study accession phs000277.v1.p1). Cases
and controls from several studies were pooled and made
available for secondary analysis as part of a collaborative
effort to investigate the genetics of opioid dependence. See
Supplemental Materials for a description of each study and
Supplemental Table 1 for a summary of cases/controls across
each study. (Supplemental material appears as an online-only
addendum to the article on the journal’s website.) The pres-
ent study involves secondary data analysis using data from
this archived repository. Consented data access was granted
via a Data Use Agreement with the National Institutes of
Health and the database of Genotypes and Phenotypes (db-
GaP) after receiving study approval from the institutional
review board of Emory University.

Assessments

Opioid dependence was determined according to crite-
ria from the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV; American Psychiatric
Association, 1994), using the Semi-Structured Assessment
for Drug Dependence and Alcoholism (SSADDA), the
adapted SSADDA-OZ, or the Semi-Structured Assessment
for Genetics of Alcoholism (SSAGA; Bucholz et al., 1994;
Hesselbrock et al., 1999; Pierucci-Lagha et al., 2005). The
SSADDA and SSAGA yield valid and reliable diagnoses
for substance dependence (Bucholz et al., 1994, 1995; Hes-
selbrock et al., 1999; Malison et al., 2011; Pierucci-Lagha
et al., 2005, 2007). All cases were limited to individuals
who met lifetime DSM-IV criteria for opioid dependence,
and controls were limited to assessed individuals who did
not meet DSM-IV criteria for opioid dependence. From
the original pooled sample, 1,341 population controls were
removed who had not been assessed for DSM-IV opioid
dependence.

Genotyping, quality control, and genetic imputation

Data management was conducted using PLINK version
1.9 (Purcell et al., 2007), the GCTA software tool [version
1.25.3], FlashPCA (Abraham et al., 2017), an imputation
preparation and checking tool implemented in perl (Rayner
et al., 2016), and R version 3.5.0 (R Core Team, 2018). Ge-
nomic data were obtained through dbGAP via the National
Center for Biotechnology Information (NCBI). Samples
were genotyped on three separate platforms (601,273 mark-
ers on Illumina Human610 Quad v1; 592,839 on Illumina
Human660W Quad v1; and 373,339 on HumanCNV370
Quad v3.0).

Each study sample was prepared and imputed separately,
ignoring the presence/absence of phenotypic data. See
Supplemental Materials for a detailed description of quality
control and data processing. In brief, individuals of European
ancestry (EA) were identified using principle components
analysis (PCA) with the 1000 Genomes Project (1KG)
Phase III (Version 5) reference panel (Auton et al., 2015;
Supplemental Figure 1). A total of 5,471 individuals of EA
with genetic data were identified, and markers with call rate
< .95, MAF < .01 were screened. Genetic imputation was
conducted using the 1KG European reference panel and
ShapeIT phasing with Minimac3 via the Michigan Imputa-
tion Server (https://imputationserver.sph.umich.edu/index.
html#!pages/home).

Following imputation, markers with low imputation
quality scores (r2 < .70) were removed to ensure that the
highest quality markers from each sample were used to
reduce potential batch effects across platforms and samples.
Next, markers that were not biallelic SNPs were removed,
and samples were merged for subsequent analytic quality
control. Markers in the final, merged data set that had a call
rate < 99%, MAF < 1%, or failed an HWE test (p < .0001)
were removed, and individuals with <90% genotyping rate
were removed. This resulted in a total of 6,200,495 SNPs. To
control for cryptic relatedness, which could artificially inflate
h2

SNP estimates, a genetic relationship matrix (GRM) was
computed using the GCTA software tool, which maximally
selects one of any pair of individuals who were more related
than second cousins (Yang et al., 2011a). This resulted in
4,064 unrelated opioid dependence cases/controls with ge-
netic and phenotypic data. See Supplemental Tables 2 and 3
for a summary of markers removed at each step of quality
control and imputation.

Estimation of additive genetic variance explained by
single-nucleotide polymorphisms

GREML, as implemented in the GCTA software tool,
was used to decompose phenotypic variance in DSM-IV
opioid dependence into additive effects of SNPs (Yang et al.,
2013). To explore whether h2

SNP estimates vary as a function
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of MAF and LD, we used GCTA to calculate an individual
SNP LD-score for each variant (e.g., representing the sum
of LD r2 between a variant and all the variants in a 200Kb
region) and then constructed a series of separate GRMs, in-
cluding (a) a single GRM to estimate the single component
h2

SNP (GREML-SC), (b) a set of five GRMs partitioned
based on the MAF of markers (e.g., bins containing MAF
1%–9%, 10%–19%, 20%–29%, 30%–39%, and 40%–49%)
to estimate MAF stratified h2

SNP (GREML-MS), (c) a set of
four GRMs partitioned based on markers in each LD-score
quantile to estimate LD stratified h2

SNP (GREML-LD), and
(d) a set of 20 GRMs stratified by both MAF and LD-score
quantile (GREML-LDMS). Last, to explore whether h2

SNP
varied by chromosome, we constructed separate GRMs for
each chromosome. Models containing multiple GRMs were
simultaneously fit in a joint model with multiple genetic
components (Yang et al., 2011b).

A series of models were tested to (a) determine the total
h2

SNP for opioid dependence using a single genetic com-
ponent, (b) determine whether h2

SNP varied as a function
of MAF/LD, and (c) determine whether h2

SNP differed by
chromosome. Each model used a scaling factor to adjust for
the prevalence of opioid dependence in the population (i.e.,
0.37% for the population prevalence [Compton et al., 2007]).
Last, a mixed linear model association using the GCTA
software was implemented to identify individual loci asso-
ciated with opioid dependence (Yang et al., 2014). Multiple
comparisons were controlled for using a false discovery rate
(FDR) of q < .05 via the qvalue package in R. All models
controlled for age, sex, and other drug dependence (includ-
ing DSM-IV cannabis, alcohol, stimulant, sedative, and
cocaine dependence).

Results

Prevalence of opioid dependence

Of the total analytic sample (N = 4,064; 58.98% male;
ages 18–78; M = 39.46, SD = 10.59), approximately half
(52.17%, n = 2,120) were dependent on opioids. Among
cases and controls, 60.47% and 11.78%, respectively, en-
dorsed lifetime dependence on another substance. Nearly
half (48.40%) of cases endorsed all seven DSM-IV criteria
for opioid dependence. Opioid dependence was related to
being male (odds ratio [OR] = 1.26, 95% CI [1.09, 1.46]),
being younger (OR = 0.96, 95% CI [0.95, 0.96]), and having
used other drugs (OR = 10.25, 95% CI [8.70, 12.11]). See
Table 1 for a summary of endorsement by symptom for all
cases.

Additive effects of autosomal SNPs on opioid dependence

After we controlled for age and sex, the total single
component SNP-based heritability (h2

SNP-SC) for opioid de-

pendence was 38% (SE = 3%, p < .001). After we accounted
for other drug dependence in addition to age/sex, the total
h2

SNP-SC was 27% (SE = 3%, p < .001), suggesting that a
large portion of genetic variation in opioid dependence ex-
ists even after other drug dependence is controlled for. Total
heritability estimates for models that stratified across MAF,
LD, and MAF/LD varied from h2

SNP-MS = 28% (SE = 3%)
to h2

SNP-LDMS = 45% (SE = 4%), demonstrating the tendency
for bias in SNP-heritability estimates of GREML when MAF
and LD properties are not accounted for; see Table 2 for a
summary of all results. Stratified analyses revealed that the
largest portion of the genetic variance in opioid dependence
is tagged by common SNPs that were in the lowest MAF
range and in the lowest LD-score quartile (h2

SNP-LDMS
=17%, SE = 3%, p < .001). A linear regression revealed that
bins that contained more SNPs were associated with higher
estimates of SNP heritability, F(1, 20) = 12.13, p = .003,
Adjusted R2 = .37.

Figure 1 presents a scatter plot of h2
SNP estimates against

the number of SNPs in each bin (panel a) as well as h2
SNP

estimates partitioned by bin (panel b). To test for enrichment
and provide a comparison of the observed estimates of h2

SNP
for each LD/MAF bin relative to what would be expected if
the distribution of SNP effects were uniform across all bins,
we calculated expected h2

SNP estimate as follows: .

Expected hSNP"Bin
2 = # SNPs in Bin!Observed hSNP"Total

2

# SNPs total
.

Thus, the expected h2
SNP for a given bin is based on a

weighting of the total h2
SNP by the proportion of SNPs in

each bin. If the 95% CI of the observed h2
SNP excludes the

expected h2
SNP, then the null hypothesis that the two are

equal is rejected at α < .05. Effects of SNPs in the lowest
MAF range and in the lowest LD-score quartile (i.e., bin #1)
exceeded what would be expected under a uniform distribu-
tion, suggesting that this region may be enriched for SNP
effects.

When the genetic variance was partitioned across chro-
mosomes, a linear regression revealed that longer chro-
mosomes were associated with higher estimates of SNP
heritability, F(1, 20) = 6.59, p = .018, adjusted R2 = .21.

TaBle 1. Prevalence of symptom endorsement among individuals with
DSM-IV opioid dependence (n = 2,120 cases)

DSM-IV symptom n %

Tolerance 2,031 95.80%
Withdrawal 2,095 99.34%
Longer than intended 1,315 89.21%
Attempt to quit 2,067 97.50%
Time spent 1,406 95.39%
Giving up activities 1,310 88.87%
Continued use 1,312 89.01%

Note: DSM-IV = Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition.
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FiGure 1. Estimate of the regression of h2
SNP for opioid dependence by number of markers in each LD/MAF bin

(a) and by LD/MAF bin (b). In panel a, numbers in circles represent bin number. In panel b, dashed lines represent
95% confidence intervals, and dots represent the expected value of h2

SNP for a given bin.
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TaBle 2. GREML-LDMS results: SNP-heritability (h2
SNP) partitioned by minor allele frequency (MAF) and linkage disequilibrium (LD)

score

MAF 1st quartile 2nd quartile 3rd quartile 4th quartile
range LD score LD score LD score LD score Total

1%–9% 0.17 (0.03)* 0.01 (0.02) 0.00 (0.01) 0.00 (0.01) 0.08 (0.03)*
10%–19% 0.05 (0.03)* 0.04 (0.02)* 0.00 (0.01) 0.01 (0.01) 0.09 (0.03)*
20%–29% 0.05 (0.02)* 0.02 (0.02) 0.02 (0.01) 0.00 (0.01) 0.06 (0.03)*
30%–39% 0.02 (0.02) 0.01 (0.02) 0.02 (0.01) 0.00 (0.01) 0.05 (0.02)*
40%–49% 0.00 (0.02) 0.01 (0.02) 0.00 (0.01) 0.00 (0.01) 0.00 (0.02)
Total 0.30 (0.04)* 0.11 (0.03)* 0.03 (0.02) 0.01 (0.01) h2

SNP-SC = 0.27 (0.03)
h2

SNP-MS = 0.28 (0.03)
h2

SNP-LD = 0.45 (0.04)
h2

SNP-LDMS = 0.45 (0.04)

Notes: GREML = Genomic-Relatedness-Matrix Restricted Maximum Likelihood; LDMS = LD and MAF stratified. Table displays main ef-
fects for analyses with genetic variance partitioned based on MAF and LD (see “Total” column/row) and joint effects with genetic variance
partitioned on both MAF and LD (see inner columns/rows). Analyses for joint effect of both MAF and LD comprised 20 genetic compo-
nents, analyses for main effects of MAF were comprised of 5 genetic components, and analyses for main effects of LD were comprised of 4
genetic components. Total h2

SNP for each GREML approach are presented: SC = single component; MS = minor allele frequency stratified.
*Indicates that the component contributes a significant portion of genetic variance to the model based on likelihood ratio test (LRT) p < .05.

Because of the large number of variance components, these
analyses did not partition based on MAF or LD. Figure 2
presents a scatter plot of h2

SNP estimates against chromo-
some length and h2

SNP estimates partitioned by chromosome
for opioid dependence, including expected h2

SNP estimates
based on a weighting of the total h2

SNP by the proportional
length of each chromosome

Expected hSNP"Chromosome
2 =

Chromosome length!Observed hSNP"Total
2

Total length
.

Several chromosomes contributed to a significant portion
of the observed total genetic variance (p < .05), including
chromosomes 1, 2, 3, 6, 7, 8, 11, 12, 16, and 18, with effects
of chromosome 7 exceeding what would be expected under
a uniform distribution of effects, suggesting that this region
may be enriched for SNP effects.

Exploratory GWAS of opioid dependence

Figure 3 presents the Q-Q and Manhattan plots of post
hoc GWAS results from the mixed linear model associa-
tion. Two markers (rs1970606, rs1557219) were found sig-
nificant at the genome-wide level (p < 5 × 10-8), and both
passed the FDR correction, p < .05. Each was located on
chromosome 6 (LOC101927293) but has not been previ-
ously identified in association with opioid dependence or
substance use. Five additional markers had p < 5 × 10-7, but
none passed FDR. Three of these five markers (rs59675243,
rs75449825, rs58356853) were located in the transform-
ing acidic coiled-coil containing protein 2 (TACC2) gene
located on chromosome 10. TACC2 has not been previously
identified in relation to opioid dependence or use, but it is
associated with the centrosome-spindle apparatus during
cell cycling and has been implicated, with mixed results, in

tumor progression and cancer (Cheng et al., 2010; Lauffart
et al., 2003; Onodera et al., 2016; Schuendeln et al., 2004;
Shakya et al., 2018) as well as substance use (Drgon et al.,
2011; Johnson et al., 2008; Uhl et al., 2008). See Table 3 for
GWA summary results for top markers and Supplemental
Materials for regional association plots (Pruim et al., 2010).
Full summary statistics are available at https://scholarblogs.
emory.edu/bgalab/research/paper-supplements.

Discussion

This study was the first to characterize the SNP-based
evidence for heritability of opioid dependence. At least 45%
of the variance in DSM-IV opioid dependence was attribut-
able to common SNPs after we stratified to account for dif-
ferences in MAF and LD across the genome. Although there
are no other SNP-based studies with which to compare, the
heritability estimates obtained herein are large but consistent
with estimates from twin studies that range from 43% (in a
male-only sample) to 69% (for opioid use subtypes; Kar-
kowski et al., 2000; Kendler et al., 1999, 2000; Sun et al.,
2012; Tsuang et al., 1996, 2001). The differences between
GREML estimates of heritability and twin-based estimates
for most phenotypes have been attributed to the possibility
that the SNPs on the arrays may not be in complete LD with
causal variants or that other sources of genetic variance
were not included in the model (e.g., extremely rare vari-
ants, structural and copy number polymorphisms), as well
as epigenetic effects and non-additive genetic effects (e.g.,
gene-gene interactions; Yang et al., 2017). However, given
the similarity between our estimates and those of prior twin
studies, it is possible that many of the 1KG-imputed SNPs
that passed quality control in the current analysis are in high
LD with putative causal variants of mechanisms involved in
opioid dependence.

Furthermore, in our analyses, we partitioned genetic vari-
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FiGure 2. Estimate of the regression h2
SNP heritability for opioid dependence against chromosome length (a)

and by chromosome (b). In panel a, numbers in circles represent chromosome number. In panel b, dashed lines
represent 95% confidence intervals, and dots represent the expected value of h2

SNP for a given chromosome.

ance according to MAF and LD, revealing that most (17%)
of the genetic variance in opioid dependence is tagged by
SNPs in the low MAF and low LD range. Given that we
found that most of the markers were in the low MAF and
low LD bins and that SNP-heritability estimates tend to
increase as the number of markers increases, the additional
coverage of low MAF markers in low LD afforded by the
1KG imputation likely contributes greatly to the large total
SNP-heritability estimate.

Last, it is noted that there a few twin and family studies
dedicated to estimating the unique heritability of opioid
dependence. Therefore, another possible explanation could
be that the twin study estimates, of which there are few
assessing opioid dependence, may be inaccurate or biased
because of differences in the environment and populations
from which they were drawn.

Despite the lack of a replication sample, the GWAS re-
vealed two previously unidentified intron variants on chro-
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TaBle 3. GWAS summary statistics for top markers

Chromo- Base-pair Odds
SNP some coordinate Allele MAF β SE ratio p q Gene

rs1970606 6 58368572 G .29 .06 .01 1.06 7.80E-09 .029 LOC101927293
rs1557219 6 58370925 C .29 .06 .01 1.06 9.38E-09 .029 LOC101927293
rs59675243 10 123770622 A .04 .13 .02 1.14 1.25E-07 .242 TACC2
rs75449825 10 123769889 G .04 .13 .02 1.14 1.56E-07 .242 TACC2
rs17300532 5 71380355 T .24 .06 .01 1.06 2.10E-07 .261 LOC105379028
rs58356853 10 123771132 T .04 .12 .02 1.13 3.08E-07 .318 TACC2
rs4300379 11 51504993 G .38 -.06 .01 0.94 8.87E-07 .786 N/a

Note: GWAS = genome-wide association studies; MAF = minor allele frequency; N/a = not applicable.

FiGure 3. Q-Q plot (a) and Manhattan plot (b) of GWAS p values for DSM-IV opioid dependence. Horizontal
line represents genome-wide significance.
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mosome 6 that passed FDR and three markers in the TACC2
gene on chromosome 10 that did not pass genome-wide
significance or FDR, but have been previously implicated
in substance use research. It is possible that three markers
in TACC2 may be associated with opioid dependence either
directly or indirectly by serving as a proxy for a causal variant
in LD with these variants, but confirmation in an indepen-
dent sample is needed, as these analyses were exploratory.
TACC2 has been associated with tumor research and cancer
(Chen et al., 2000; Cheng et al., 2010; Lauffart et al., 2003;
Mendrzyk et al., 2006; Onodera et al., 2016; Takayama et al.,
2012), although results are mixed (Schuendeln et al., 2004).
Less frequent evidence has implicated TACC2 with neuroti-
cism (Eszlari et al., 2017) and bipolar disorder (Johnson et
al., 2009). Of particular interest, however, TACC2 has been
identified in studies examining the use of several substances,
including dependence on illegal substances (Drgon et al.,
2011), methamphetamine (Uhl et al., 2008), and any substance
(Johnson et al., 2008). Therefore, it is interesting to observe
an association between TACC2 and opioid dependence after
accounting for involvement with other substances, although
these findings are in need of independent replication and these
results should be interpreted with caution.

Chromosomal analyses revealed that chromosome 7 ac-
counted for the largest amount of variance in opioid depen-
dence (h2

SNP-chr7 = 4%, SE = 1%), and results indicated that
longer chromosomes accounted for more variance. Future
work could expand on these chromosomal analyses by esti-
mating heritability of more specific genomic regions, such
as candidate SNPs based on chromosomal or gene-based
regions of interest, in order to isolate regions contributing
the most variance to the heritability estimate for opioid de-
pendence. However, as evidenced here, significantly larger
sample sizes will be required to partition such small effects.

Several limitations to this work should be noted. First, it
is possible that h2

SNP values estimated in the present study
are biased because of spurious effects based on system-
atic differences in sample characteristics and ascertainment
across the different studies. Although we used stringent
quality control to reduce bias from batch effects and other
possible confounding and controlled for effects due to age
and sex, this work should be replicated in large, indepen-
dent samples. Second, increasing age is associated with a
decrease in the prevalence for opioid dependence. There-
fore, the ascertainment-corrected transformation made to
the SNP-heritability estimate (and its standard error) may
be slightly biased. In the current study, participants ranged
in age from 18 to 70, but a constant prevalence for opioid
dependence in adults ages 18 and over in the United States
was used for all analyses. Therefore, model estimates from
this study do not reflect the variation in prevalence across
the life span (i.e., the prevalence estimated for adults ages 18
and over is estimated in epidemiological studies as used as
a constant value—however, it is possible that the true value

is dynamic and varies across age). Similarly, genetic and
environmental influences on substance use disorders change
across development (Kendler et al., 2008). Because of the
wide age range in the present sample and the loss of power
when stratifying individuals based on age, we were not able
to examine whether heritability estimates were consistent
across ages. In addition, the present results incorporated only
case and control individuals of European descent; therefore,
how these results would generalize to other ancestral popula-
tions is unknown.

Last, a majority of the individuals in the control group
(73%) had never used opiates in their lifetime, leaving too
few individuals to separately compare those who had been
exposed to opioids but did not develop dependence to those
who had developed dependence. Future research should
strive to examine SNP heritability of opioid dependence
in a sample of individuals exposed to opioids who differ in
their severity of opioid-related problems. Recent evidence
has shown that the use of diagnostic measures leads to an
underestimation of additive genetic effects for problematic
drug outcomes (Palmer et al., 2015).

In sum, we provide the first SNP-based heritability es-
timates for opioid dependence using a large, case/control
study of dependence among individuals of EA. These results
contribute to our understanding of the etiology of opioid de-
pendence by providing an avenue for future research aimed
at genetic loci contributing to opioid dependence. Given
that most of the genetic variance in opioid dependence was
attributed to markers in the low MAF and low LD range,
future studies should place emphasis on rare variants that
are in low LD with other markers to detect specific causal
variants implicated in the etiology of opioid dependence.
Whole genome sequencing and genetic imputation can be
used to overcome the limitations of relying on SNP arrays
that only tag a small percentage of common variants. Novel
and robust approaches, such as GREML-LDMS, which take
into account the complex relationships between MAF and
LD, can help to shed light on how rare variants contribute
to the genetic liability of opioid dependence as well as other
complex traits. However, the development of new research
methods is greatly needed to integrate multiple “-omics”
evidence (genomic, methylomic, transcriptomic, etc.) as a
means of prioritizing and testing sets of genes and associated
regulatory elements using statistical methods that account for
remaining polygenicity in the genome (Boyle et al., 2017).
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