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Abstract

In numerous applications, from working with animal models to mapping the genetic basis of 

human disease susceptibility, it is useful to know whether a single disrupting mutation in a gene is 

likely to be deleterious. With this goal in mind, a number of measures have been developed to 

identify genes in which protein-truncating variants (PTVs), or other types of mutations, are absent 

or kept at very low frequency in large population samples—genes that appear “intolerant to 

mutation”. One measure in particular, pLI, has been widely adopted. Based on the contrast 

between the observed versus expected number of PTVs, it was designed to classify genes into 

three categories, labelled null, recessive and haploinsufficient. Such population genetic approaches 

can be useful in many applications. As we clarify, however, these measures reflect the strength of 

selection acting on heterozygotes, and not dominance for fitness or haploinsufficiency for other 

phenotypes.

Ed summary:

This Perspective discusses how best to interpret pLI, a measure widely used to identify genes that 

are intolerant to a single copy of a truncating mutation, by relating this and related measures to the 

underlying population genetic theory.

Experimental biologists and human geneticists are often interested in whether a single 

disrupting mutation, be it a protein-truncating variant (PTV) or a missense mutation, is 

likely to have a phenotypic effect1–4. A related question is whether such a mutation will lead 

to a reduction in fitness of its carrier. The relationship between these two questions, between 

effects on phenotypes and on fitness, is not straight-forward, with many potential paths from 

genotype to phenotype to fitness. For instance, a single mutation could lead to a severe 

clinical phenotype, indicating that the gene is haploinsufficient or that there is a gain of 
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function, yet have small or negligible effects on fitness unless homozygous. As examples, in 

ELN and BRCA2, a single PTV leads to a severe but late onset disease while homozygote 

PTVs are lethal5–8; thus mutations in the genes are clearly haploinsufficient, but are they 

dominant with regard to fitness? Conversely, a mutation in a highly pleiotropic gene could 

have a very weak and potentially subclinical effect on any particular phenotype, yet 

cumulatively inflict a severe cost on fitness9.

Following common practice in human genetics, we refer to genes in which a single loss of 

function mutation has a discernible phenotypic effect in heterozygotes as “haploinsufficient” 

(at least with regard to that phenotype)4. In turn, we describe genes in which a single 

disrupting mutation has an evolutionary fitness effect in heterozygotes as “dominant” (see 

Box 1). Although the term “dominance” is also used to refer to the effect of a single allele 

on phenotype, for clarity, here, we restrict its use to denote effects on fitness. More precisely, 

following the convention in population genetics, we denote the fitnesses 1, 1-hs, and 1-s as 

corresponding, respectively, to genotypes AA, AD, and DD, where D is the deleterious 

allele, h is the dominance coefficient, and s is the selection coefficient. Thus, a mutation is 

completely recessive if h is equal to 0, that is if deleterious fitness effects are only present in 

homozygotes, and at least partially dominant otherwise.

Estimating the strength of selection acting on a gene in terms of the selection coefficient (s) 

and dominance effects (h) of mutations, has a long tradition in population genetics10–13. In 

model organisms, such estimates have relied on mutation accumulation experiments and 

assays of gene deletion libraries10,14–16; in humans and other species, these parameters have 

been inferred from patterns of genetic variation17–21. The inferences are based on the notion 

of a mutation-selection-drift balance, namely that the frequencies of deleterious alleles in a 

sample reflect a balance between the rate at which they are introduced by mutation and the 

rate at which they are purged from the population by selection (as well as change in 

frequency randomly due to genetic drift). Mutations with larger hs are purged more 

effectively and hence are expected to be at lower frequencies in the population—or, 

equivalently, are more likely to be absent from large samples (Box 1). Therefore, one way to 

identify genes whose loss is likely to reduce fitness is to assess whether disrupting mutations 

are found at lower frequencies than expected under some sensible null model.

To our knowledge, this approach—of prioritizing human disease genes on the basis of 

fitness consequences of disrupting mutations—was introduced by Petrovski et al.22, who 

ranked genes by comparing the observed number of common PTVs and missense mutations 

to the total number of observed variants. Their statistic was then supplemented by a number 

of others23–26, notably pLI, which is defined as an estimate of the “probability of being loss 

of function intolerant”27. Loosely, pLI is derived from a comparison of the observed number 

of PTVs in a sample to the number expected in the absence of fitness effects (i.e., under 

neutrality), given an estimated mutation rate for the gene. Specifically, Lek et al.27 assumed 

that the number of PTVs observed in a gene is Poisson distributed with mean λM, where M 
is the number of segregating PTVs expected in a sample under neutrality (estimated for each 

gene based on a mutation model23 and the observed synonymous polymorphism counts) and 

λ reflects the depletion in the number due to selection. The authors categorized genes as 

being either neutral (with λNull=1), recessive (λRec=0.463) or haploinsufficient 
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(λHI=0.089). The fixed values of λRec and λHI were obtained from the average proportional 

reduction in the number of observed PTVs in genes classified as recessive and severely 

haploinsufficient, respectively; the classification was based on phenotypic effects of 

mutations in the ClinGen dosage sensitivity gene list and a hand curated gene set of 

Mendelian disorders28. Given this model, Lek et al.27 estimated the proportion of human 

genes in each of their three categories and then, for any given gene, they obtained the 

maximum a posteriori probability that it belongs to each of the categories. Genes with high 

probability (set at ≥0.9) of belonging to the haploinsufficient class were classified as 

“extremely loss of function intolerant”27.

pLI has been broadly used in human genetics, to help identify genes in which a single 

disrupting mutation is likely of clinical significance2,29–36. It is also increasingly employed 

in clinical annotation and in databases of mouse models, as indicative of haploinsufficiency 

and dosage sensitivity37–41. In fact, however, pLI and related measures reflect only the 

strength of selection acting on heterozygotes and are not directly informative about 

dominance effects on fitness, let alone about the degree of haploinsufficiency with respect to 

a phenotype.

The reason can be understood in population genetic terms: unless h is vanishingly small (or 

long-term inbreeding levels are very high), a reduction in the frequency of PTVs—and hence 

of PTV counts—is indicative of the strength of selection acting on heterozygotes, hs, and not 

of the two parameters h and s separately. This result derives from mutation-selection-drift 

balance theory developed by Haldane42,43, Wright44, and others45 (see Box 1). Intuitively, it 

reflects the fact that when fitness effects in heterozygotes are strong relative to genetic drift, 

deleterious alleles are kept at low frequency in the population. Homozygotes for the 

deleterious allele are therefore exceedingly rare and selection acts almost entirely through 

heterozygotes. As a result, the frequencies of PTVs in a sample—and therefore pLI and 

related measures—reflect the strength of selection acting on heterozygotes. This may be true 

even for genes classified as phenotypically recessive by clinicians: although a much stronger 

phenotype is seen in homozygotes, a subtle fitness effect on heterozygotes can be sufficient 

to markedly decrease the frequency of disease mutations46.

To illustrate this point, we used forward simulations to model how the observed counts of 

PTVs (and hence pLI) depend on h and s for a gene of typical length, considering both a 

constant size population setting (Fig 1A, see legend for details) and a more realistic model 

for human demographic history47 (Fig 1B). As can be seen, markedly different combinations 

of h and s lead to indistinguishable distributions of PTV counts (and hence of pLI values), so 

long as hs is the same (Fig 1A, B). More generally, the probability of observing a specific 

PTV count is maximized along a ridge corresponding to combinations of h and s that result 

in a given hs value (Fig 1C). As a result, pLI can be near 1 even when the dominance 

coefficient h is small, provided s is sufficiently large, and is therefore not indicative of 

dominance per se.

Although these considerations make clear that pLI should be thought of as reflecting hs, it 

was not designed to be an estimator of this parameter, and has several problematic features 

as such. First, for a given value of hs, the expected value of pLI varies with gene length (Fig 
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2A). Second, for a typical gene length and a wide range of hs values (i.e., 10−3–10−1), the 

distribution of pLI is highly variable and bimodal, covering most of the range from 0 to 1 

(Fig 2B). Consequently, two genes with the same hs can be assigned radically different pLI 

values (Fig 2B). Conversely, the same pLI value can reflect markedly different hs values, as 

illustrated by the large variance of pLI in the hs range between 10−3 and 10−1 (Fig 2A). 

Outside this range of hs values, pLI is almost uninformative about the underlying parameter: 

below hs≈10−3, pLI is ~0 for any value of hs; above hs≈10−1, it is always ~1, properties that 

worsen with increasing gene length (Fig 2A). Our simulations further illustrate that for a 

given hs, genetic drift also contributes to the variance in PTV counts, a feature that is 

ignored in the construction of pLI (through its reliance on a Poisson distribution of PTV 

counts)48. Thus, if the goal is to learn about fitness effects to help prioritize disease genes, a 

direct estimate of hs (e.g., 48,49) under a plausible demographic model, together with a 

measure of statistical uncertainty, would be preferable.

Recasting pLI in a population genetic framework also helps to understand why the 

assignments of genes as recessive is even less reliable. Lek et al.27 aim to divide genes into 

three categories, two of which correspond to hs>0 (pLI) and hs=0,s=0 (pNULL). Logically, 

the remaining category (pREC) should include completely recessive cases (i.e., where hs=0 

but s>0), in which selection acts exclusively against homozygotes (Box 1). Regardless of the 

method used, however, it can be infeasible to distinguish this category from the hs>0 case, 

because the same expected allele frequency (and hence PTV count) can arise when h=0 or 

when hs>0 but small (see Box 1 and Fig 2C). For example, for a typical per gene mutation 

rate to disease alleles of u=10−6 and no genetic drift, the frequency of disease alleles would 

be 1% whether h=0 (completely recessive) and s=10−2 or h=1 (fully dominant) and s=10−4 

(see equations in Box 1). In other words, strongly deleterious, completely recessive PTVs 

can be hard to distinguish from those that are weakly selected and at least partially 

dominant.

Why then, in practice, are genes classified by clinicians as dominant based on Mendelian 

disease phenotypes enriched for high pLI scores compared to those classified as recessive 
2,27,31? Mendelian disease genes consist mostly of cases in which mutations are known to 

cause a highly deleterious outcome, i.e., for which there is prior knowledge that s is likely to 

be large (even close to 1). When s is large, a gene will be classified by pLI as 

haploinsufficient so long as fitness effects in heterozygotes are sufficient to decrease the 

number of observed PTVs, i.e., so long as h is not tiny. For most genes, however, there is no 

prior knowledge about s, and in that case, pLI—or any measure based on the frequency of 

PTVs—cannot reliably distinguish recessivity from dominance, let alone identify 

haploinsufficiency.

In summary, population genetic approaches based on the deficiency of putatively deleterious 

mutations2,3,23,25,49–51 hold great promise for prioritizing genes in which mutations are 

likely to be harmful in heterozygotes22,49. Recasting these approaches in terms of 

underlying population genetic parameters provides a natural framework for their 

interpretation and a clearer understanding of what they can reliably infer: these approaches 

identify genes in which single PTVs likely have large fitness effects in heterozygotes. For 

this subset of genes, there is information about dominance when s is known to be large and 

Fuller et al. Page 4

Nat Genet. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not otherwise. Moreover, for no genes can the methods be used to directly infer 

haploinsufficiency status. Where fitness effects are to be used as an indication of 

pathogenicity, we therefore argue that a better approach is the development of direct 

estimates of hs (and measures of uncertainty) under realistic demographic models for the 

population of interest.
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Refer to Web version on PubMed Central for supplementary material.
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Box 1 :

Frequencies of Deleterious Alleles Under Mutation-Selection-Drift Balance

Deleterious alleles are introduced into the population by mutation, then change in 

frequency due to the combined effects of genetic drift and natural selection. Unless a 

disease mutation confers an advantage in some environments (e.g., the sickle cell allele in 

populations with severe malaria52), the frequency at which it will be found in a 

population reflects a balance between the rate at which it is introduced by mutation and 

removed purifying selection, modulated by the effects of genetic drift42–44.

This phenomenon is referred to as “mutation-selection-drift” balance and modeled as 

follows (e.g., see53). Let u be the mutation rate from the wild type allele A to deleterious 

allele D. This mutation rate can be defined per site or per gene, by summing the mutation 

rate to deleterious alleles across sites (this simple summing implicitly assumes that there 

is no complementation and compound heterozygotes for deleterious alleles have the same 

fitness effects as homozygotes54). The fitness of diploid individuals carrying genes with 

wild-type (A) or deleterious (D) alleles is given by

Genotype: AA AD DD

Fitness: 1 1-hs 1-s

where s is the selection coefficient, which measures the fitness of DD relative to AA, and 

h is the dominance coefficient, such that hs is the reduction in fitness of AD relative to 

AA. In population genetics, the term dominance (with respect to fitness) is often defined 

as h>0.5. Here, however, we define a mutation as partially dominant so long as h is not 

near 0, as this criterion is directly relevant to the expected frequency of deleterious 

mutations55.

In the limit of an infinite, panmictic population (i.e., ignoring genetic drift and 

inbreeding), when h>0 (and hs >> u), the equilibrium frequency of the deleterious allele 

(D), q, is approximately43:

q ≈ u/hs

Notably, when h>0, the equilibrium frequency q is determined by the strength of 

selection in heterozygotes (i.e., hs, the joint effects of h and s) because deleterious 

homozygotes are too infrequent for selection on them to have an appreciable effect on 

allele dynamics in the population. Hence, in this approximation, for a given hs, different 

combinations of h and s will yield the same frequency of q.

Under the same conditions, for a completely recessive allele (h=0), q is well 

approximated by43:

q ≈ u
s
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Here, the equilibrium frequency is determined by selection in homozygotes. In this limit 

of an infinite population size, the frequency corresponding to a recessive allele with a 

given s>0 can also arise from a dominant allele for some value of hs>0.

In a finite population, there is a distribution of deleterious allele frequencies rather than a 

single (deterministic) value for any values of h and s. For a constant population size N, 

this distribution was derived by Wright44 and is again a function of hs (assuming that 

2Nhs >>1 and setting aside the case of sustained, high levels of inbreeding56). The 

resulting distribution can be highly variable, reflecting both stochasticity in the mutation 

process and the variance due to genetic drift. Dramatic changes in population size, as 

experienced by human populations, can also have a marked effect on the distribution of 

deleterious alleles. Regardless of these complications, it remains the case that 

distinguishing complete recessivity (h=0) from small hs may not be feasible and that, 

other than for complete recessivity, the expected allele frequency is a function of hs, not h 
and s separately55.
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Figure 1. pLI relates to hs, but not h and s separately.
(A & B) Different combinations of h and s with the same hs value yield highly similar 
distributions of pLI. We considered PTVs arising in a hypothetical human gene of typical 

length for (A) a population of constant size and (B) a plausible model of changes in the 

effective population size of Europeans over time47. We modeled the distinct number of 

segregating PTVs in a population using forward simulations (see Supplementary Note for 

details). We first obtained the number of PTVs expected under neutrality by averaging over 

106 simulations with s=h=0. Then, for different combinations of s and h, we calculated the 

pLI value for each replicate from the number of PTVs obtained. The lines show the 

cumulative distribution of pLI in 106 replicates for the parameter combinations of 

s=0.1,h=0.9 (blue, dashed) and s=0.9,h=0.1 (red, solid). The insets in each figure show the 

density of the distribution of pLI scores. (C) The probability of observing a specific PTV 
count is maximized along a ridge of fixed hs. We generated the distribution of PTV counts 

in a hypothetical human gene under the Schiffels-Durbin model as above for a grid of s and 

h values, using 106 replicates for each parameter combination. The figure depicts the 

likelihood of observing a PTV count of 3 (the value that by chance was obtained in the first 

run of s=0.10,h=0.90 and was treated as observed) for each combination of h and s.
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Figure 2. Properties of pLI.
(A) Behavior of pLI as a function of hs. We simulated the counts of PTVs for a range of hs 
values under a plausible model of population size changes (Schiffels-Durbin model47, see 

Supplementary Note). For each run, we calculated pLI using the observed number of PTVs 

and the expected number obtained from averaging over neutral simulations. The purple line 

is the loess smoothed curve over all simulations for each value of hs (the x-axis on a log10 

scale), in a human gene of typical length. The shaded area represents the central 95%-tile 

interval of pLI scores for each value of hs. The cyan and yellow lines are the loess smoothed 

curves for simulations in a gene with half or twice the length of a typical gene, respectively. 

(B) For a given hs, pLI scores are highly variable. The red curve depicts the pLI score as 

a function of the number of observed PTVs. The histogram represents the distribution of 

simulated PTV counts for s=0.1, h=0.5 under a plausible demographic model for 

Europeans47, in a human gene of typical length; darker bars indicate scores that would be 

classified as “extremely loss-of-function intolerant”27. The inset shows the density of pLI 

scores. (C) Complete recessivity (h=0) can lead to similar PTV counts as weak selection 
on heterozygotes (hs>0). The distribution labeled “neutral” shows the simulated counts of 

PTVs with h and s both equal to 0. Each distribution shows the results from 106 simulations. 

Dashed lines indicate the mean of each distribution.
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