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Abstract

Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. 

Despite billions of years of cooperative coevolution—in what is arguably the most important 

mutualism in the history of life—the persistence of mitochondrial genomes also creates conditions 

for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous 

copies per cell, they are subject to both within- and among-organism levels of selection. 

Accordingly, “selfish” genotypes that increase their own proliferation can rise to high frequencies 

even if they decrease organismal fitness. It has been argued that uniparental (often maternal) 

inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing 

within-individual variation and hence, within-individual selection. However, uniparental 

inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well 

as conditions for sexual antagonism when mitochondrial variants increase transmission by 

enhancing maternal fitness but have the side-effect of being harmful to males (i.e., “mother’s 

curse”). Here, we review recent advances in understanding selfish replication and sexual 

antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish 

interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial 

endosymbionts that arose more recently. Although cytonuclear conflict is widespread across 

eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, 

reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic 

genomes.

Introduction

Mitochondria are a key feature of eukaryotic life, and their persistence represents one of the 

most enduring biological unions, as mitochondria are the descendants of ancient bacterial 

endosymbionts that were acquired prior to the last eukaryotic common ancestor [1]. 

Remarkably, mitochondria still maintain independent genomes in nearly all eukaryotic 
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lineages. Coevolution between mitochondrial (mt) and nuclear genomes is generally 

considered to be mutualistic, because precise interactions between mt- and nuclear-encoded 

gene products are necessary for fundamental cellular functions [2]. The importance and near 

ubiquity of mitochondria has led to hypotheses that implicate mitonuclear coevolution in 

nearly all aspects of eukaryotic biology - from speciation to the origins of sex (Box 1) 

[3-11].

Despite their longstanding symbiosis, the presence of independently replicating mt genomes 

in eukaryotes creates the opportunity for selfish conflict between mt and nuclear genes. The 

term conflict can be used in different ways, but here we mean more than simple genetic 

incompatibilities that arise due to disruption of coadapted mitonuclear genotypes during 

hybridization and genetic admixture [5, 12-14]. Rather, we are referring to cases in which 

opposing selection pressures act on mt and nuclear genomes such that their evolutionary 

“interests” are at odds with each other [15]. For example, mutations that benefit the 

transmission of mt genomes but reduce the transmission of nuclear genomes create 

mitonuclear conflict. Such opposing selection pressures were likely much more prominent 

early in eukaryotic evolution when mitochondria had larger genomes and greater 

independence from the nucleus. However, in the billions of years since the origin of 

mitochondria, the control of nearly all mt functions has been transferred to the nucleus in a 

process of cytonuclear integration that is sometimes termed “domestication” [16-19].

Mt domestication likely eliminated many sources of mitonuclear conflict, but not all of 

them. The only lineages that have completely lost their mt genomes lack electron transport 

systems and survive as parasites on the cellular energy of other eukaryotes [1, 20, 21]. There 

is active research into the classic question of whether mt genomes have been maintained due 

to adaptive processes or functional constraints [17, 22-25]. Regardless of the answer, the 

persistence of mt genomes over billions of years has made mitonuclear conflict an enduring 

feature of eukaryotic evolution.

Although there has been longstanding interest in mitonuclear conflict and similar selfish 

interactions involving plastids (e.g., chloroplasts) and other endosymbionts [15, 26-32], 

recent work across diverse eukaryotes has employed genomic and modeling-based 

approaches to yield new insights into the molecular mechanisms of mitonuclear conflict and 

how such conflict is ameliorated. Here, we review this literature under the two broad themes 

of selfish mt replication and sexual antagonism, while drawing parallels and contrasts with 

cytonuclear conflict in plastids and endosymbionts.

Mitochondrial genomes as “selfish little circles”

“…evolution might be determined not by which plasmon form furthered the organism in 

which it occurred, but by which furthered itself most in competition with other plasmon 

factors…” Grun 1976 [29]

Selection among and within individuals

An individual eukaryote may possess up to trillions of cells, each of which may contain 

hundreds of mitochondria, which in turn may each contain many mt genomes [33, 34] (Fig. 
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1). Even unicellular eukaryotes that possess only one or a handful of mitochondria can have 

many copies of the mt genome [35, 36]. Due to their multicopy nature, selection on mt 

genomes operates both among and within individuals [37-40] (Fig. 1). Consequently, mt 

genomes that harm the organism can outcompete beneficial mt genomes and rise to high 

frequencies within an individual because the strength of selection on individual mt genomes 

for cellular function can be weak compared to the strength of selection to replicate. Haig 

[30] referred to this as the “tragedy of the cytoplasmic commons” because mt replication 

benefits the individual genome, while efficient cellular function benefits all the genomic 

inhabitants of the cell and is therefore a “public good”. In such situations, the self-interest of 

individuals (mt genomes) can result in the decay of public goods (cellular function) [41].

Mt and nuclear selection pressures will generally remain aligned unless there is variation 

among mt genomes for selection to act on. Organisms that possess a heterogeneous 

population of mt genomes are termed heteroplasmic and are commonly observed. For 

example, even with low sensitivity detection methods, heteroplasmic females possessing mt 

genomes that differ by ~3% have been found to occur naturally at frequencies of up to 12% 

in Drosophila individuals [42]. Most individuals will be heteroplasmic at some point in their 

life cycle as a result of mutations in individual mt genome copies [43-45]. Mt mutation rates 

are elevated compared to nuclear rates in some eukaryotic lineages [46-49], and all mt 

variants that are fixed between populations or species began as heteroplasmic variants within 

an individual. Because multiple copies of the mt genome are also transmitted across 

generations (albeit often in reduced or “bottlenecked” numbers – see “Nuclear responses to 

suppress selfish replicators” below), offspring can inherit heteroplasmies [50]. In such 

heterogenous populations of mt genomes, copies that over-replicate have the potential to 

spread even if they have harmful effects on organismal fitness. The frequencies of these 

selfish replicators will be shaped by a balance between the different processes of mutation, 

multilevel selection, and drift (e.g., due to transmission bottlenecks).

Several elegant studies have experimentally manipulated organismal population sizes to 

examine selfish mt transmission and illustrate the conflicting levels of selection in systems 

such as yeast and nematodes [51-53]. Such experiments reduce the efficacy of selection 

among individuals by lowering the effective population size. However, reducing the number 

of organisms has no effect on the number of mt genome copies within each organism, so 

selection remains strong among mt genome copies within individuals. These studies have 

generally confirmed that reducing organismal selection “tilts the balance” toward the 

proliferation of selfish mt elements (Fig. 1).

Mechanisms of selfish replication

Several examples and mechanisms of mt selfish replication have been identified or 

hypothesized. Here, we describe six different processes that may lead to over-replication of 

otherwise deleterious mt genomes (Table 1). First, sequence variants in mt genomes can 

directly reduce genome replication time [54]. Smaller mt genomes arising via deletions are 

expected to replicate faster and spread within an individual, even though deletions of key 

genes can have major effects on oxidative phosphorylation (OXPHOS) activity and 

organismal fitness. Mt variants in Caenorhabditis nematodes with large deletions in NAD5 
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may serve as an example, as they have a replication advantage but compromise organismal 

energetics [54-56]. Sequence variants that preferentially recruit replication machinery may 

also accelerate DNA replication and increase in frequency within a variable mt population. 

For example, petite mutants in baker’s yeast (Saccharomyces cerevisiae) arise spontaneously 

at high frequencies, often via large deletions in the mt genome. Therefore, growth is slowed 

due to compromised respiration, resulting in a small or “petite” colony phenotype [57]. 

Petite mutants also have duplicated ORI sequences in their mt genomes, which are thought 

to promote replication and may act as an origin of mt replication (but see [58]), giving them 

an additional replication advantage [59]. Enhanced or expanded origins of replication may 

also explain evidence in the fruit fly Drosophila melanogaster that larger mt genomes can 

have a within-individual replication advantage [60]. In Drosophila where a foreign mt 

genome has been introduced to compete with the native variant, it was shown that the 

noncoding region of the genome (containing the origin of replication) governs selfish 

transmission [40]. In facultative aerobes such as yeast, selfish mt variants with defective 

oxidative phosphorylation can rise to fixation (homoplasmy) when the yeast are in an 

anaerobic phase, because countervailing selection against them at the individual level is 

weak. However, in species such as nematodes where respiration is critical, selfish mt 

variants will rise in frequency (heteroplasmy), but this process will be counterbalanced by 

selection on organismal function.

The multicopy nature of mt genomes can sometimes be extreme. In one remarkable 

example, the amoeba endosymbiont Perkinsela has a single mitochondrion and a mt genome 

that encodes only six proteins; nevertheless, this endosymbiont has so many mitochondrial 

genome copies that it has more DNA in its single mitochondrion than is present in the 

nuclear genomes of either the endosymbiont or the host [61, 62]. This raises questions as to 

whether highly multicopy mt genomes, which are common across eukaryotes, are beneficial 

for organismal fitness or may have arisen at least in part due to selfish replication.

Functional transfer of mt genes to the nucleus may buffer the effects of mt gene deletions. In 

this scenario, an intracellular gene transfer duplication occurs such that a mitochondrial gene 

is present and functional in both the mt genome and the nuclear genome (e.g., [63]). Because 

the mt and nuclear gene copies are functionally redundant, one copy will likely be lost. 

Several evolutionary hypotheses have been presented detailing why mt genes are transferred 

to the nucleus [19, 64, 65]. One possibility is that mt variants in which the transferred gene 

is deleted might have a replication advantage over intact mt genomes. As such, variants with 

deletions would spread and preferentially result in the loss of the mt copy and retention of 

the nuclear copy, completing nuclear gene transfer [66]. Under this hypothesized 

mechanism, the inherent selfishness of multicopy organelle genomes may actually have 

acted to strip them of much of the very genetic content that allowed them to function in a 

selfish fashion to begin with (e.g., mt replication machinery).

A second potential mechanism of selfish replication involves variants that compromise mt 

function but do not result directly in shorter DNA replication times. One hypothesized 

cellular response to under-performing mitochondria that harbor such defective genome 

copies is to increase the replication of all mtDNA within such organelles, including both 

functional and defective variant copies [15, 67]. The result over time would be a 
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mitochondrial moral hazard that rewards “bad behavior” and produces a large population of 

poor-performing mt genomes that hitchhike along with upregulated mt DNA replication in 

their compartments. In other words, the very response of the cell to the defective genome 

results in the spread of the defective genome. The overall result is a snowball effect in which 

cellular function continues to decline as more dysfunctional genomes accumulate. Modeling 

studies provide some evidence for this, with implications for why mt associated diseases 

caused by heteroplasmy are manifested later in life [68-70]. There is also empirical evidence 

that a mutant mt haplotype in C. elegans that has a 3.1 kb deletion may proliferate by 

exploiting the regulatory machinery that maintains the necessary number of wild-type 

genome copies [67]. These observations provide an alternative (or complementary) 

interpretation for the role of deletions in selfish over-replication.

Importantly, the potential for spread of selfish mt genome copies within a cell may be 

shaped by the fact that mitochondria undergo cycles of fusion and fission [71]. In the 

absence of mt fusion, a selfish mt variant that spreads to fixation within a mitochondrion 

would still require that mitochondrion to proliferate within the cell in order to spread further. 

Modeling work suggests that fusion/fission makes it possible for defective mtDNA copies to 

spread among mitochondria and outcompete wildtype copies within each organelle [70]. 

This is in contrast to the apparent lack of regular fusion in many plastids and younger 

endosymbionts, which traps genome copies inside a single organelle or bacterium.

A third mechanism of selfish replication may take place at the organelle level rather than the 

genome level. Some of the earliest ideas about intracellular competition among organelles 

were developed based on observations of plastids rather than mitochondria [27, 29]. In 

particular, in the evening primrose (Oenothera) certain plastid genotypes are known to 

consistently outcompete others when they are present in a heteroplasmic state. In one recent 

study, specific variants in plastid-encoded genes were implicated in a mechanism for 

preferential replication of these “strong” plastids [72]. The authors did not detect differences 

in genome copy number across plastid types, suggesting that rates of DNA replication were 

not a primary driver. Instead, variation in the plastid-encoded subunit of the acetyl-CoA 

carboxylase (accD) was shown to correlate with plastid competitive success and underlie 

variation in fatty acid production, which the authors hypothesize is rate-determining for 

plastid membrane growth and plastid division. Although there is no evidence that rapid 

plastid division is inherently harmful to organismal fitness, these strong plastids are able to 

spread even when introduced onto genetically incompatible nuclear backgrounds, resulting 

in loss of photosynthetic function. Thus, they clearly create opportunities for conflicting 

levels of selection.

Three other mechanisms of selfish replication that have received less attention include mt 

epigenetic modifications, organelle-level inheritance bias, and “warfare” among organelles. 

It has been proposed in mammals that mtDNA is epigenetically tagged. Some evidence 

suggests that tagging can direct the fate of a genome copy to either replication or 

transcription of mtDNA, but not both [73, 74]. In cytoplasmic hybrids of the marine copepod 

Tigriopus californicus, mt transcription and DNA copy number are negatively correlated 

[75], possibly supporting this mechanistic tradeoff. In this context, mt genome copies that 

are preferentially tagged for replication will spread, but will not be transcribed, and therefore 
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are less likely to be screened for functionality. Meiotic drive, in which certain alleles subvert 

Mendel’s laws of inheritance and are preferentially transmitted to the next generation, is 

generally considered only in the context of heterozygous nuclear genes because 

mitochondria do not undergo meiosis. However, an analogous process of inheritance bias 

could exist among organelles if particular mitochondria have the ability to move into 

germline cells during development. Recent evidence in molluscs provides a possible 

mechanism as mt-encoded genetic products were suggested to affect microtubule motors 

[76], and cytoskeletal elements play a role in partitioning mitochondria during cell division 

[77]. Finally, “warfare” could occur among organelles. Many bacteria are characterized by 

toxin-antitoxin systems, which themselves can be selfish genetic elements [78]. 

Endosymbionts could encode similar systems to destroy competing endosymbionts, possibly 

at the expense of organismal function. To our knowledge, no examples of such systems have 

been described in organelles, but we would predict them to occur more frequently in young 

endosymbionts that retain larger genomic repertoires. They may also be possible in some 

lineages where “non-functional” (and putatively selfish) mtDNA is common.

Interestingly, recent studies in heteroplasmic mice and humans found deleterious effects 

even though individuals that were homoplasmic for either mt variant showed no such effects 

(i.e., underdominance) [79, 80]. To put it differently, mt genomes that are seemingly fine in 

isolation can be deleterious in combination. One possible explanation is that active 

competition between the variants through one or more of the mechanisms described above 

causes reduced organismal fitness.

Nuclear responses to suppress selfish replicators

Selfish replication in mt genomes is curtailed by several mechanisms, six of which we 

outline here (Table 1). First is the transfer of the majority of mt genes and control of mt 

functions to the nucleus during the billions of years since the endosymbiotic origins of 

eukaryotes [19]. While nuclear gene transfer is often thought to be adaptive because nuclear 

genes benefit from sexual recombination while mt genes do not [65], there are also neutral 

reasons why gene transfer should be asymmetrical between the genomes [64], and this 

remains an active area of research [22, 23]. Ironically, accordingly to the logic described in 

the previous section, selfish replication in mt genomes may also predispose genes to nuclear 

transfer [66]. Regardless of the cause, nuclear gene transfer likely provided the nucleus with 

a novel set of genes that may have played roles in combating selfish mt replication, while 

stripping mt genomes of most of their weapons for selfish replication. Perhaps most 

importantly, the machinery that actually controls mtDNA replication is nuclear-encoded in 

all eukaryotes [1]. The ability to selfishly replicate is presumably more limited in a genome 

that does not control its own replication. There is also recent evidence that nuclear control 

over dNTP levels may act to regulate selfish mt genomes in yeast [81].

Secondly, mitochondria may be “screened” to eliminate poor-performing organelles that 

possess selfish genomes [6, 82-84]. Mitophagy, which was once thought to be largely 

random, is now known to selectively eliminate underperforming mitochondria, likely as a 

form of quality control [85-87]. Fusion/fission cycles also act to segregate underperforming 
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organelles with lowered membrane potential from the rest of the mt population [70, 88], 

allowing them to be selectively eliminated via mitophagy.

Thirdly, the entire cell can be vetted based on the performance of its mitochondria, which 

may be especially important during germline development [89]. For example, in a 20-week 

old human female fetus, ~7 million ovarian follicles are present, but only a few hundred will 

eventually undergo ovulation [90] – amounting to a very effective potential selective sieve 

during this process (known as atresia). Importantly, recent studies suggest mitochondrial 

function is especially important during early primordial germ cell development [91, 92] and 

may also be under selection during later stages of egg development [93]. The central role of 

mitochondria in apoptosis across cell types also suggests that cells with poor performing 

mitochondria will be effectively eliminated [94]. Indeed, the role of mitochondria in 

apoptosis may have initially evolved as a mechanism to regulate poorly functioning and 

selfish mitochondria.

Fourthly, one advantage of sexual reproduction may be to counteract the physiological 

consequences of selfish mt genomes. Eukaryotic sex is often viewed as an adaptation to 

respond to changing environments or parasites [95, 96], and selfish mt replication can be 

viewed as a form of parasitism [97]. It was recently proposed that sexual recombination 

provided the genetic variation for early eukaryotes to respond to mt mutations [4], and a 

logical extension is that sex allowed a more efficient response to selfish mt replication. 

Several related hypotheses have suggested a role for mitochondria in the evolution of 

eukaryotic sexual reproduction [98-100]. Interestingly, one modeling study came to an 

opposite conclusion regarding selfish mt replication. It suggested that selfish endosymbionts 

may actually spread under sexual reproduction, leading to the conclusion that selfish 

mitochondria were brought under control before the evolution of sex [32], not as a result of 

it.

The final two mechanisms of nuclear suppression both act to limit the amount of mt 

heteroplasmy and, thus, the opportunity for intracellular competition. Germline bottlenecks 

in females may serve to reduce variation among mt genome copies. Primordial germ cells in 

human females undergo a massive bottleneck in the number of mt genomes per cell, 

dropping to 10 or fewer mitochondria and ~200 or fewer mt genome copies during germ line 

development [101, 102]. Somatic cells induced to form pluripotent stem cells that mimic 

primordial germ cells also show a large reduction in mtDNA copy number [103, 104]. The 

mt genomes that survive this bottleneck then undergo a rapid expansion to ~200,000 copies 

per mature oocyte [105]. Such bottlenecking reduces heteroplasmy in the mature oocyte and 

embryo, thus restricting the possibility for intracellular competition early in development. 

Enforcing small inoculum sizes during transmission of younger endosymbionts may serve 

the same purpose [106, 107]. It is important to note that any selfish mt genomes that survive 

such bottlenecks could lead to drastic heteroplasmy after subsequent proliferation of mt 

genomes.

Finally, one of the most widely hypothesized mechanisms to bring selfish mt replication 

under control is the evolution of uniparental inheritance [27-29, 97]. If mitochondria are 

transmitted though only a single parent (Fig. 2A), it is much more likely that offspring will 
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receive a homogenous population of mt genomes, reducing the opportunity for intracellular 

selection. Widespread observations of maternal inheritance in plants and animals have 

motivated this hypothesis. Uniparental inheritance occurs via many active and often 

redundant mechanisms that ensure paternal mtDNA is excluded during fertilization or is 

destroyed shortly thereafter, including prezygotic exclusion/degradation of mitochondria in 

sperm, prevention of paternal organelles from entering the developing zygote, and 

degradation of paternal organelles in the zygote [97, 108]. In Drosophila, when a second, 

deleterious mt genome was introduced to compete with the native genome, the deleterious 

genome prevailed only when the two genomes were distantly related [40]. This suggests that 

heteroplasmy arising via mutation within an individual may be relatively harmless compared 

to the possible divergent heteroplasmies created via biparental inheritance [40]. However, it 

is important to note that it is an oversimplification to assume that uniparental inheritance of 

mt genomes is standard. Indeed, for many of the major eukaryotic lineages, there are few or 

no studies of mt inheritance (Fig. 2B). Moreover, studies of cytoplasmic inheritance in well-

sampled groups (e.g., vascular plants) have revealed that it is a strikingly labile trait, with 

many independent lineages showing evidence of at least episodic biparental inheritance (Fig. 

2C). In such taxa, mitochondria may have selfishly escaped the mechanisms that ensure 

uniparental inheritance. Even in species such as humans, biparental inheritance may be more 

common than previously appreciated [80, 109, 110].

Antagonistic sexual selection due to uniparental inheritance

“In males, cytoplasmic genes in outbreeding species will have no selection on them at all to 
function properly.” Cosmides and Tooby 1981 [28]

Although uniparental inheritance may have evolved to reduce the spread of “selfish” mt 

haplotypes, it results in a new arena for conflict between the cytoplasmic and nuclear 

genomes. Whereas nuclear genes are usually inherited through both sexes, mt genes are 

often inherited through the maternal lineage (Fig. 2). In these cases, males acquire 

mitochondria from their mothers, but they do not pass them on to succeeding generations. 

This uniparental inheritance has two consequences. First, it invokes cytonuclear genetic 

conflict over sex determination [28, 111] due to active selection on cytoplasmic elements to 

distort sex determination and sex ratios towards females. Second, because mitochondria are 

not actively selected to maintain functions in males, variants that reduce male fitness can 

increase in frequency within populations [28, 112, 113]. We briefly outline these concepts in 

the next two sections.

Cytonuclear conflict and reproductive manipulation

Mitochondrial variants (as well as plastids and heritable microbes) that increase the number 

or fitness of females by reducing the number or fitness of males will be selectively favored, 

and nuclear suppressors of such “rogue” elements will be selected for, resulting in 

cytonuclear conflict. Among the best examples of this are cytoplasmic male sterility (CMS) 

in plants [114, 115] and sex ratio distorting cytoplasmic microorganisms in many animals 

[31, 111].
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CMS can result in gynodioecy (i.e., the presence of both hermaphroditic and female 

individuals) in natural populations of flowering plants and can be revealed through crosses 

[116]. In these systems, mt genomic variants cause hermaphrodites to become male-sterile 

(see [114-116] for reviews). At least in some cases, suppression of male function can 

increase female fitness either through resource reallocation to female functions [117-119], or 

through improved offspring quality via forced outcrossing [120].

Processes of reproductive manipulation include male-killing (or harming), parthenogenesis, 

feminization of males, and cytoplasmic incompatibility (CI) – all of which can potentially 

increase the abundance/fitness of females [31, 111](Fig. 3). All of these processes have been 

demonstrated in a class of bacterial endosymbionts known as reproductive manipulators – 

epitomized by Wolbachia, a group of intracellular Alphaproteobacteria found in numerous 

arthropod and nematode species [31]. Mitochondria may have a more restricted range of 

mechanisms for reproductive manipulation. They have only been clearly shown to induce 

male harm/sterility. One recent example from a book louse suggests that certain highly 

divergent mt variants may cause only daughters to be produced [26]. This could represent a 

case of mt-induced sex ratio distortion, but the precise mechanism has not been worked out, 

and there is as yet no conclusive evidence of mitochondrial involvement. To our knowledge, 

there are no identified cases of mt-mediated parthenogenesis, feminization or CI. Evidence 

for plastid-mediated reproductive manipulation is even more limited (Fig. 3). Therefore, 

beyond CMS in plants, clear cases of reproductive manipulation by organelles remain to be 

established.

Mother’s curse

Transmitting mt genomes through a single sex or mating type will limit the effects of natural 

selection to that parent. For example, maternal inheritance results in natural selection being 

“blind” to mt variation that is male-specific in its effect on phenotype. Mt variants that do 

not incur costs to females, or which augment female fitness, can therefore spread in a 

population, even if those variants are deleterious to males. This concept has been expressed 

in the literature for nearly 40 years [28, 112] and is often referred to as “mother’s curse” 

[113].

There is an important distinction to make regarding the role of female fitness effects in 

mother’s curse. In a “weak form” of mother’s curse, a mt mutation with substantial 

deleterious effects on males may be neutral or nearly neutral in females. In this scenario, the 

lack of selection on males permits the mt variant to accumulate to appreciable frequencies 

under mutation-selection balance and potentially to be fixed by genetic drift [112]. One such 

example is an identified mutation in cytochrome c oxidase 2 (COX2) in Drosophila that 

impairs male fertility with no apparent harm to female viability or fertility [121]. In contrast, 

a “strong form” of mother’s curse involves sexually antagonistic mt variants that harm males 

but have beneficial effects in females and, thus, would actively spread by positive selection. 

One such example is a CYTB mutation identified in Drosophila that increases in frequency 

during experimental evolution trials due to increasing female fitness, and in spite of 

decreasing male fertility [122-124]. Only the strong form of mother’s curse would be 

considered true selfish conflict, with the extreme example being the spread of a mt variant 
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that entirely eliminates male function but nonetheless spreads because it confers just a slight 

fitness advantage for females. In contrast, a nuclear-encoded variant with comparable effects 

on male fitness would only be maintained by selection if it increased female fitness at least 

two-fold [125].

Individual mt mutations resulting in male-specific harm have been documented in humans 

[126, 127], fruit flies [121, 122, 128], mice [129], hares [130], and flowering plants 

[114-116]. Moreover, mt variation was shown to affect the expression of nearly 10% of all 

nuclear genes in male Drosophila with few effects on gene expression in females [131]. 

However, in many of these cases it is unclear whether these male-harming variants are 

beneficial to females (i.e., the strong form of mother’s curse). Recent studies in Drosophila 
have addressed this shortcoming by measuring both male and female fitness conferred by mt 

variants and documenting sexually antagonistic effects on trait expression associated with 

particular mt variants [132], or across whole mtDNA haplotypes [123]. These studies 

indicate that mt mutations with male-harming effects may have spread due to beneficial 

female effects (sexual antagonism), not simply due to a lack of selection in males.

Mechanisms of male fitness reduction by mitochondria

The physiological mechanisms underpinning how mt variants can specifically harm male 

function without impairing female fitness (or even while increasing it) are largely unknown. 

Two possible mechanisms may act as common explanations shared across multiple lineages. 

First, sperm are highly active, and sperm motility may be particularly sensitive to ATP 

production. Mt variants that only slightly compromise mt function may therefore show 

negative effects in sperm, but not other tissues [15]. Some evidence in humans and 

Drosophila supports this hypothesis, as certain mt haplotypes confer reduced sperm motility 

leading to reduced fertility, but no other obvious phenotypes [132, 133]. Second, the number 

of mtDNA copies in sperm is very limited compared with eggs. As mentioned earlier, 

mature mammalian oocytes contain ~200,000 mtDNA copies, which must pass through a 

selective sieve. In contrast, mammalian sperm may contain fewer than 100 mtDNA copies, 

which are not subject to a selective sieve. The quantity of mt genomes in sperm may 

therefore be limiting, resulting in mt variants that produce mild phenotypes being 

detrimental only to sperm function. Detailed quantification of mtDNA copy number in 

sperm vs. eggs of other eukaryotes can test the generality of this possibility.

Both of these hypotheses assume that sperm or their precursors are dependent on OXPHOS, 

because while it is possible that mt genomic variants might affect other mt functions, all 

protein-coding genes in mammalian mtDNA are components of OXPHOS machinery. 

Contrary to this assumption, there is now general agreement that glycolysis provides the 

main source of ATP in mammalian sperm while OXPHOS plays a secondary role, if any 

[134-136]. Therefore, these two mechanisms may serve as null or complementary 

hypotheses when investigating additional mechanisms.

Although CMS in angiosperms is both widespread and agriculturally important [114], the 

physiological mechanisms underlying reduced male fitness are still unclear, even though the 

genetic variation leading to it is well-characterized. In most cases of CMS, the mt gene 

responsible for CMS (often a chimeric ORF) is expressed in all tissues, whereas phenotypic 
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effects are confined to the anthers [116]. One proposed explanation for these tissue-specific 

effects is that pollen production is one of the most energetically expensive organismal 

functions [137, 138], and mt variants that only slightly diminish energetic efficiency might 

therefore only affect pollen production [139]. However, this explanation has not been 

explicitly tested. Some evidence in Nicotiana suggests that CMS individuals do show altered 

mt function but that mt deficiencies may not affect phenotypes overall due to compensating 

nuclear factors [140]. If this is the case, it is unclear why male phenotypes escape nuclear 

compensation.

In many CMS species, dysfunction is thought to originate in the tapetum – the specialized 

tissue surrounding the developing pollen grain [114]. In sunflowers, the death of tapetal cells 

and meiocytes associated with CMS has been shown to be due to the initiation of a 

programmed cell death (PCD) pathway [139]. Given the importance of mitochondria in PCD 

[94] and the precise patterns of PCD necessary during pollen development [141], it is 

possible that mt-mediated PCD could specifically target developing pollen but few other 

tissues, possibly by interacting with anther-specific proteases found across angiosperms 

[139, 142]. Investigating such targeted mechanisms [143] in comparison and contrast with 

the more general mechanisms outlined above should be a focus of future studies of sexually 

antagonistic mitonuclear coevolution.

Detailed mechanisms of male-specific harm are beginning to be examined in younger 

endosymbionts. For example, recent work on Spiroplasma endosymbionts in Drosophila 
found a single locus in the endosymbiont (Spaid) that causes male-killing by targeting the 

dosage compensation machinery on the male X chromosome [144]. Recent studies of 

Wolbachia also identified genes underlying cytoplasmic incompatibility (Fig. 3), with some 

evidence suggesting similar mechanisms in both lineages [145-147]. Identifying how 

endosymbionts and mitochondria induce sex-specific phenotypes remains a key arena for 

future research.

The relatively limited repertoire of organelles as reproductive manipulators

In theory, mt and plastid genomes should benefit from any form of reproductive 

manipulation that enhances female fitness, so why have many of these mechanisms only 

been found in younger endosymbionts such as Wolbachia (Fig. 3)? One answer may simply 

be that similar mechanisms are common in mitochondria and plastids but have largely 

eluded detection. For example, CMS in plants is often uncovered in crosses between 

populations or lines, when the sterilizing mitochondria and suppressing nuclear genotypes 

become decoupled [148]. Other forms of genetic conflict that involve antagonistic 

coevolution of selfish genetic and elements and suppressors are also often uncovered in 

interpopulation crosses [149].

Another possibility is that mt and plastid genomes have been domesticated (e.g., genome 

reduction) to such an extent that the possibilities for reproductive manipulation are limited 

compared with younger endosymbionts [26]. The prevalence of CMS in angiosperms may 

serve as an example of how genome architecture and content can dictate which pathways are 

available. Unlike in animals, angiosperm mt genomes regularly undergo intragenomic 

recombination, generating structural rearrangements that act as the genetic fuel for 
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reproductive manipulation [114, 115]. In bilaterian animals, the mt genome is more 

streamlined and may have less mutational fuel (i.e., structural variation) for selection to act 

on [13]. Testing ideas about why reproductive manipulation is more diverse in younger 

endosymbionts will require examining cases that represent exceptions to these typical 

patterns. For example, could reproductive manipulation via mt genomes be more common in 

nonbilaterian animals, which can possess radically different mt genomes than are typical in 

bilaterians [48]?

Whereas studies of CMS in angiosperms have provided extensive insight into sexual 

antagonism, it is less clear if and how mt variation affects reproduction in hermaphroditic 

animals. Previous studies of mother’s curse in animals have focused solely on species with 

separate sexes. Hermaphroditic nematodes show mitonuclear epistasis [150, 151], maternal 

mt inheritance [152], differences in lifespan between males and hermaphrodites, and 

variation in lifespan due to mitonuclear interactions [153], making them an underutilized 

study system to investigate mother’s curse [154]. In addition, examining sexual antagonism 

in organisms with paternal mt transmission would provide a corollary to mother’s curse in 

which a “father’s curse” would be expected (or by examining isogamous species in which 

mt transmission is linked to one mating type) [155, 156].

Comparing and contrasting the biology of mitochondria with plastids may help us better 

understand sexual antagonism. For example, in land plants, plastid genomes tend to be more 

stable than mt genomes, undergoing fewer rearrangements and thereby limiting the 

generation of selfish variants. In addition, plastid function may also constrain the 

possibilities for sexual antagonism compared to mt genomes. The major role of the most 

abundant type of plastids, chloroplasts, is to perform photosynthesis, which is not critical in 

male reproductive tissues. Mt respiration plays a more general role for most male functions, 

including pollen production. It may therefore not be surprising that sexual antagonism has 

rarely been described in plastid-nuclear interactions, despite uniparental inheritance being 

common in both mitochondria and plastids (Fig. 2C).Interestingly, the few plastid genes that 

have been implicated in cytonuclear conflict play roles outside of photosynthesis [157-160]. 

Such genes are also often implicated as targets of positive selection [161]. In all of these 

cases, however, the role of plastids in selfish reproductive manipulation remain speculative 

or incomplete.

Nuclear responses to sexual antagonism

When sexually antagonistic and male-harming mt variants spread to high frequency within a 

population, it is expected to create strong selection for nuclear responses that counteract 

these effects. For example, there is a large body of literature describing the nuclear restorer-

of-fertility genes that offset CMS caused by mt variants, including evidence of strong 

positive selection on these nuclear loci that implies an arms-race model of mitonuclear 

conflict [116, 162-164].

Another potential consequence of sexual antagonism is the evolution of tissue-specific 

paralogs, which have arisen repeatedly for metazoan nuclear-encoded OXPHOS genes, 

particularly those in cytochrome c oxidase [165]. These duplicate genes can be highly 

divergent from each other and often show testis-specific expression. Although optimization 
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in response to tissue-specific metabolic demands may explain the retention of these gene 

duplicates, one intriguing possibility is that testis-specific paralogs are under positive 

selection to counteract male-harming mt variants. Some evidence for this hypothesis comes 

from Drosophila, in which duplicates of mt-targeted genes preferentially show testis-specific 

expression [166]. These duplicates often relocate far away from the parent gene and are 

underrepresented on the X chromosome. Duplicates with testis-specific expression are also 

frequently involved in energy production (e.g., OXPHOS genes), are older than other 

duplicates in the Drosophila genome, and have higher dN/dS ratios than other gene 

duplicates (which can indicate positive selection) [166]. On the other hand, in humans, 

duplicated mt-targeted genes do not exhibit this same enrichment in testis function and are 

younger than other duplicates [167]. Testis-specific genes in general have also been inferred 

to be evolving under relaxed selection in humans [168]. An obvious area for future research 

is to determine why nuclear-encoded OXPHOS duplicates with testis-specific expression 

evolve under relaxed or positive selection in different lineages, with the latter being expected 

if their evolution has been shaped by selection for counteracting mt variants that harm male-

specific functions.

Many studies investigate the additive effects of mt variants on male function by placing 

variable mt genomes from different populations on a common nuclear background [123, 

131, 132, 169-173]. However, this precludes examining whether nuclear genomes in local 

populations have responded to selection to counteract male-harming mt variants (i.e., by 

examining the extent of mt male harm in “home” vs “away” nuclear backgrounds). Recent 

studies in Drosophila [174-177] and Callosobruchus seed beetles [178, 179] have included 

multiple nuclear backgrounds as well, with some results indicating sex-specific effects as 

predicted under mother’s curse and others showing more complicated interactions. It is clear 

from these studies that environment also plays a role in mediating sex-specific mitonuclear 

effects (i.e., G × G × E × sex effects). However, these studies are in their infancy and more 

work is needed to understand the generality of mother’s curse and the frequency of 

counteracting nuclear mutations.

Summary and future outlook

Although mitochondria are beneficial endosymbionts that have played key roles in shaping 

eukaryotic evolution (Box 1), the persistence of mt genomes across eukaryotes creates 

conflicting levels of selection on organismal function and mt genome replication (Fig. 1). 

Nuclear mechanisms have evolved to counter the spread of selfish mt variants. However, 

what has been argued to be one of the most widespread countermeasures, uniparental 

inheritance, also creates the opportunity for sexual antagonism in mt genomes. Here, we 

have indicated several lines of future research in cytonuclear conflict, including investigating 

underexplored mechanisms of selfish replication (Table 1), the role for selfish mt genomes 

during nuclear gene transfer, the prevalence of uniparental inheritance across the majority of 

eukaryotic diversity (Fig. 2), the reasons why mt and plastid genomes appear to have a 

limited repertoire for reproductive manipulation (Fig. 3), and the physiological and genetic 

mechanisms that organelle genomes use to induce sex-specific harm. Importantly, studies 

investigating selfishness in younger endosymbionts can provide key insights into 

mitonuclear conflict [106, 180].
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Mitonuclear conflict also has applied importance for agriculture and health. CMS in crop 

species is an important tool for breeding [114, 115, 181-183]. Determining how mt variants 

cause male-specific harm in CMS could allow for the genetic design of mt genomes that 

would cause CMS in species of interest, possibly via new mt genomic engineering 

techniques [184, 185]. Such systems could also be harnessed in metazoans to control pest 

species [124, 186]. Mitochondrial replacement therapy (MRT) is an emerging germline 

treatment for mt diseases in which the cytoplasm of an egg from a patient with the disease is 

replaced by the cytoplasm of a healthy donor, resulting in an offspring that does not inherit 

the mt disease [187, 188]. However, recent studies have shown that replacement can be 

imperfect, resulting in a heteroplasmic population of healthy and afflicted mitochondria 

[189]. Moreover, the mt variant responsible for the disease can rise to fixation after 

replacement therapy, and drift has been implicated as the primary cause [189]. Determining 

the role of selfish replication in such dynamics could play a role in improving the efficacy of 

this therapy and contribute to a broader understanding of the role of selfish genetic conflict 

in human health.
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Box 1.

The role of mitonuclear conflict in key eukaryotic transitions.

The acquisition of the mt endosymbiont and the resulting establishment of mitonuclear 

interactions has been suggested as a driving force for the evolution of nearly every feature 

that distinguishes eukaryotes from prokaryotes. Organismal complexity, genome 

complexity, speciation processes, sexual reproduction, the presence of two sexes, sexual 

selection, apoptosis, aging, the sequestered germline, the nuclear membrane, and introns 

have all been argued to have arisen at least in part due to mitochondria [3-11].

Many of these hypotheses assume mutualistic coevolution between mt and nuclear 

genomes, but mitonuclear conflict could provide insights into these key transitions as 

well. For example, genomic and organismal complexity has been hypothesized to have 

arisen due to increased energy supplied by the mt endosymbiont [2, 11]. However, 

mechanisms of selfish replication in mt genomes may have selected for novel genes and 

functions in nuclear genomes to combat selfishness, which would have also increased 

complexity. Reproductive isolation between populations has been attributed to breaking 

up coadapted mitonuclear complexes in offspring, resulting in reduced hybrid fitness [5, 

40, 192]. However, in angiosperms, CMS is often manifested in hybrids, not because 

mutualistically coadapted complexes are disrupted, but because selfish mt variants are 

placed against a naïve nuclear background that lacks the proper counteradaptations. 

Finally, in a recent hypothesis on sexual selection, male ornaments were proposed to act 

as a signal of how well mt and nuclear genomes are coadapted to one another, resulting in 

greater OXPHOS efficiencies and more attractive ornaments with greater coadaptation 

[193]. Another view might be that male ornaments can only be maintained when selfish 

mt genomes are brought under control by nuclear responses.

While such hypotheses for mitonuclear conflict in key eukaryotic features are 

speculative, researchers investigating the implications of mitonuclear interactions would 

do well to consider the role of antagonistic, as well as mutualistic, coevolution between 

the genomes.
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Fig. 1. The balance of selection among different levels of organization.
Mitochondrial genomes that have a replication advantage can spread within an organism 

even if they confer deleterious effects on organismal function because selection on 

mitochondrial genomes acts both among and within individuals.
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Fig 2. Variation in mitochondrial inheritance.
(A) Representations of different modes of mitochondrial inheritance, including the doubly 

uniparental inheritance system in some bivalve molluscs [194, 195]. (B) Summary of studies 

of mitochondrial inheritance in major eukaryotic groups. (Left) Phylogenetic relationships 

of major eukaryotic clades as summarized by [1] and [196]. (Right) Grid of four columns 

(1-4, left to right) displaying information about our knowledge of mitochondrial inheritance 

in each group. (Col. 1) The number of studies pertaining to mitochondrial inheritance in 

each group. Few: 1-10 studies; Many: >> 10 studies. (Col. 2) The most common pattern of 

inheritance in each group based on current literature. Multiple colors per box indicate 

uncertainty about which pattern is most common. (Col. 3) Alternative patterns observed in 

the group. Strictly Uni.: Inheritance was found to be strictly uniparental and maternal; Bi. 
observed: Rare (<1% of individuals) cases of biparental inheritance were observed; Bi. 
common: biparental inheritance was observed in >1% of individuals. (Col. 4) A non-

exhaustive list of references for mitochondrial inheritance in each group. (C) Non-maternal 

organelle inheritance in vascular plants. (Left) Phylogenetic relationships of major vascular 

plant clades as summarized by [197]. The double line for conifers represents possible non-

monophyly [198]. (Right) Cases of mitochondria and plastid inheritance that depart from 

strictly maternal transmission including selected examples of genera in which these 

observations were made. Blank boxes indicate strict maternal inheritance. “No Data” 

indicates groups in which plastid/mitochondrial transmission in unknown. Modes of 

inheritance are abbreviated: P, paternal; PL, paternal leakage (similar to Bi. observed in 

panel B); B, biparental. References used to populate (C) include [27, 97, 117, 197-198, 217, 

237-246].
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Fig. 3. Mechanisms of reproductive manipulation in cytoplasmic genomes.
Four mechanisms of reproductive parasitism of arthropods have been described in younger 

endosymbionts such as Wolbachia: Male killing/harm eliminates or reduces male functions, 

parthenogenesis results in asexual production of exclusively females, feminization causes 

males to develop as females, and cytoplasmic incompatibility prevents males with the selfish 

variant from mating with wildtype females. However, mitochondrial genomes have only 

been documented to cause male harm/killing, and evidence for plastids causing reproductive 

manipulation is scarce.
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Table 1.

Six possible mechanisms of selfish mt replication and six possible nuclear responses.

Mechanism Details Example taxa Citations

Selfish replication

1. Faster replication Via deletions and preferential 
recruitment of replication machinery

Humans, nematodes, drosophila, yeast [40, 51, 53-55, 57, 
59, 190, 191]

2. Moral hazard hypothesis Poor organelles result in increased 
DNA replication

Nematodes (and simulations) [67-70]

3. Selfish organelle growth and 
division

Genome variation causes replication of 
organelles, not DNA

Plastids in evening primrose? [72]

4. Epigenetic tagging Replication and transcription may be 
mutually exclusive

Mammals, possibly in copepods [73-75]

5. Organelle inheritance bias Variants causing organelles to move 
into germline

None, relevant mechanisms proposed in 
bivalve molluscs

[76]

6. Warfare Organelles producing toxins to disrupt 
competing organelles

None, relevant observations in 
heteroplasmic mice

[79]

Nuclear responses

1. Gene transfer Functional movement of genes from 
the mt to the nuclear genome

Mt replication – all eukaryotes; dNTP 
levels – yeast

[1, 81]

2. Organelle selection Selective mitophagy aided by mt 
fusion/fission cycles

Characterized most extensively in 
mammals

[6, 70, 82-84, 88]

3. Cell selection Mt function in germline selective 
sieves and apoptosis

Characterized most extensively in 
mammals

[90-92, 94]

4. Sexual recombination Sex may counteract the parasitic nature 
of selfish replication

None; modeling studies contrarily 
suggest sex evolved after mt control

[4, 32, 98-100]

5. Germline bottlenecks Reduces heteroplasmy Mammals; parallels in young 
endosymbionts

[101, 102, 106, 107]

6. Uniparental inheritance Reduces heteroplasmy Fig. 2 [97, 108]
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