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Abstract

Transition state theory teaches that chemically stable mimics of enzymatic transition states will 

bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational 

quantum chemistry provides enzymatic transition state information with sufficient fidelity to 

design transition state analogues. Examples are selected from various stages of drug development 

to demonstrate the application of transition state theory, inhibitor design, physicochemical 

characterization of transition state analogues, and their progress in drug development.

Graphical Abstract

1. INTRODUCTION

Linus Pauling proposed over 70 years ago that “…the only reasonable picture of the 

catalytic activity of enzymes is that which involves an active region of the surface of the 

enzyme which is closely complementary in structure not to the substrate molecule itself, in 

its normal configuration, but rather to the substrate molecule in a strained configuration, 

corresponding to the “activated complex” for the reaction catalyzed by the enzyme: the 

substrate molecule is attracted to the enzyme, and caused by the forces of attraction to 

assume the strained state which favors the chemical reaction…”. And “…an enzyme 

complementary to a strained substrate molecule would attract more strongly to itself a 

molecule resembling the strained substrate molecule than it would the substrate molecule.”1 

“The attraction of the enzyme molecule for the activated complex would thus lead to a 

decrease in its energy, and hence to a decrease in the energy of activation of the reaction, and 
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to an increase in the rate of the reaction.”2 It was this recognition of the activated complex 

that Richard Wolfenden used to explain the tight binding of oxalate to lactate 

dehydrogenase, unsaturated analogues of substrates to 3-keto-steroid isomerase and proline 

racemace, the potent inhibition of cytidine deaminase by tetrahydrouridine and triose 

phosphate isomerase inhibition by 2-phosphoglycolate.3 Wolfenden formalized the Pauling 

principles by considering a thermodynamic box comparing solution (uncatalyzed) formation 

of product to that from the enzyme and enzyme affinity to substrate relative to that of the 

transition state (Figure 1). By doing so, Wolfenden concluded that ‘The attractive force 

between the enzyme and transition state for nonenzymatic reaction (if it could be measured) 

should be characterized by a binding constant exceeding by the factor F (enzyme rate 

acceleration) the binding constant of the substrate in the Michaelis complex… An ideal 

inhibitor, which perfectly resembled in its binding properties the substrate part of ETX (the 

transition state complex), should thus be bound as much more tightly to the enzyme than the 

substrate (the “binding ratio”) as the rate of the enzymatic reaction exceeds that of it 

nonenzymatic counterpart (the “rate ratio”). This conclusion applies whatever the nature of 

the binding forces (covalent, noncovalent, or both) and regardless of whether the enzyme 

itself is much distorted during binding and catalysis.”3 This description suggested an upper 

limit to the strong interactions between enzymes and putative transition state analogues.4 A 

sustained quest for the factor F in experimentally accessible reactions has placed upper 

limits near 1020 with many common enzymatic reactions in the region from 1012 to 1016.5–9 

As enzymatic Km values are typically in the 10−3−10−6 M range, perfect transition states are 

predicted to bind with dissociation constants of 10−15−10−22 M according to the Pauling–

Wolfenden proposal. These considerations place an upper limit for the affinity of transition 

state analogues, which by virtue of their chemical stability necessarily differ from the 

properties of the unstable and ethereal transition states. In practice, few if any inhibitors have 

reached these affinities. Most commonly, compounds considered transition state analogues 

bind with dissociation constants in the nanomolar to femtomolar range (10−9 −10−15 M).10

2. PROPERTIES OF THE TRANSITION STATE

Understanding that mimics of the transition state will provide powerful inhibitors for the 

cognate enzymes, the search for transition state information was underway. Initially, 

identification of powerful inhibitors suggested transition state features. Thus, the tight 

binding of 2-phosphoglycolate to triose phosphate isomerase supported the formation of an 

ene–diol intermediate, and the tight binding of tetrahydrouridine to cytidine deaminase 

suggested a Meisenheimer intermediate for the proposed nucleophilic aromatic substitution 

reaction for cytidine deamination.11,12 Intermediates are not transition states but are 

expected to lie at higher energy levels than reactants, and mimics of intermediates would 

also be consistent with the suggestions of the tight-binding hypothesis.13 The transition 

states of chemical and enzymatic reactions correspond to bond loss and bond formation. 

Bond vibrational modes in biological molecules have time constants on the femtosecond 

time scale; thus, the transition state lifetimes, the loss of a restoring mode, are very much 

shorter than the catalytic turnover numbers of enzymes, typically 1–103 s−1. The brief 

transition state lifetimes are experimentally problematic in providing spectroscopic 

characterization, and it is necessary to use deductive measures of kinetic isotope effects and 
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computational chemistry to provide well-defined geometric and electrostatic views of 

enzymatic transition states.14,15

2.1. Kinetic Isotope Effect (KIE) Approach to Enzymatic Transition States

The development of KIEs applied to chemical reactions and later extended to enzyme-

catalyzed reactions provided the chemical detail needed for the essential features of the 

transition state, namely, geometry (bond angles and lengths) and electrostatic potentials. 

These descriptors are conveniently provided from the wave function of the transition state, 

derived from experimental KIEs, and treated as a fixed structure for the purpose of building 

a computational model of the transition state as a guide to design transition state analogues. 

This approach has been detailed in readily available methods and review articles.16–19 Here, 

the steps in this approach will be summarized and the methods for enzymatic synthesis of 

the isotopically labeled substrates will be outlined. A more complete guide to “how to do it” 

literature is provided in section 15.1.

The approach to understand the nature of enzymatic transition states begins with a primary 

data set of kinetic isotope effects, refines these to intrinsic values, and compares them to 

quantum-chemically defined potential transition states for experimental and theoretical 

agreement. Experimental determination of enzymatic transition states begins with (1) 

synthesis of the substrates with isotope labels at individual positions involved in the reaction 

coordinate and remote reporter groups. (2) Intrinsic isotope effects are required for valid 

analysis of the chemical step and can be established from kinetic and commitment 

measurements. (3) Gaussian (or similar) quantum mechanical (QM) approaches are used to 

iterate systematically through possible transition states to find a transition state with the 

nearest match of the intrinsic kinetic isotope effects. (4) Electrostatic potential surfaces are 

calculated from the wave functions of the reactant and transition state, treating the transition 

state as a stationary structure. (5) Stable chemical mimics of the transition state are designed 

based on a geometric and molecular electrostatic match of the transition state. (6) Chemical 

synthesis of transition state analogues is followed by kinetic analysis against the target 

enzyme. (7) Inhibitory analogues are evaluated for biological efficacy by testing in cellular 

and animal models.20

2.2. Synthesis of Isotopically Labeled Reactants

For the N-ribosyltransferases, a focus of this review, the experimental range of KIEs requires 

isotopic labels at the anomeric carbon of ribose (the reaction center) and the nitrogen of the 

leaving group, both of which give primary isotope effects to define the extent of leaving 

group bond breaking and the extent of bond-forming participation of the incipient 

nucleophiles (water for hydrolases and phosphate for phosphorylases). The α-secondary 

KIE from the hydrogen at the anomeric carbon provides information on the rehybridization 

of the reaction center at the transition state. The β-secondary KIE from the hydrogen at C2′ 
of ribose provides ribose pucker information, as this isotope effect is strongly affected by 

hyperconjugation to the breaking leaving group bond and the dihedral angle between C2′–

H2′. These four isotope effects define the major properties of the transition state. Every 

additional measurement contributes additional details. For example, the α-O4′ isotope 

effect from the ribosyl ring provides a second estimate of the rehybridization of the 
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anomeric carbon at the transition state. Leaving group effects, e.g., the N7 KIE in purine 

leaving groups, indicate the extent of leaving group protonation at the transition state. In 

competitive isotope label experiments, the atoms mentioned above are made heavy with 18O, 
15N, 14C, 13C, 3H, or 2H and remote labels report on the discrimination between the 

chemically influenced KIE and the remote, chemically uninfluenced isotope label. Examples 

for the synthesis of isotopically labeled ATP, AMP, 5-phosphoribosyl 5-pyrophosphate, 

inosine, and adenosine are provided (Figure 2).

2.3. Binding Isotope Effects and Remote Labels

Remote labels at isotopically KIE-”silent” positions are required for the competitive 

radioisotope method. Chemical studies that break the N-riboside bond of AMP to form 

adenine and ribose 5-phosphate provide an example. The [5′–14C]AMP molecule provides 

an isotope label remote from the site of chemistry. A mixture of [5′–14C]AMP and [1′–
3H]AMP provides ribose 5-phosphate products with a ratio of 14C to 3H representing the 1′–
3H KIE. Likewise, a mixture of [5′–3H]AMP and [1′–14C]AMP provides ribose 5-

phosphate products with a ratio of 14C to 3H representing the 1′–14C KIE. Double remote 

labels can be used to measure isotope effects from chemically stable isotopes like 2H, 13C, 

15N, and 18O. A mixture of [5′–14C; 9-15N]AMP and [5′–3H]AMP provides ribose 5-

phosphate products with a ratio of 14C to 3H representing the [9-15N]AMP KIE. Remote 

labels require extra caution as remote binding isotope effects are common with 3H.24 On 

formation of the Michaelis complex, 3H–C bonds can be influenced by the catalytic site 

environment. For each degree of distortion from the solution sp3 geometry, an approximate 

1% 3H binding isotope effect will be observed from 3H–C bonds.25 These values are normal 

or inverse (the 3H-labeled molecule binding weaker or stronger) if the 3H–C modes are less 

or more constrained in the bound complexes, respectively. For this reason it is always 

essential to measure the BIE and/or KIE of remote 3H–C labels. This is experimentally 

direct by either binding or kinetic experiments with mixtures of [5′–3H]AMP and [5′–
14C]AMP. Remote labels with 14C are preferred, as there are no significant binding isotope 

effects for remote 14C labels, in contrast to those for 3H.26,27 We will see some examples of 

these isotope effects in the transition state analyses described herein. Binding isotope effects 

can be a significant contribution to experimentally measured KIEs. For example, in binding 

isotope effect studies for glucose to human brain hexokinase, binding isotope effects from 

6.5% normal to −7.3% inverse were observed in individually 3H-labeled glucose molecules.
28 Experimentally, these effects have been considered a boon by providing bond distortional 

information for understanding ground state stabilization or destabilization and a bane, by 

requiring binding isotope effect corrections when measuring KIEs for transition state 

analysis.29,30

3. AMP NUCLEOSIDASE

3.1. AMP Nucleosidase Kinetic Isotope Effects

AMP nucleosidase catalyzes the hydrolysis of AMP to adenine and ribose 5-phosphate with 

allosteric activation by MgATP2– and inhibition by inorganic phosphate.31,32 The enzyme is 

found only in bacteria and has been proposed to regulate the relative ratio of ATP to less-

phosphorylated nucleotides by controlled hydrolysis of AMP to products that are easily 
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recycled to the adenylate pool.33 As AMP nucleosidase is not found in mammals, it has been 

proposed as a potential antibacterial target.34 The crystal structure of the Escherichia coli 
enzyme is homohexameric with each of the six catalytic sites composed of contacts from 

two subunits (Figure 3).35 A test of its suitability as a target came from genetic inactivation 

of the enzyme in E. coli. Loss of the catalytic activity had the effect of increasing 

intracellular ATP concentrations, resulting in cellular cryoprotection.36 Thus, AMP 

nucleosidase is an unlikely drug target. Nevertheless, the enzyme played an important role in 

the early application of kinetic isotope effects to understand transition state structure. 

Kinetic isotope effect studies compared KIE profiles for AMP nucleosidases from different 

sources with the nonenzymatic chemical solvolysis of AMP.21,22 This catalytic activity was 

first characterized in the enzyme from Azotobacter vinelandii, a hexameric enzyme that has 

been well characterized kinetically.31,32,37 The crystal structure of the A. vinelandii enzyme 

has not been reported.

3.2. Comparing Chemical and Enzymatic KIEs

The transition states of AMP nucleosidases (AMPNs) have been interrogated by KIE 

analysis using three distinct forms of the enzyme. The A. vinelandii enzyme requires 

MgATP2− as an essential kcat activatior with the unactivated enzyme being 200-fold less 

active than the activated form (Av – ATP and Av MgATP in Figure 4). A mutant form of the 

A. vinelandii enzyme was developed with a 50-fold decreased kcat but unchanged binding of 

the allosteric regulators, MgATP2− or inorganic phosphate (mAv – ATP and mAv MgATP in 

Figure 4).38 The E. coli enzyme differs from the A. vinelandii homologue by a mechanism 

of allosteric activation with MgATP2− causing decreased Km values by several orders of 

magnitude (Ec – ATP and Ec MgATP in Figure 4).39 This early application of isotope effects 

provided an experimental approach toward understanding the sensitivity of the transition 

state structure in response to remote regulators. It also probed changes in transition states in 

enzymes with mutationally altered kinetic values. A direct chemical comparison was 

possible for this reaction.

3.3. Qualitative Analysis of AMP Nucleosidase KIEs

Nucleophilic displacements at carbon generate 14C primary KIE values of up to 14% for 

transition states with symmetric (SN2) attack of the nucleophile and departure of the leaving 

group.40 Atomic crowding around the reaction center restrains the out-of-plane bending 

modes for the 1′–3H atom to be similar to the reactant state, giving KIE values near unity. 

Conversely, classic SN1 reactions give near unity 1′–14C primary KIE values but large 1′–

3H values (above 30%) as the transition state ribocation has a fully developed sp2 geometry 

where increased out-of-plane modes for the C–3H bond contribute to large seconday 3H-KIE 

values.40,41 On the basis of similar KIE values for the enzymatic reactions with altered 

catalytic rates of over 3 orders of magnitude, intrinsic isotope effects were assumed. Small 
14C and modest 3H KIE values were interpreted as transition states dominated by SN1 

character, with significant participation of the attacking water (or hydroxyl ion) nucleophile 

with catalytic site crowding to prevent out-of-plane freedom for the 3H atom, resulting in 

small 3H KIE values on the enzyme but large ones in solution. Dissociated transition states 

with ribocation character generate an anionic leaving group that requires neutralization for 

efficient departure from the transition state. Leaving group neutralization was proposed by 
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N7 protonation. Thus, an elevated pKa and protonation at N7 described part of the transition 

state for the AMP nucleosidases, suggesting formycin 5′-phosphate as an inhibitor (Figure 

5).

3.4. Formycin 5′-Phosphate as a Transition State Analogue

Formycin 5′-phosphate was proposed as a transition state analogue for AMP nucleosidase 

based on kinetic, KIE, and substrate specificity studies.42 pKa profiles suggested an 

ionizable enzyme group (R1, pKa 6.2) to be the proton donor for N7 at the transition state.37 

Formycin (7-amino-3-(β-D-ribofuranosyl)pyrazolo-(4,3-d)-pyrimidine) is a natural product 

isolated from culture media of Nocardia interforma.43 It is phosphorylated in mammalian 

cells and can be readily converted to the 5′-phosphate by chemical phosphorylation.44 

Formycin 5′-phosphate gave a dissociation constant of 43 nM for the A. vinelandii AMP 

nucleosidase compared to a Km of 120 μM for the AMP substrate, a factor of 2800 tighter 

binding for the analogue (Figure 5).44 The crystal structure of the E. coli AMP nucleosidase 

with formycin 5′-phosphate at the catalytic sites revealed Asp428 to be responsible for 

protonation of N7 in a bidentate interaction between the N6 amino group and N7 (Figure 3). 

The reaction is completed by water addition to the ribocationic transition state; however, no 

catalytic water was observed in the crystal structure nor is there a nearby catalytic base to 

assist water ionization toward an attacking hydroxide ion.35 Formycin analogues have 

provided useful mechanistic tools but have not found use as antibiotics or antimetabolites.

4. ADENOSINE DEAMINASE

4.1. Function and Deficiency

Adenosine deaminases catalyze the hydrolytic conversion of adenosine (and other 6-

substituted purine ribosides) and their 2′-deoxy-counterparts to the 6-oxypurine ribosides. 

Genetic deficiency of human adenosine deaminase causes severe combined immune 

deficiency leading to infections and death in the first years of life.45–47 Lack of adenosine 

deaminase (less than 1% of normal) causes accumulation of 2′-deoxyadenosine in the blood, 

enzymatic conversion 2′-deoxyATP in rapidly dividing cells of the immune system, errors in 

DNA replication, and active repair processes leading to p53 activation and apoptotic cell 

death.48 The preferred treatment is compatible bone marrow (stem cell) transplant, and a 

secondary treatment can be accomplished by enzyme replacement therapy with stabilized 

adenosine deaminase constructs to remove 2′-deoxyadenosine from the circulation.49 

Transition state analogue inhibitors of human adenosine deaminase have been used as 

anticancer agents because of the high specificity of adenosine deaminase deficiency for 

rapidly dividing cells of the immune system. In addition, many 6-amino purine nucleoside 

antimetabolites used as anticancer agents are susceptible to inactivation by the action of 

adenosine deaminase, and their use in combination with 2′-deoxycoformycin prevents 

inactivation by deamination.

4.2. Mechanism and Structure

The catalytic mechanism of adenosine deaminase was first proposed to be a two-step C6 

hydrolytic mechanism with the discovery that 6-amino, 6-Cl, and several other 6-

substituents could be hydrolyzed from purine ribosides with a common rate-limiting step 
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(Figure 6).50,51 The mechanism was confirmed by the NMR finding that an equilibrium 

existed between adenosine deaminase and [2-13C]-and [6-13C]purine ribosides where the 

hybridization of C6 changed from sp2 to sp3 on the enzyme as a result of a new bond to 

oxygen or sulfur.52 Thus, the enzyme is capable of reversibly adding to the C6 of the purine 

base nucleoside, also supported by the solvent exchange of H2
18O into the O6 of inosine.53 

Earlier kinetic isotope effect studies demonstrated an unusual, large inverse solvent isotope 

effect for the deamination of adenosine, and this was interpreted as protonation of N1 by a 

Cys group to form a thiol anion at an early step in the mechanism, in coordination with 

addition of the hydroxyl group at C6, part of the sp2 to sp3 rehybridization.54 At the time 

the involvement of Zn2+ at the catalytic site was not known, making the thiol active site 

contact a logical hypothesis. The first crystal structure of an adenosine deaminase (mouse) in 

complex with 6-hydroxyl-1,6-dihydropurine ribonucleoside, a transition state analogue, 

revealed that the catalytic site contained a tightly bound zinc cofactor also chelated to the 

6R-hydroxyl group isomer of the transition state analogue (Figure 7).55 The structure 

explained the inverse solvent isotope effect reported earlier, as metal-based ionization of 

water prior to nucleophilic addition also generates an inverse solvent isotope effect.56 No 

Cys groups are near the catalytic site, including the chelation sphere of the Zn2+. Three His 

nitrogens, a carboxylate oxygen, and the 6-hydroxyl group of the bound intermediate 

complete the coordination complex.

4.3. Coformycins

Two natural product transition state analogues for adenosine deaminase, coformycin (1) and 

2′-deoxycoformycin (2), have been isolated from culture media of Streptomyces 
antibioticus, N. interforma, and Streptomyces kaniharaensis SF-557 (Figure 8).57–59 The 

same cultures that produce formycin also produce coformycin, hence the name. Their 

structural determination, characterization as inhibitors of adenosine deaminase, and 

chemical synthesis were completed within a few years of the initial discovery. Dissociation 

constants for human adenosine deaminase with 2′-deoxycoformycin (pentostatin) and 

coformycin have been reported to be 2.5 and 10 pM, respectively, matching the 4-fold 

difference in affinities for adenosine and 2′-deoxyadenosine.60–62 On the basis of the 

original observations that adenosine deaminase deficiency causes severe combined 

immunodeficiency disease (both B and T cells), pentostatin was entered into clinical trials 

for a variety of lymphoid malignancies.63–66 Strong responses have been observed in 

chronic lymphocytic leukemia (CLL), but even more impressive responses are observed with 

the relatively rare hairy cell leukemia (HCL). Treatment with pentostatin causes adenosine 

and 2′-deoxyadenosine to accumulate in the blood with specific accumulation of dAMP and 

dATP in lymphocytes, where high expression of deoxycytidine kinase mistakenly converts 

2′-deoxyadenosine to dAMP which accumulates as dATP because of low expression of 5′-

nucleotidase activity in these rapidly dividing cells.67 The expression of enzymes causing 

dATP accumulation provides the cancer cell specificity.68

The picomolar binding affinity of the coformycins with adenosine deaminase permits atomic 

dissection of the energy of binding by inhibitor analogues. Changing the stereochemistry of 

the 8-R hydroxyl center to the 8-S configuration reduces the binding affinity by 9.8 kcal/

mol.69 Deletion of the HN CH=N group from the 7-membered ring decreases binding by 7 
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kcal/ mol, and deletion of the 2′-deoxyribose group decreases binding by 8.5 kcal/mol.70 

Wolfenden has interpreted these large energy changes as “Cooperativity is so great that 

every substituent must be in exactly the right position, or the consequent losses in binding 

affinity may be catastrophic”. In other words, binding of the transition state analogue must 

reflect faithfully all of the interactions involved in the actual transition state. PfADA, but not 

human ADA, accepts 5′-substituents, providing species specificity for these inhibitors (3–6; 

Figure 8).

Coformycin and 2′-deoxycoformycin are equipotent for bovine, human, and P. falciparum 
adenosine deaminases. Both compounds are slow-onset, tight-binding inhibitors with 

dissociation constants of 60–110 pM (Figure 8). The similar inhibitory properties suggest 

similar transition states for these enzymes, verified by the isotope effect studies detailed 

below.

4.4. Adenosine Deaminase Transition State Structures

Transition state analysis for the adenosine deaminases compared enzymes from human, 

bovine, and P. falciparum sources. Kinetic isotope effects were measured for the reaction 

center at C6, N1, and the exocyclic N6 amino group. All of the enzymes catalyze 

nucleophilic aromatic substitutions (SNAr transition states) where the essential N1 

protonation is partial and the bond order to the attacking Zn2+-activated hydroxyl group is 

nearly complete. A defining difference for these transition states is the extent to which N1 

protonation is complete.71 Transition states for P. falciparum, human, and bovine enzymes 

have N1–H bond lengths of 1.915, 1.550, and 1.275, respectively, at their transition states. 

Molecular electrostatic potential maps indicate that all of these transition states are similar in 

geometry and charge to the coformycins (Figure 9).

5. NUCLEOSIDE HYDROLASES

5.1. Biological Function

The nucleoside hydrolases are a broadly distributed family of purine and pyrimidine N-

ribosyl hydrolases found in single-cell organisms and plants but not in mammals.72–74 They 

form free nucleobases and ribose as products. The nucleosidases are found in protozoan 

parasites that cause human disease including Trypanosoma, Leishmania, and Giardia. They 

are thought to play a metabolic role by converting host nucleosides into nucleobases for 

salvage into the metabolic pools of the parasite.75–77 Protozoan parasites are purine 

auxotrophs, and purine salvage is essential to growth. Nucleoside hydrolases have been 

identified for all purine ribosides and have been proposed as antiparasitic targets. Targeting 

purine salvage is complicated by the presence of other purine salvage enzymes that may 

bypass nucleoside hydrolases.

The nucleoside hydrolases also act as antigens. Circulating antibodies to a Leishmania 
nucleoside hydrolase (called NH36) is a biomarker for infection. Immunization using this 

enzyme or its C-terminal fragment as antigens is protective in animal infections.78,79 

Transition state analogue inhibitors of the nucleoside hydrolases also show some efficacy 

against visceral leishmaniasis (L. chagasi) in animal models but with limited knowledge of 
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the mechanism of action.80 Mechanistic information and transition state analogue design for 

the nucleoside hydrolases has used the enzyme from a nonparasitic protozoan, Crithidia 
fasciculata, a biological model for Trypanosoma brucei (African trypanosomiasis) and 

Leishmania species (Leishmaniasis).81–83 The normal host for C. fasciculate is plant-feeding 

mosquitoes with transmission thought to be through plant-to-insect contacts.84 The 

nucleoside hydrolase from C. fasciculate (CfNH or IU-nucleoside hydrolase) hydrolyzes all 

naturally occurring purine and pyrimidine ribonucleosides with similar catalytic efficiencies. 

Others, for example the protozoan GI-nucleoside hydrolase, strongly prefer 6-oxypurine 

leaving groups, and the IAG-nucleoside hydrolase from T. brucei prefers these purine 

leaving groups. In contrast, AMP nucleosidase is specific for adenine, and purine nucleoside 

phosphorylase is specific for 6-oxypurine leaving groups.85

5.2. Transition State Analogue Design Features

Inhibitor design for the nucleoside hydrolases was initiated from the family of kinetic 

isotope effects obtained with specific labeled inosine molecules (Figure 10).86 Nucleoside 

hydrolases permitted extensive measurement of isotope effects and revealed some surprising 

features of the transition state. The N-ribosidic bond has a Pauling bond order of 0.2 at the 

transition state as indicated by the 15N9 and 14C1′ KIE values. The water nucleophile has 

very weak participation at 3 Å and defines an early transition state on an SN1 reaction 

coordinate. The relatively large α-KIE for 1′–3H confirmed the rehybridized C1′ toward 

sp2, and an increased out-of-plane mode gives rise to the large isotope effect. Surprisingly, 

the β-secondary 2′–3H KIE is as large as the α-effect, indicating dihedral orbital overlap 

(hyperconjugation) between the C2′–3H2 bond and the nearly vacant orbitals of the C1′–N9 

bond.41 The remote 5′–3H KIE is a surprising 5.1%, a binding isotope effect associated with 

the formation of the transition state. The effects are directional such that the collective 

modes of the C5–3H bonds exhibit more freedom of motion when bound than when in 

solution. This distortion also affects the nearby C4′–3H bond to give a small inverse isotope 

effect of −0.8%, indicating a more constrained bond vibrational environment for this atom. 

A catalytic site hydrogen bond to the 5′-hydroxyl group was proposed to be responsible for 

the binding isotope effect, a prediction later confirmed by crystallography (see below).

Nucleoside analogues with substituted purine or ribosyl rings are poor inhibitors of CfNH 

(Ki values of 2–44 mM compared to a Km of 0.38 mM).87 Transition state analogues were 

designed from the geometry and electrostatic potential maps of the transition state (Figure 

11).88 As individual features of the transition state were designed into analogues of the 

potential inhibitors, Ki values decreased from 380 μM for the substrate inosine by 4-fold for 

sp2 geometry in ribolactone, 38-fold for the ribocation effect, 120-fold for the ribocation and 

mimicry of the imidazole, 10 000-fold for the ribocation and a hydrophobic group as a 

purine analogue, 50 000-fold for the chemically stable immucillin-H incorporating the 

protonated deazapurine leaving group and the ribocation, and 150 000-fold for the combined 

sp2 reaction center, ribocation, hydrophobic group, and proton acceptor in the p-nitro group 

of p-nitrophenyl riboamidrazone. An isotope-edited resonance Raman study of CfNH in 

complex with the p-nitrophenyl riboamidrazone revealed enzyme stabilization of one 

resonance state. The p-nitrophenyl group is in the quinonoid form, and the exoribosyl 

nitrogen bonded to the C1′ of the ribosyl group is protonated, while that bound to the 
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phenyl group is not (Figure 11).89 The zwitterionic tautomer has a distributed cationic 

charge centered at C1′. The molecular electrostatic potential of p-nitrophenyl 

riboamidrazone bound to the catalytic site closely resembles that of the transition state.89

5.3. Nucleosidase Mechanistic Probe Substrate

The transition state of CfNH demonstrated that N7 protonation of the purine leaving group 

occurs prior to transition state formation.86 The pKa of this group increases as the C1′–N9 

ribosidic bond is lost, and transition state analysis does not indicate if N7 protonation is an 

early or late event with respect to formation of the transition state or if protonation is from a 

catalytic site proton donor. Substrate specificity studies were designed to test the effects of 

leaving group protonation on CfNH compared to five additional purine/pyrimidine N-

ribosyltransferases (Table 1). Synthesis of p-nitrophenyl β-D-riboside and p-nitrophenyl β-D-

riboside 5′-phosphate provided the test substrates.91 They permit analysis of leaving group 

activation at the enzyme catalytic sites. If the test enzyme achieves the transition state 

through protonation of the leaving group, p-nitrophenyl β-D-riboside is predicted to be a 

poor substrate, as the leaving group cannot be additionally activated by protonation. If the 

test enzyme achieves the transition state through formation of the ribocation or by enforced 

participation of the nucleophile, p-nitrophenyl β-D-riboside will be an excellent substrate, as 

the p-nitrophenyl leaving group is highly activated. N-Ribosyltransferases use three 

mechanisms to achieve the transition state: leaving group activation (e.g., protonation of the 

N7 of purines), formation of the ribocation transition state, and activation of the attacking 

nucleophile (water in CfNH and phosphate in phosphorolysis reactions). In this analysis the 

broad-specificity CfNH and LmNH the only excellent catalysts for p-nitrophenyl β-D-

riboside, indicating its transition state formation occurs by ribocation activation. With 

inosine as substrate for CfNH, one proton donor and one proton acceptor (pKa values 9.1 

and 7.1) are required for catalysis. Hydrolysis of p-nitrophenyl β-D-riboside shows no 

required proton donors or acceptors in the pH profiles, appropriate with the activated leaving 

group. The transition state structure showed weak participation of the water nucleophile, 

establishing ribocation formation as the primary force for transition state formation in CfNH 

and LmNH but not for the other enzymes.

5.4. Structural Analysis with a Transition State Analogue

The catalytic sites of NHs have been characterized crystallo-graphically to determine the 

mechanism of water activation and leaving group proton donor and to explore enzymatic 

contacts that could be involved in stabilization of the ribocationic transition state.92–95 p-

Amino-phenyl-iminoribitol (pAPIR) was used as the catalytic site ligand for CfNH. The 

transition state analogue is held in proximity to the catalytic water nucleophile. This water is 

in contact with a tightly bound catalytic site Ca2+ ion (Figure 12). The Ca2+ ion is 

coordinated to the 2′-and 3′-vicinal hydroxyl groups of the iminoribitol, oxygen atoms from 

Thr126, Asp242, and Asp10, and both side chain oxygens of Asp15 to complete an 

octahedral coordination with all contacts at 2.6 Å or less. The Ca2+ copurifies with the 

enzyme and is sufficiently tightly bound that catalytic assays in the presence of 10 mM 

EGTA are not inhibitory, although the Ca2+ can be removed by more extensive treatments 

and can be replaced.96 The water molecule is in favorable geometry for catalysis, 3.2 Å from 

the carbon analogous to the C1′ anaomeric carbon of normal substrates (Figure 12). 
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Protonation of the leaving group was not an essential feature of the catalytic site, but 

transition state analysis indicated N7 protonation does occur at the transition state, implying 

protonation from solvent. The crystal structure shows no candidate ionizable groups near the 

leaving group pocket, consistent with the leaving group analysis. The KIE analysis of CfNH 

indicated binding distortion at C5′, an interaction that may be involved in formation of the 

ribocation. A 2.5 Å strong hydrogen bond between Glu166 and the 5′-hydroxyl group 

places the 5′-oxygen 2.7 Å from the position corresponding to the O4′-ring oxygen of 

ribose. Forcing two electron-rich oxygens close together destabilizes the ribosyl group 

toward the ribocation. This interaction requires anchoring of the ribosyl group, clearly 

provided by the Ca2+ interaction with both ribosyl vicinal hydroxyl groups together with 

hydrogen bonds from Asp14, Asp242, and Thr126 (Figures 12 and 13).

Transition state analysis for CfNH is summarized by formation of the ribocation by 

neighboring group interaction between the O5′ and the O4′ oxygens of a tightly tethered 

ribosyl, no significant leaving group assistance, and ionization of the attacking water 

nucleophile by a 2.4 Å contact with the Ca2+ ion. The nearby Asp10 acts as a proton 

acceptor from the water. The reaction is formally a nucleophilic displacement, but the 

nucleophilic attack lags behind N-ribosidic bond breaking, as the transition state analysis has 

the water nucleophile at 3 Å in agreement with its crystallographic position (Figures 12 and 

13).

5.5. Transition State Specificity for Isozymes

CfNH and LmNH are outliers in the leaving group activation scale (Table 1). In the IAG-

nucleoside hydrolase from Trypanosoma vivax (TvNH), leaving group protonation is 

implicated.97 The catalytic site Ca2+ binding is similar to CfNH, but instead of the weakly 

interacting groups at the purine/ pyrimidine leaving group site, TvNH has the purine leaving 

group in a hydrophobic stack with a pair of tryptophan residues, Trp83 and Trp260 (Figures 

13 and 14). This interaction is proposed to favor electron donation into the leaving group, 

raising the pKa to permit protonation by solvent. On the basis of the relative reactivity of p-

nitrophenyl β-D-riboside with the nucleoside hydrolases, it is clear that the Trp pair plays a 

more important role in leaving group activation for TvNH than in CfNH.

Leaving group interactions are also reflected in transition state analogue specificity. 

Transition state analogues with a hydrogen-bond pattern of the appropriate purine leaving 

groups are good inhibitiors of CfNH and TvNH.98 Both CfNH (IU-NH in Figure 15) and 

IAG-NH bind tightly to ImmH, as both enzymes accept inosine as substrates (hypoxanthine 

leaving group), to give Kd values of 42 and 24 nM. Loss of the 2′-OH is more detrimental to 

CfNH (IU-NH) than to IAG-NH, where more of the transition state interaction comes from 

the leaving group activation. Thus, 2′-deoxy-ImmH binding decreases affinity by >1000-

fold for IU-NH but only 27-fold for IAG-NH. In contrast, the leaving group interactions for 

IAG-NH make binding of the 4-amino-1-naphthalenyl-iminoribitol >2100-fold weaker for 

IAG-NH but only 10-fold weaker for IU-NH.
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5.6. Nucleoside Hydrolases as Drug Targets

Studies using a family of transition state analogues against the bloodstream form of T. brucei 
brucei indicated that nucleoside hydrolases are not essential.99 RNA interference to inhibit 

expression of IAG-NH, IG-NH, and methylthioadenosine phosphorylase did not induce 

purine starvation. Nucleoside hydrolases have provided a thorough understanding of reaction 

mechanism, transition state structure, reaction coordinate motion, and design of transition 

state analogues but are not suitable drug targets in the Trypanosoma. Parallel studies with a 

broader range of protozoan parasites have yet to be completed, but the essential nature of 

purine salvage appears to have forced the evolution of multiple salvage pathways, making 

the targeting of a single enzyme a difficult drug design strategy. Each organism has distinct 

pathways, and in some important parasites, including P. falciparum, there are metabolic steps 

related to purine salvage that can be used as suitable drug targets (see below).100–102

6. BACTERIAL ADP-RIBOSYLATING TOXINS AND THEIR TRANSITION 

STATES

6.1. Introduction

Bacterial toxins are responsible for disease symptoms when invading bacteria are induced to 

produce the damaging toxins.103–105 Several bacterial toxins work by a common chemical 

mechanism, the ADP-ribosylation of regulatory G-proteins using NAD+ as an ADP-ribosyl 

donor. Covalent modification of G-proteins causes loss of function, leading to damage 

and/or death of affected cells. Cholera, diphtheria, and pertussis toxins are produced by 

Vibrio cholerae, Bordetella pertussis, and Corynebacterium diphtheria to cause intestinal 

cholera, whooping cough, and diphtheria.106–108 The bacterial exotoxins disrupt G-protein 

signaling to cause cell death. The common toxic mechanism for these agents is mono-ADP-

ribosylation of specific amino acids in Gsα, eEF-2, and Giα proteins, respectively, by the 

catalytic A chains of the toxins once they have entered the target cells.109 In the absence of 

acceptor proteins, these toxins also act as NAD+ N-ribosyl hydrolases. The same NAD+ 

hydrolytic reaction can be accomplished by nonenzymatic chemical solvolysis providing the 

opportunity to compare transition state structures of solution chemistry with those formed by 

enzymes in hydrolase or transferase reactions, Figure 16.110–112

6.2. Synthesis of Labeled NAD+ Molecules

All ADP-ribosylation reactions involve the transfer of the ADP-ribosyl group from NAD+ to 

yield the ADP-ribosylated receptor protein and nicotinamide. Understanding the transition 

state structures of the ADP-ribosyltransferases requires kinetic isotope effect analysis from 

the NAD+ reactant. Isotopic labels are needed in the same positions as indicated for other N-

ribosyltranserases. Synthesis of isotopically labeled NAD+ molecules is a parallel approach 

to the synthesis of labeled ATP and its derivatives (Figure 2). Synthesis of NAD+ proved 

more challenging because of its relative instability. With care, yields of NAD+ with the 

desired labels can exceed 90% from the limiting starting isotopic label (Figure 17A).113
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6.3. Cholera Toxin

The slow hydrolysis of NAD+ (kcat= 8 min–1) catalyzed by cholera toxin in the absence of 

the Gαi protein has been studied to characterize the hydrolytic transition state.114 Kinetic 

isotope effects support an asymmetric, dissociative transition state with the bond to the 

leaving group nicotinamide nearly broken (2.16 Å) and even weaker participation of the 

attacking water nucleophile at >3.0 Å (Figure 17B). The ribocationic transition state 

generated a large, normal KIE of 18.6% from [1′–3H]NAD+, indicating increased out-of-

plane modes. Small KIEs are anticipated from [1′–14C]NAD+ in a dissociative mechanism, 

and the value of 3% is consistent with low remaining bond order to the leaving group. Water 

is not the preferred nucleophile for this reaction, and it is not surprising that its participation 

is not enforced with a distance of >3.0 Å at the transition state. Despite the remote location 

of the water nucleophile, it is a specific interaction, as methanolysis does not occur with the 

reaction enforced by cholera toxin.

6.4. Pertussis Toxin

Isotope effect experiments with pertussis toxin were designed to compare the nature of the 

transition states formed by the enzyme in the absence (hydrolytic reaction) and presence of 

the thioate nucleophile from the Gαi3 protein.115,116 The toxin is active with the N-terminal 

20 amino acids of the G-protein, where the nucleophilic thioate anion is 4 amino acids from 

the N-terminal. The KIE values and the transition state for the hydrolysis reaction catalyzed 

by pertussis toxin were similar to that for cholera toxin (Figure 17). When the nucleophile 

from the G-protein peptide is present, the KIE values are altered. Thus, the KIE for [1′–
14C]NAD+ changed from 2% for hydrolysis to 5% for ADP-ribosyl transfer to the Cys 

nucleophile. Transition state analysis indicated an earlier transition state with the C1′ to N1 

leaving group decreasing from 2.14 to 2.07 Å and the attacking nucleophile also 

demonstrating increased participation at the transition state, increasing from >3.0 Å for 

hydrolysis to 2.47 Å for the attack of the thioate nucleophile (Figure 17). Contacts at the 

enzyme catalytic site in the ternary complex are more optimized, with improved activation 

of the leaving group and increased participation of the peptide nucleophile.

6.5. Diphtheria Toxin

The nucleophile targeted for ADP-ribosylation by diphtheria toxin is a post-translationally 

modified histidine in eukaryotic elongation factor 2 (eEF-2) called diphthamide (Figure 15).
117 The transition states for hydrolysis of NAD+ and ADP-ribosylation of eEF-2 by 

diphtheria toxin are similar to those for cholera and pertussis toxins by being dissociative 

with strong ribocation character at the transition state and by becoming earlier in the 

presence of the protein nucleophile.118,119 In the case of diphtheria toxin, the transition 

states were determined for the hydrolytic reaction and full-length eEF-2 isolated from bakers 

yeast.120 Increased nucleophile participation at the transition state is apparent in the primary 

KIE values. For the hydrolytic reaction, the [1′–14C]NAD+ KIE was 3.4% and increased to 

5.5% for ADP-ribosylation of eEF-2. Analysis of these and other isotope effects indicated a 

weak bond of 2.64 Å to the leaving group at the hydrolysis transition state, changing to 1.99 

Å in the presence of eEF-2. The main effect is on leaving group activation, as the water and 

diphthamide nucleophiles are at similar distances of 2.45 and 2.58 Å, respectively, at the 
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transition states. This difference has been speculated to be caused by activation of the 

nicotinamide group from a decreased dielectric of the leaving group pocket.

6.6. Nucleophilic Displacement by Electrophile Migration

Transition state analysis from KIEs yields a two-state comparison between reactant and 

transition state, with no information about intervening or following chemical steps.121 

However, it is of interest that in many N-ribosyltransferases the transition states are similar 

with low Pauling bond order to the leaving group and even lower bond order to the attacking 

nucleophile. In these mechanisms, the leaving group and the nucleophile are relatively fixed 

by the enzymatic architecture during the reaction coordinate. Enzymatic interactions 

generate the ribocation and the C1′ anomeric carbon migrates 1.8–2.1 Å between the 

leaving group and the nucleophile.122–125 Crystallographic evidence from reactants, 

transition state analogues, and products at the catalytic sites of these enzymes also supports 

the anomeric carbon migration. The mechanism has been termed “nucleophilic displacement 

by electrophile migration” based on the chemical formality of nucleophilic displacement 

evidenced by the inversion of configuration, with the electrophile migration referring to the 

excursion of the ribocation between the leaving group and the nucleophile. An interesting 

point for the electrophile migration mechanism in the context of the ADP-ribosylating toxins 

is that it permits a wide variation of pKa values between the leaving group and the 

nucleophile. These asymmetric transition states permit formation of highly reactive 

ribocations that will react with nucleophiles of different chemical reactivity. For the NAD+-

based ADP ribosyltransferases discussed here, the nucleophile diversity includes water, Arg, 

Cys, and diphthamide. In other enzymes it includes the N1 of adenosine in CD38, the N1 of 

ATP in the ATP-phosphoribosyltransferase, and carbonyl oxygens in the Sirtuins.126–128 

This concept will be revisited in the phosphorylase reactions of section 12.

6.7. Transition State Design for ADP-Ribosylating Toxins

The transition states of ADP-ribosylating toxins share common features of a nicotinamide 

leaving group approaching neutral charge as the N-ribosidic bond breaks, a ribocation, and a 

long bond between the ribocation and the leaving group. In all cases, the participation of the 

nucleophile is weak. It was hypothesized that transition state analogues might be synthesized 

with similar characteristics to mimic these transition states (Figure 18.).129

6.7.1. Inhibitor Synthesis.—Potential inhibitors were synthesized using the strategy of 

Figure 19. Although ADP-ribosylating toxins, phosphorylases, and nucleoside hydrolases all 

proceed through ribocation transition states, transition state analogue affinities are 

proportional to the enzyme-enforced rate enhancements according to the Wolfenden 

proposal.3,4 Transition state analogue design may be challenging for the ADP-ribosylating 

toxins because of the relatively small k /k ratio and the relatively weak binding of the NAD 

substrate. In the nucleoside hydrolases, rate enhancements are estimated to be around 1012, 

while for NAD+ hydrolysis and ADP-ribosylation, enhancements are 3–6 orders of 

magnitude smaller at 106–109. These considerations raised concern that even though 

transition state analysis provides novel insight to catalysis poor catalysts may resist efforts to 

design tight-binding transition state analogues.
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6.7.2. Cholera Toxin Inhibitors.—Inhibitors 1 and 2 (Figure were tested as potential 

transition state analogues against cholera, pertussis, and diphtheria toxins for both the NAD+ 

hydrolytic reaction and the ADP-ribosylation reactions.129 Cholera toxin binds NAD+ with a 

Km value of 10.8 mM for the hydrolytic reaction. Inhibitors 1 and 2 gave Ki values of 17.4 

and 32.7 μM, respectively. Therefore, they give Km/Ki values of 620 and 330 relative to 

NAD+. Although these are impressive ratios, suggesting capture of transition state features, 

the relatively high Km values for NAD+ make the absolute inhibition constants rather modest 

compared to the nanomolar inhibitors described above and the picomolar to femtomolar 

constants to be discussed below. In the presence of O-methyl-arginine as an ADP-ribosyl 

group acceptor, the Km value for NAD+ decreased to 4.7 mM and inhibitors 1 and 2 also 

bound tighter at 10.9 and 23.6 μM, respectively, to give Km/Ki values of 431 and 200 relative 

to NAD+. The ribocationic character of the 3-hydroxypyrrolidine analogues apparently 

generates binding affinity because of their similarity to the transition state. However, the 

catalytic activity of cholera toxin for hydrolysis and transfer to O-methyl-arginine is slow, at 

8.7 and 20.0 min–1, providing a limited kcat/kchem target for tight binding of transition state 

analogues. The cholera toxin system deserves additional study with these inhibitors, as the 

Km values for NAD+ in this in vitro system are unlikely to be functional in vivo, where other 

activating factors are known to interact with cholera toxin for catalytic activation.130–132 

Increased catalytic function is likely to enhance the interaction of transition state analogues.

6.7.3. Pertussis Toxin Inhibitors.—Pertussis toxin binds NAD+ with a Km value of 19 

μM for the hydrolytic reaction.115,129 Inhibitors 1 and 2 gave K values of 24.4 and 39.7 μM, 

respectively. Therefore, they give Km/Ki values of 0.78 and 0.48 relative to NAD+. The 

relatively low Km value for NAD+ makes these micromolar inhibition constants near 

equivalent when compared to the binding of substrate. Additional studies are needed to 

design effective transition state analogues for pertussis toxin, as there are no reports of 

inhibitiors for the ADP-ribosylation of G-protein inhibitory peptides or for reaction with the 

intact Gαi3 protein. Surprisingly, the ribocationic character of the 3-hydroxypyrrolidine 

analogues does not contribute to binding as transition state analogues in the case of in vitro 

action of pertussis toxin. Synthesis and testing of the iminoribitol analogues of 1 and 2 

(Figure 19) would add information relative to the 2-hydroxyl group and placement of the 

ribocation mimic.

6.7.4. Diphtheria Toxin Inhibitors.—Diphtheria toxin gives a Km value of 85 μM for 

the hydrolysis of NAD+ and a slow reaction of 0.11 min−1.133 Diphtheria toxin is much 

more active for diphthamide ADP-ribosylation of yeast eEF-2, increasing the reaction rate 

1650-fold to 182 min−1.134 Inhibitors 1 and 2 (Figure 19) gave Ki values of 48.2 and 32.9 

μM, respectively, for the hydrolysis of NAD+, slightly better inhibitors than NAD+ is a 

substrate. They give Km/Ki values of 1.8 and 2.6 relative to NAD+. The Km value for NAD+ 

decreases to 6 μM in the presence of eEF-2, but the Ki values for inhibitors 1 and 2 do not 

decrease in proportion with Ki values of 30.5 and 19.1 μM, respectively. Therefore, the 

Km/Ki values are 0.2 and 0.3 for the inhibitors relative to NAD+. Transition state analogues 

are anticipated to exhibit increased binding as the reaction rate increases, a property not seen 

with diphtheria toxin. No other transition state analogues have been explored for this toxin, 
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although there are reports of inhibition of uptake by amine compounds and semicarbazoles.
135–137

Because catalytic rate enhancements by the bacterial exotoxins are small, transition state 

analogues do not capture large energies of activation.129 Although Km/Ki values are large for 

cholera toxin, the weak binding of NAD+ results in rather weak (micromolar) affinities for 

the putative transition state analogues. In the cases of diphtheria and pertussis toxins, the 

transition state analogues bind with approximately the same affinity as substrates, suggesting 

modest transition state stabilization. Additionally, diphtheria and pertussis toxins may 

catalyze ADP-ribosyl transferase reactions from ground state destabilization by increasing 

the activation of the already activated nicotinamide leaving group while making the ADP-

ribosyl receiving nucleophile the nearest reactive atom to capture the ribocation formed by 

nicotinamide loss. Although the original goals of transition state analogue design to block 

toxin action have not been accomplished, the transition state analysis of three ADP-

ribosylating toxins establishes the mechanistic features of their transition states.

7. RIBOSOME-INACTIVATING PROTEINS

7.1. Ricin A-Chain

Among the most toxic of all natural products are the plant-derived ribosome-inactivating 

proteins, typified by ricin.138–140 The notoriety of ricin as a toxin was enhanced when the 

KGB used it to assassinate the Bulgarian dissident and defector Georgi Markov at a bus stop 

in London in 1976.141–143 Ricin is composed of a membrane-penetrating B-chain and a 

catalytically active A-chain. The subunits are linked by disulfide bonds that are reduced as 

the AB-toxin complex travels from the membrane by retrograde transport to the golgi and 

the cytosol where the reduction of disulfide bonds releases the catalytically active ricin A-

chain.144 Its physiological substrate is functional eukaryotic ribosomes where it hydrolyzes a 

single adenine by base excision from the ricin–sarcin loop of 28 S rRNA (position 4324 in 

rat rRNA).145,146 Adenine depurination from the 5′-GAGA-3′tetraloop modifies the binding 

site for eEF-2 and destroys the catalytic function of the ribosome. The A-chain of ricin has 

been linked to antibodies that recognize specific cancer cell types.147–150 Delivery kills the 

target cancer cells, but the efficacy of this therapy is limited by toxic side effects of ricin A-

chain that remains in the circulation and/or is released from cancer cells undergoing toxin-

induced cell death.151–153 Transition state analogue, inhibitors of ricin A-chain could be 

used as rescue agents to prevent circulating ricin A-chain from causing cell lysis in the 

vascular bed.

7.1.1. Ricin A-Chain Transition State Structure.—Kinetic isotope effects on the 

hydrolysis of a small 10mer stem– tetraloop oligonucleotide substrate with isotopic labels 

incorporated specifically into the target adenine (bold) of the 5′-CGCGAGAGCG-3′ stem 

loop established the mechanism of the reaction as DN*AN, with a ribocationic, highly 

dissociative transition state (Figure 20).154 Small stem–loop DNA structures are also 

substrates, and KIE measurements with the same sequence of DNA altered the KIE values, 

but the reaction stayed within the general description of the DN*AN mechanism.155
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7.1.2. Inhibitor Design and Synthesis for Ricin A-Chain.—Inhibitors were 

designed and synthesized to mimic the stem–loop substrate. Alterations toward the transition 

state included replacing the substrate adenylate with a hydroxypyrrolidine mimic of the 

ribocation in an N1′-methylene bridge to 9-deazaadenine placed at the depurination site in 

tetraloops of varied length (Figures 21 and 22).156,157 An abasic, 14mer construct inhibited 

ricin A-chain with a Kd of 480 nM (1N-14, Figure 22). Filling the catalytic site with adenine 

improved binding of IN-14 to 12 nM, demonstrating the benefit of the adenine in 

combination with the transition state ribocation mimic.158 A stem–tetraloop inhibitor was 

synthesized that incorporates a methylene-bridged hydroxypyrrolidine (1-a zasugar mimic, 

namely, (3 S,4 R )-3-hydroxy-4-(hydroxymethyl)pyrrolidine) to a 9-deazaadenyl group to 

mimic the N7-protonated leaving group at the transition state (Figure 21). The 240 nM 

inhibition constant for the 9-deazaadenyl 14mer (DA-14) was improved to 26 nM in a 

construct with a phenyl-substituted inhibitor with a 2′-deoxyguanosine-nucleoside placed 5′ 
to the depurination site (Figure 22). This molecule is the tightest binding inhibitor reported 

for ricin A-chain. Important features of these molecules are their ribocation mimics and the 

increased pKa at N7 of the adenine leaving group, both properties of the transition state. The 

phenyl-substituted molecule combines the ribocation mimic with a planar hydrophobic 

substituent replacing the adenine leaving group, suggesting a complimentary hydrophobic 

feature at the leaving group pocket.

7.1.3. Structure of Ricin A-Chain with a Transition State Analogue.—The value 

of hydrophobic interactions at the catalytic site only became apparent when the crystal 

structure of ricin A-chain was solved with a covalently circularized stem– loop transition 

state analogue at the catalytic site (Figure 23).160,161 Ricin A-chain structures with 

fragments or single nucleotides at the catalytic site did not induce the full architecture 

revealed by the transition state analogues.162–166 The adenine leaving group is sandwiched 

between two tryosine groups. The nearby Arg has the effect of favoring protonation of the 

adenine leaving group. The results of these mechanistic, transition state, inhibitor design, 

and structural studies made ricin A-chain the best-understood ribosome inactivation protein. 

In vitro, the ricin A-chain has an unusual pH optimum of pH 4.0 and is nearly inactive at pH 

7. The KIEs and transition state analysis were conducted at pH 4.0. Inhibitors functioned 

well as stem–loop RNA competitors at low pH but did not bind to the enzyme at 

physiological pH values. The inhibitors did not protect rabbit reticulocyte ribosomes from 

ricin A-chain inactivation under physiological conditions evaluated by protein translation 

assays.

7.2. Saporin L3

A screen of other ribosome-inactivating proteins that might be susceptible to inhibitors 

designed for ricin A-chain led to the development of saporin L3, a poorly understood leaf 

form of a ribosomal-inactivating protein from Soapwort plants and earlier known as saporin 

L1.167–169 Other isozymes of saporin, especially saporin-6, have been used as a toxic agent 

in antibody-targeted toxin therapy. Saporin L3 was found to be a superior agent in its 

catalytic action on mammalian rRNA and as a target for the development of transition state 

analogues as rescue agents.169–172 Characterization of saporin L3 demonstrated it to be a 

promiscuos RNA adenine depurinating enzyme.173,174 In addition to depurinating ribosomes 
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and rRNA, saporin L3 catalyzed the depurination of adenines in the GAGA tetraloop of 

short sarcin–ricin stem–loops and multiple adenines within eukaryotic rRNA, tRNAs, and 

mRNAs. The transition state structure of saporin L3 was solved in experiments similar to 

those used for ricin A-chain, except that the stem–loop RNA substrate (5′-

GGGAGGGCCC-3′) contained only a single A to prevent multiple depurinations in kinetic 

isotope effect experiments.175

7.2.1. Saporin L3 Transition State.—Despite catalysis of the same reactions and 

homology in ricin A-chain and saporin (30% identical), the transition states differ. Intrinsic 

kinetic isotope effects are a direct reflection of the environment at the transition states. Thus, 

the intrinsic 1′–14C KIE for the ricin A-chain-catalyzed depurination of RNA was 0.993, 

indicating a completely dissociated adenine leaving group with no significant participation 

of the attacking water nucleophile.154 The intrinsic primary 1′–14C KIE for saporin L3 

depurination is 1.052, less than expected for a fully developed SN2 mechanism, where the 

1′–14C KIE value can be as large as 1.14.175–177 The smaller α-secondary hydrogen KIEs of 

1.045 for saporin L3 compared to 1.163 for ricin A-chain also indicates a transition state 

with less dissociative character. Where does the bond order reside in the saporin L3 

transition state? The 9–15N KIEs report on the degree of N9-ribosyl bond breaking. The 

KIE values indicate a fully broken C–N bond at both TSs. Therefore, the attacking water 

nucleophile contributes to the bond structure of the transition state more in saporin L3 than 

in ricin A-chain. It is located 1.95 Å from the anomeric carbon of the adenine depurination 

site (Figure 24). The nucleophilic water is well defined in the crystal structure of saporin L3 

with a transition state analogue.161 The crystallographic water nucleophile is held in position 

by two 2.5 Å hydrogen bonds to a carboxylate oxygen of Glu174 and the carbonyl oxygen 

of Glu206 and is positioned 3.1 Å from the reaction center.

7.2.2 Saporin L3 Inhibitor Design.—Transition state analogues developed to mimic 

the ricin A-chain transition state were used as a starting point for design of inhibitors for 

saporin L3. Although the transition states differ in detail, they share ribocation character, 

leaving group protonation, and specificity for the RNA scaffold. The inhibitor cocrystallized 

with ricin A-chain and saporin L3 was a four-base cyclic, covalently closed RNA construct. 

Instead of the RNA stem, the RNA tetraloop mimic was closed with a cyclic oxime linker 

and contained a transition state analogue at the adenylate depurination site.160 Both DNA 

and O2′-methylated RNA versions were synthesized. With dissociation constants at 2.3 and 

3.9 nM, these are the highest affinity inhibitors reported for saporin L3 (Figure 25). The 

inhibitors act on purified saporin L3 at physiological Ph and also protect rabbit reticulocyte 

ribosomes against inactivation by saporin L3 at concentrations consistent with their 

nanomolar dissociation constants (see below).178

It is of interest to compare the electrostatic potential surfaces for the saporin L3 transition 

state to that of a small, linear transition state analogue construct of two backbone links with 

a transition state analogue linked to a protected guanosine group, a 3.3 nM inhibitor (Figure 

26). This construct lacks a stabilized tetraloop group and does not bind to ricin A-chain. The 

electrostatic potential surface reveals the similarity between the transition state structure and 

the inhibitor.175
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7.2.3. Saporin L3 Inhibitors Protect Ribosomes.—Inhibitors of saporin L3 were 

tested with an in vitro protein translation system using ribosomes from rabbit reticulocyte 

lysates. The 2-base saporin L3 inhibitor construct (Figure 26) was used. Saporin L3 at a 

concentration of 300 pM caused ∼90% inhibition of cell-free translation.178 Under the same 

conditions, varied concentrations of the inhibitor (Figure 26) were added to rescue protein 

synthesis by protection of the ribosomes from saporin L3. The inhibitor rescued protein 

synthesis with an EC50 of 36 ± 2 nM, consistent with protection by blocking the saporin L3 

catalytic site. This inhibitor also inhibited adenine release from purified 80S rabbit 

ribosomes with an IC50 of 7.8 ± 1.1 nM. The transition state inhibitors of saporin L3 are 

effective in preventing ribosome depurination and depurination of small nucleic acid 

substrates. No studies have yet been reported on the use of saporin L3 inhibitors in 

protecting cells or animals from the side effects caused by saporin L3.

8. PURINE PHOSPHORIBOSYLTRANSFERASES

8.1. Discovery and Biological Function

Kornberg, Lieberman, and Simms discovered and characterized 5-phosphoribosyl-α-D-1-

pyrophosphate (PRPP) in 1954 as the required ribosyl phosphate donor in the synthesis of 

pyrimidine nucleotides from orotic acid.179 The importance of purine salvage in humans via 

hypoxanthine-guanine phosphoribosyl-transferase became apparent with the discovery of its 

genetic deficiency as the cause of Lesch–Nyhan syndrome.180–182 Studies with Plasmodium 
species indicated an ability to synthesize pyrimidine nucleotides by de novo pathways but 

not purines, making exogenous purines essential nutrients.183 The pathway for purine 

salvage in P. falciparum was deduced by direct assay of the enzymes from extracts of 

cultured parasites, where the high activities of adenosine deaminase, purine nucleoside 

phosphorylase, and hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) 

supported a robust pathway for salvage of hypoxanthine.184 More recent studies have 

concluded that purine phosphoribosyltransferases provide an essential step for purine 

salvage in most purine auxotrophic protozoan parasites.185–187 On the basis of the nature of 

the transition states for the nucleoside hydrolases and purine nucleoside phosphorylase, 

transition state analogue candidates were synthesized and found to be powerful inhibitors of 

the enzymes from both P. falciparum and human sources.188,189 Crystal structures indicated 

catalytic site contacts essential for catalysis, including the catalytic site magnesium atoms 

required for catalysis in the HG(X)PRTs (Figures 27 and 28).190–192

8.2. Transition State Structures

The transition states for N-ribosyltransferases exhibit ribocation character with purine 

leaving groups activated by protonation at N7 of the purine ring.193 As the reaction of 

HGXPRT is freely reversible (hypoxanthine + PRPP ↔ IMP + PPi), the transition state can 

be reached from either direction. Analogues of IMP were synthesized with ribocation 

features of the transition state, similar to the targets described above. Immucillin-G 5′-

phosphate (ImmGP) was a 4.6 nM inhibitor of the HGPRT from human sources, binding 14 

000 times tighter than the dissociation constant for IMP.188 Considering the full catalytic site 

ensemble of two Mg2+ ions, PPi, and ImmGP finds 35 interactions at 2.8 Å or less. Thus, the 

inhibitor complex is highly immobilized, and dilution experiments show slow release of the 
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inhibitor from the inhibited complex.188 Of specific interest for the mechanisms of N-

ribosyltransferases is the interaction of Asp137 stabilizing the hydrogen bond to N7, as 

protonation of the leaving group is a common feature of these enzymes. Another significant 

interaction is the O5′ with the N4′ iminoribitol nitrogen at 2.7 Å. When nucleotides are at 

the catalytic site, the close O5′–O4′ distance constitutes a neighboring group interaction 

assisting formation of the ribocationic transition state.194

8.3. Iminoribitol Transition State Analogues

Immucillin-H 5′-phosphate and Immucillin-G 5′-phosphate were analyzed for P. falciparum 
HGXPRT and found to be 1 and 14 nM inhibitors, respectively. In the crystal structure of the 

P. falciparum HGPRT, Asp148 plays the role of N7 proton donor as does Asp137 in the 

human structure (Figure 28). In both human and P. falciparum enzymes, two Mg2+ ions form 

bidentate interactions with both phosphoryl groups of the PPi and bridge it to the ribosyl 

group by another bidentate interaction to the vicinal 2′,3′-hydroxyl groups of the 

nucleotide. In both enzymes, the transition state analogues are proposed to capture part of 

the tight interactions at the transition state. An unusually strong hydrogen-bond interaction is 

observed by the NMR chemical shift of the N7-Asp hydrogen bond. The chemical shift for 

this proton is detected in the enzyme–immucillinHP–Mg2+– pyrophosphate complexes for 

both human and P. falciparum enzymes. Downfield 1H signals at 13.9 (human) and 14.3 ppm 

(P. falciparum) have been assigned to the N7 protons of ImmHP hydrogen bonded to Asp148 

(Asp137 for the human enzyme) by 15N-edited proton NMR spectra using [7-15N]ImmHP.
188,191 Isotope-edited Raman and FTIR studies of the complex with enzyme–immucillinHP–

Mg2+–pyrophosphate found the 5′-phosphate to be dianionic and the pyrophosphate to be 

the fully ionized tetraanion.195 Mutagenic studies indicate that the Asp is important for 

catalysis but does not contribute significantly to substrate binding.196,197 Despite the tight 

binding of the ImmHP and ImmGP for their target enzymes, phosphate esters are not 

suitable drugs, as anions are membrane impermeable and phosphoesters are susceptible to 

hydrolysis.

8.4. Asymmetric Acyclic Nucleoside Bisphosphonate Inhibitors

The multiple phosphate binding sites in the catalytic sites of purine 

phosphoribosyltransferases have led to the synthesis of families of symmetric or asymmetric 

acyclic nucleoside bisphosphonates (ANbP) as inhibitors of human HGPRT and P. 
falciparum HGXPRT (Table 2).198–201 Compounds 1a and 20 are 30 and 6 nM inhibitors for 

the P. falciparum HGXPRT. When converted to the phosphoramidate prodrugs to permit 

cellular entry, the IC50 values for inhibition of P. falciparum growth in cultured erythrocytes 

were between 1.4 and 9.7 μM and showed low toxicity for human cell lines.200

What do these constants suggest for potential druggability of the compounds in Table 2? 

Inhibition of human HGPRT is not a major concern in the treatment of malaria, as only long-

term genetic deficiency of the enzyme leads to symptoms in humans. However, two other 

concerns are dissociation constants above 70 nM, making them weaker by factors of up to 

100 than transition state analogues (e.g., 2, Figure 29) for the same target. The phosphonates 

of Table 2 and Figure 29 suffer from the likely barrier to oral uptake from anionic 

compounds. Both will need prodrug chemistry to move them toward useful agents.
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8.5. Acyclic Aza-C-nucleoside Phosphonate-Substituted 9-Deazahypoxanthine Inhibitors

To maintain the cationic features of the transition state while eliminating the hydrolytic 

liability of the phosphate monoester, a family of acyclic aza-C-nucleoside phosphonate-

substituted 9-deazahypoxanthine inhibitors was synthesized. Five compounds had enzymatic 

Ki values at 10.6 nM or below, two of which are shown (Figure 29).189,202 A general 

synthetic scheme was devised to permit variation in the side chain length between the aza 

and the phosphonate groups, variation in the deazapurine and aza groups, and variation in 

substituents at asymmetric branching carbons between the aza and phosphonate groups 

(Figure 30). A remarkable feature of the compounds exemplified in Figure 29 is their 

specificity for the enzyme from P. falciparum relative to human HGPRT. Thus, of the five 

compounds with Ki values at 10.6 nM or below, two showed no inhibition of the human 

enzyme at 10 000 nM and the other three showed Ki human/Ki P. falciparum values of 350, 

462, and 585.189

8.6. Prodrugs of Acyclic Aza-C-nucleoside Phosphonate-Substituted 9-
Deazahypoxanthine

A prodrug approach to the acyclic aza-C-nucleosides as antimalarials has the goal of 

delivery to the parasite inside of host erythrocytes. Protecting groups should render the 

compounds membrane permeable with groups that are cleaved only when the compound 

enters the P. falciparum compartment. The approach was to protect with groups susceptible 

to the broad-specificity phospholipase C of P. falciparum while avoiding the narrow 

specificity of lipases A and D of the erythrocyte (Figure 31). A similar approach has been 

developed to enhance oral antiviral activity and reduce toxicity of alkoxyalkyl prodrugs of 

acyclic nucleoside phosphonate antivirals.203,204 Phosphonate groups are anionic at 

physiologic pH and are poorly adsorbed.205 The phosphonate inhibitors alone (Figure 29) 

showed no activity against cultured P. falciparum.

A prodrug strategy that has been used to increase the efficacy of the nucleoside 

phosphonates cidofovir and tenofovir was tested.206 The lysophospholipid addition allows 

for transfer through cellular membranes. Inside target cells, phospholipase C (PLC) activity 

cleaves the prodrug releasing the acyclic phosphonate inhibitor. This system is advantageous 

for targeting P. falciparum since the Ca2+-dependent PLC activity in erythrocytes displays a 

narrow substrate specificity for phosphorylated phosphoinositides, and a PLC with broad 

substrate specificity has been identified in P. falciparum.207–211 To protect the linear acyclic 

aza-C-nucleoside phosphonate inhibitor (Figure 29) using the lysophosphatidylcholine 

scaffold, phosphocholine is replaced by the acyclic aza-C-nucleoside phosphonate inhibitor, 

the sn2 hydroxyl is replaced with a hydrogen, and the sn3 ester linkage is replaced with an 

ether. These prodrugs demonstrated antiparasite activity against P. falciparum cultured in 

human erythrocytes.189 Metabolic studies demonstrated that treatment with these prodrugs 

prevented the incorporation of isotopically labeled hypoxanthine into parasites, establishing 

HGXPRT as the target.189,212

8.7. Biological Efficacy

Activation of compounds 5–8 (Figure 31) in cultured parasites generates anions that are 

trapped in the parasites. Incubation of treated parasite cultures with labeled hypoxanthine 
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after the inhibitors were removed prevented metabolic labeling. IC50 values for several of 

the prodrug constructs on three different strains of P. falciparum, including drug-resistant 

strains, gave similar IC50 values (∼3 μM). These values are well above the Ki of 10 nM for 

the parent compounds, suggesting additional optimization of the prodrug scaffold might be 

useful. These compounds have not yet been tested in animal models of malaria.

8.8. Structure of Pf HGXPRT with an Acyclic Aza-C Transition State Analogue

The crystal structure of Pf HGXPRT in complex with Mg2+, PPi, and an acyclic amino 

alcohol phosphonate showed how the acyclic transition state analogue could be tightly 

bound in the active site of Pf HGXPRT.189 The cationic amino group is near the position 

occupied by the ribocation in the proposed transition state. The cation is close to the 

pyrophosphate (2.8 Å; all distances are the average value from four monomers in the 

tetramer) to create a favorable ion pair. The methylene bridge linking the amino cation and 

9-deazahypoxanthine allows the deazapurine base to tilt 11° toward Phe197, a residue 

involved in aromatic ring stacking (Figure 32). The side chains of Asp148 (2.8 Å) and 

Lys176 (3.0 Å), the amide and carbonyl of Val198 (3.1 and 2.7 Å), and a structural water 

(2.6 Å) coordinated by magnesium are in hydrogen bonds with N7, O6, O6, N1, and N3 of 

the deazapurine,. The atomic spacing between the amino cation and the phosphonate group 

permits favorable and simultaneous inhibitor interactions with the magnesium 

pyrophosphate and the 5′-phosphate binding sites. The 5′-phosphonate interacts with 

neighboring residues similar to the phosphate of ImmHP bound to Pf HGXPRT (PDB ID 

1CJB). The side-chain residues of Tyr116 (2.6 Å), Thr149 (3.0 Å), and Thr152 (2.6 Å) and 

amides of Asp148 (3.1 Å), Thr149 (3.1 Å), Gly150 (2.6 Å), and Thr152 (2.9 Å) are in 

hydrogen-bond distance with the 5′-phosphonate, while the 3′-hydroxyl group forms a 

hydrogen bond with the side chain of Asp145 (2.8 Å). As the inhibitor has only one 

hydroxyl group compared to two in the reaction or in complex with the Immucillin-H 5′-

phosphate transition state analogue, a water molecule replaces the second hydroxyl group 

and forms a hydrogen-bond network with the O2 and O4 of pyrophosphate (2.6 and 2.7 Å), 

the 3′-hydroxyl group (2.9 Å), and the cationic amine (2.9 Å). The single magnesium ion is 

chelated by Asp204, three water molecules, and pyrophosphate. In complexes crystallized 

with ImmHP, Mg2+, and PPi (Figure 28) two Mg2+ ions form bidentate ionic interactions 

chelated to PPi. Here, the single Mg2+ forms a bidentate interaction with PPi, a bidentate 

interaction with Asp204 and is chelated with 3 water oxygens. Major binding interactions 

are formed with the phosphonate with 2.6 Å hydrogen bonds to each of the three 

phosphonate oxygens.

8.9. Summary

Transition state analogues of purine phosphoribosyltransferases support the formation of a 

ribocationic transition state, also indicated from KIE studies. A drug design challenge comes 

from the two anionic centers on the required 5′-phosphate (a dianion) and the nucleophilic 

pyrophosphate (a tetraanion). Monophosphate or monophosphonate prodrugs of transition 

state analogues show promise but are not yet sufficiently effective to be considerd as drug 

candidates.
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9. PYRIMIDINE PHOSPHORIBOSYLTRANSFERASES

9.1. Function of Human and P. falciparum Orotate Phosphoribosyltransferases

Although P. falciparum requires exogenous purines for salvage, the parasite encodes all 

enzymes for de novo synthesis of pyrimidines but none of the enzymes for pyrimidine base 

or nucleoside salvage.213–215 An essential step in pyrimidine synthesis is addition of ribose 

5-phosphate (from PRPP) to orotic acid by orotate phosphoribosyltransferase (OPRT; Figure 

33). Previous OPRT inhibition studies reported that pyrazofurin, a C-riboside antibiotic, 

inhibited P. falciparum OPRT (Pf OPRT) activity and demonstrated antimalarial activity 

with in vitro cultures to give submicromolar IC50 values.216 5-Substituted orotate analogues 

bind to Pf OPRT and block the growth of parasites with IC50 values at micromolar levels.
217–219 5-Selenated uridine derivatives also exhibit submicromolar inhibition against Pf 
OPRT and Homo sapiens OPRT (HsOPRT).220 None of these compounds can be classified 

as transition state analogues, and some act by incorporation into cellular nucleic acids with 

mutagenic potential as drug candidates.

9.2. Transition State Structures

Transition state analogues for the P. falciparum OPRT with discrimination against the human 

enzyme could provide new antimalarials. Transition state structures were solved for both 

human and P. falciparum OPRTs. On the basis of the isotope effects and the analysis of the 

transition states, both enzymes had similar transition state structures (Figure 33). On the 

basis of the ribocationic transition states, transition state analogues were designed based on 

precedent from other N-ribosyltransferase programs, especially that of human purine 

nucleoside phosphorylase (see below).221,222

9.3. Transition State Analogues

Transition state analogue candidates were synthesized to resemble the geometrical and 

electrostatic characteristics of the transition states and tested for inhibition with both the 

human and the P. falciparum OPRTs (Figure 34). For the 20 compounds of Figure 34, most 

compounds bind better to the human than the P. falciparum enzyme, but the differences are 

small, no more than 5-fold higher affinity for the human enzyme. The affinity reflects the 

similar transition states for the OPRTs but where the human OPRT is intrinsically more 

catalytically active.223 The OPRTs are unusual phosphoribosyltransferases in having a 

relatively weak affinity for the 5′-phosphate of the nucleotide. A comparison of inhibitor 

pairs with and without the 5′-phosphate (1 and 2, 3 and 4, 5 and 6, 7 and 8, and 14 and 15) 

shows less than 5-fold increased affinity when the 5′-hydroxyl groups are replaced with the 

5′-phosphate groups.

Three fundamental contributions toward formation of the transition state are (1) activation of 

the leaving group, (2) formation of the ribocation, and (3) activation and enforced 

participation of the nucleophile. Transition state analysis showed full loss of the pyrimidine 

leaving group at the transition state and weak participation of the nucleophile, consistent 

with the leaving group activation as a dominant catalytic force. Enforced nucleophilic 

participation is unlikely. Compounds 1 and 2 of Figure 34 are O-ribosides and test the ability 

of OPRT to form a ribocation to reach the transition state. The p-nitrophenol groups of 1 and 
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2 are expected to be substrates of enzymes acting on nucleosides or nucleotides where the 

major enzymatic contribution to catalysis is formation of the ribocation (see Table 1). They 

are not substrates for the OPRT enzymes, even though they bind to the catalytic sites with 

nanomolar affinity. Remarkably, 2 (Figure 34) is the highest affinity inhibitor for both the P. 
falciparum and the human enzymes. In the absence of a crystal structure for the P. 
falciparum OPRT, the 40 nM inhibitor 2 was docked into the catalytic site of human OPRT 

(PDB 2WNS). The binding affinity of the p-nitrophenol group is predicted to be similar in 

bonding energy to the orotate of OMP. The binding free energy of –10.4 kcal/mol, a 

predicted binding affinity of 22 nM, is in good agreement with the observed Ki of 40 nM. 

Compounds 3–20 of Figure 34 test different cationic mimics of the ribocation feature of the 

OPRT transition states. Iminoribitols (3–10, 12, 16), hydroxypyrro-lidines (11, 14, 15, 17, 

18), and dihydroxy propyl amines (19, did not significantly improve the affinity of the 

simple p-nitophenol ribosides, 1 and 2. The conclusion is that ribocation formation is not the 

most important contribution to forming the transition state. Transition state analysis 

demonstrated a lack of nucleophilic enforcement; therefore, the major contribution to the 

formation of the transition state is proposed to be leaving group activation. Variants of the 

leaving groups as nucleotides were tested in 2, 4, 6, 8, 12, and 15. None were an 

improvement from the simple p-nitophenol groups of 1 and 2. Additional structural advances 

with OPRTs are needed to map leaving group interactions for improved analogue design.

9.4. Inhibitors of OPRT Are Ineffective against Cultured P. falciparum

Compounds 1–3, 5–7, 9–14, and 17–20 (in Figure 34) were tested against the growth of P. 
falciparum parasites cultured in human erythrocytes. No growth inhibition was found at 

concentrations to 100 μM. These compounds do not gain access to the OPRT compartment 

in cultured parasites, do not block pyrimidine synthesis, or are bypassed by pyrimidine 

sources from erythrocytes in this complex culture medium, although it contained no added 

pyrimidine source.222,224 The lack of cell growth inhibition may reflect permeability 

barriers. Detailed transport and metabolic studies will be needed to distinguish these 

mechanisms. With several of the inhibitors demonstrating dissociation constants below 200 

nM, an inhibitor concentration of 100 μM would be expected to cause >99% inhibition of 

OPRT if freely available to the parasite. Growth of cultured mammalian cell lines was 

unaffected by these inhibitors up to 10 μM. Transition state analogues for OPRTs provide 

initial insights for the design of antimalarials and anticancer agents. However, problems of 

permeability, target access, and species specificity will need to be addressed for these 

nanomolar inhibitors.

9.5. Amidrazone Inhibitor of Yeast OPRT

A slow-onset, irreversible amidrazone transition state analogue has been reported for 

Saccharomyces cerevisiae OPRT. Compound 10 (Figure 35) at 2 mM, incubated with PPi, 

Mg2+, and yeast OPRT, was reported to cause usually slow inactivation of catalytic activity 

with a t ½ of approximately 200 h (kobs = 0.004 h–1). No recovery of activity could be 

detected, indicating extreme tight binding or irreversible inactivation of the enzyme.225 

Compounds 12–14 showed no inhibition under similar conditions. No other characterization 

of 10 is apparent from the literature, despite subsequent crystal structures with other 

inhibitors reported for the S. cerevisiae enzyme from the same group.226
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10. HUMAN 5′-METHYLTHIOADENOSINE PHOSPHORYLASE (MTAP)

10.1. Biological Function of Human MTAP

Polyamine synthesis in nucleated mammalian cells produces spermine as the most abundant 

polyamine, found at millimolar concentrations in rapidly dividing and transformed cells.
227,228 Polyamine synthesis involves donation of two propylamino groups to putresine from 

two molecules of decarboxy-S-adenosylmethionine (SAM) to form a single spermine 

molecule. Therefore, two SAM molecules are used, and two 5′-methylthioadenosine (MTA) 

molecules are formed for each spermine molecule. Polyamine synthesis is the only 

metabolic pathway to generate MTA in humans (although smaller amounts are formed in 

diphthamide formation229) and is a major use of SAM, a molecule in demand to provide 

methyl groups for metabolic syntheses and for regulatory control of proteins and nucleic 

acids.230–232 SAM converted to MTA in the polyamine pathway is not lost to metabolism. 

MTAP is the only enzyme in humans to metabolize MTA, converting it by phosphorolysis to 

5-methylthio-α-D-ribose 1-phosphate and adenine.233 These products are readily converted 

to SAM precursors, as adenine is converted to AMP by adenine phosphoribosyltransferase 

and 5-methylthio-α-D-ribose 1-phosphate is converted to methionine. In this way, MTAP 

provides a metabolic salvage pathway for conversion of MTA to SAM.234 The sole de novo 

pathway for SAM production involves the reaction of methionine and ATP to form SAM by 

the human methionine adenosyl transferases (MATs). MAT1 is the liver isoform, and 

MAT2A is distributed to other human tissues, including cancer cells.235–237

10.2. Transition State and Transition State Analogues

MTAP was targeted for inhibition by transition state analogues to cause cellular 

accumulation of MTA as a product inhibitor of enzymes of polyamine synthesis.238 Human 

MTAP was used to measure intrinsic KIE values from isotopically labeled MTA molecules 

and the transition state structure used to design transition state analogues (Figures 36 and 

37). An example of an early transition state analogue (short distance from the ribocation to 

the leaving group) is MT-ImmA, a 1 nM inhibitor (Figure 37).238 Late transition state 

analogues, with increased distance between the ribocation mimic and the leaving group, are 

better mimics of the transition state and include PhT-DADMe-ImmA, MT-DADMe-

Immucillin-A (MTDIA), and pClPhT-DADMe-ImmA.239 The pM transition state analogues 

are slow-onset, tight-binding inhibitors. The affinity of MT-DADMe-ImmA (MTDIA) when 

compared to the 5 μM Km for MTA as a substrate gives a Km/Ki* ratio of 58 000. MTDIA 

was tested in cultured mammalian cells to determine the biological effects. Several cancer 

cell lines responded by undergoing apoptotic cell death when MTDIA was used in 

combination with MTA.240 Most human cancer cell lines had no response to MTDIA alone, 

supporting a hypothesis of MTA acting as the active agent. When human cancer cell lines 

sensitive to MTDIA plus MTA in culture were tested in mouse xenografts, strong responses 

were observed with human head and neck cell lines FaDu and Cal27 and in human lung 

cancer lines A549 and H358.240,241 No added MTA is required in mouse models, as 

systemic inhibition of whole animal MTAP caused the accumulation of MTA in the blood 

and tissues and excretion into the urine. The original hypothesis of action at the level of 

polyamine synthesis was disproven by attempts to reverse the effects of MTDIA plus MTA 

in cultured cells by addition of exogenous polyamines, methionine, or adenine. Likewise, 
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cells and tissues treated with MTDIA had only a modest reduction in cellular polyamine 

levels.241 Despite the success in mouse models of human cancers, MTAP inhibitors have yot 

yet advanced to human clinical trials.

10.3. Genetic Susceptibility Caused by MTAP Deletion

MTAP is also of interest by being one of the common genomic deletions found in human 

cancers. Approximately 15% of all human cancers reveal a genetic deletion in a region of 

chromosome 9p21 that encodes the MTAP gene. A common codeletion is the nearby p16 

(CDKN2A, cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1) at 9p21.3, a 

known tumor suppressor gene.242–244 In extensive synthetic-lethal genetic experiments 

(where the combination of two nonlethal mutations create a lethal one), human cancer cell 

lines deleted in MTAP (or not, in controls) were scanned for singlegene knockouts that 

caused cell death in the MTAP-deleted strains but not in controls. Common synthetic lethal 

interactions were reported to be PRMT5, a histone protein methyl transferase, MAT2A, and 

RIOK1. These intriguing reports suggest that causing MTAP inhibition by the use of 

MTDIA would render MTAP-competent cancer cells susceptible to agents to block PRMT5 

or MAT2A.245–248 PRMT5 agents are now in clinical development.249–251

The primary hypothesis for the action of MTDIA is currently focused on the role of SAM in 

the epigenetic progression of cancers. As cancers develop, gene expression patterns are 

altered to fit the development stage and specific tissue environment. This makes cancers 

more susceptible to inhibitors of epigenetic change (e.g., PRMT5). As protein and DNA 

methylation are two sources of epigenetic control, altered SAM salvage caused by inhibition 

of MTA recycling could have a downstream effect on epigenetic regulation. These links are 

shown schematically (Figure 38). MTA is formed from decarboxylated SAM (AdoMet) in 

the synthesis of spermine. The addition of MTDIA causes accumulation of MTA in blood 

and tissues and prevents MTA conversion to ATP and methionine, substrates for MAT2A to 

form SAM (step A). Loss of the MTA recycling causes decreased SAM concentration and 

impairs regulatory methylations of proteins and DNA (step B). Tests of these hypotheses 

have not yet reached proof of concept in published human clinical trials.

10.4. Crystal Structure of MTAP with Transition State Analogue

The crystal structure of human MTAP has been solved with MT-ImmA and phosphate to 

form a complex resembling the transition state and also with MTA and inorganic sulfate at 

the catalytic sites to resemble the Michaelis complex (Figure 39).238,252 A comparison 

provides a structural basis to explain the tight binding of transition state analogues. Human 

MTAP is a homotrimer with catalytic sites at each of the three subunits located near the 

trimer interfaces. Crystals have a monomer (Figure 39A) in the asymmetric unit with 

extensive subunit interfaces burying 2500 Å2 from each monomer. The subunit interface is 

primarily hydrophobic interactions but also includes 12 hydrogen bonds and 2 ion pairs. 

Each catalytic site is formed mainly from a single subunit contacts but also includes 

participation from the neighboring subunit, with His137 and Leu279 interactions (Figure 

40). The catalytic sites are fully occupied by MT-Imm-A and phosphate, where the nearest 

phosphate oxygen is 3.0 Å from the cationic imino nitrogen and 3.3 Å from the C1′, the site 

of the developing electrophilic center in the reaction.
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Transition state analogues, including MT-ImmA, bind at enzymatic catalytic sites and are 

assumed to stabilize a geometry advanced from the Michaelis complex toward the transition 

state. Enzyme–inhibitor contacts leading to the transition state stabilize more favorable 

protein conformational geometries. Conformational changes by transition state analogues 

bring groups into position to form the transition state but in a stable rather than transient 

interaction.253 A comparison of MT-ImmA and phosphate with MTA and sulfate supports 

this idea, as there is only 0.3 Å RMSD difference between the structures at the Cα atoms. 

However, the close contacts comparing the MT-ImmA and MTA complexes are significantly 

different (Figure 40). Most important, the distance between the ribocation mimic and the 

attacking nucleophilic oxygen is 3.3 Å in the transition state complex but 4.2 Å in the 

Michaelis complex. The cation of the iminoribitol forms an ion pair with phosphate, pulling 

the MT-ImmA deeper into the catalytic site, where phosphate is held tightly by eight ionic or 

hydrogen bonds of 2.9 Å or less. Sulfate in the Michaelis complex is held less tightly by six 

ionic or hydrogen bonds of 2.9 Å or less, and this complex is lacking the ion pair interaction, 

as MTA is uncharged. Despite being pulled deeper into the catalytic site, presumably by the 

phosphate-iminoribitol ion pair, the leaving group contacts to D220 and D222 are more 

favorable for the transition state complex than the Michaelis complex. Thus, contacts 

improve in multiple dimensions surrounding the transition state complex.

The ion pair with phosphate is most favorable when pClPhT-DADMe-ImmA is at the 

catalytic site (Figure 41). The phosphate oxygen forms a 2.8 Å ion pair with the 1′-aza 

group of the riboction mimic and is likely to be a primary force for binding this 10 pM 

inhibitor.254

10.5. Thermodynamics of MTAP Transition State Analogues

Thermodynamic forces driving ligand binding to the catalytic sites of human MTAP in the 

presence of phosphate have been explored by direct isothermal titrations.254,255 The subunits 

demonstrated equivalent and independent ligand binding. Despite the multiple hydrogen 

bonds and the ion pair at the catalytic sites (Figure 40) for transition state analogues, 

thermodynamic analysis revealed wholly entropy-driven interactions and even demonstrated 

small enthalpic binding penalties for the most tightly bound analogues (Figure 42). The 

product adenine was also compared as a ligand in this analysis because human MTAP 

copurifies with bound adenine. Crystal structures of apo MTAP and MTAP in complex with 

pClPhT-DADMe-ImmA revealed inhibitor-induced tightening of the catalytic site, 

reorganization at the trimer interfaces, release of water from the active sites and subunit 

interfaces, and compression of the trimeric structure.254 These structural changes drive the 

entropy-favored binding of transition state analogues. Entro-py-driven inhibitor binding is 

usually dominated by hydro-phobic inhibitor groups interacting with like areas on the target 

protein. This is not the case for human MTAP, where only the 5′-thiol substituent group can 

be characterized as a hydrophobic interaction. Transition state analogue binding reflects 

local and global protein architecture. Enthalpic interactions at the catalytic site are 

dominated by entropic reorganization of the homotrimer.

These unusual entropic interactions were examined by protein dynamics and heat capacity 

changes (ΔCp) for binding of transition state analogues and a kinetic analysis of transition 
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state formation (Figure 43).255 Temperature dependence of inhibitor binding and transition 

state formation by single-turnover stopped-flow kinetics permitted comparison of the heat 

capacity for the chemical step with various transition state analogues. In this way, the 

transition state analogue most closely related to the actual transition state can be correlated. 

The ΔCp of inhibitor binding was negative, variable, and contrary to that expected from the 

hydrophobic effect.256–258 Thus, inhibitors with increasing hydrophobicity bound with 

increasing values of ΔCp. Crystal structures of MTAP with different transition state 

analogues or a substrate analogue, MT-tubercidin, revealed similar overall protein structural 

parameters, despite large differences in ΔCp for binding. ΔCp values were not correlated 

with Kd values. Presteady state, stopped flow kinetics revealed the chemical step for the 

MTAP reaction to also have a negative heat capacity for transition state formation (ΔCp
‡ = 

−558 cal/ mol/K). This value compared most closely to the ΔCp values of −510 for MT-

DADMe-ImmA and −580 for MT-ImmA, the compounds that most closely resemble the 

transition state for the phosphorolysis of MTA. Molecular dynamics simulations of MTAP 

with MT-DADMe-ImmA showed an increased dynamic motion in the inhibited complex. 

MTAP-inhibitor complexes demonstrate unusual protein thermal stability for a multimeric 

protein with a Tm = 99 °C in complex with MT-DADMe-ImmA and phosphate.

The structural studies described above indicated the phosphate-ribocation mimic plays a 

significant role in stabilizing transition state analogues at the catalytic site. A combination of 

isothermal titrations with and without phosphate permits construction of a thermodynamic 

box to quantitate this interaction (Figure 44).254 Phosphate binding is improved 425-fold, 

from 17 μM to 40 nM, by the binding of MT-DADMe-ImmA. Likewise, the dissociation 

constant for the transition state analogue is improved by a factor of 440-fold by the binding 

of phosphate. In the simplest interpretation, the presence of the phosphate anionic anchor for 

the cationic transition state analogue improves binding by 3.6 kcal/mol. In vivo, the 

physiologic phosphate concentration is millimolar and is expected to maintain the catalytic 

sites near saturation at all times.259 Thus, the biologically effective dissociation constant for 

the action of compounds like MTDIA will be the picomolar dissociation constant for the 

ternary complex.

Despite our deep knowledge of the catalytic mechanism, transition state structure, and 

inhibitor design for human MTAP, this knowledge has not yet been translated into clinical 

trials. Animal models of human lung and head and neck cancers support a unique but not yet 

completely understood mechanism of anticancer action for MTAP inhibitors.240,241 Genetic 

deletion of MTAP in human cancers causes increased sensitivity to other anticancer agents. 

Therefore, the combined use of MTAP inhibitors together with inhibitors against targets 

causing synthetic lethal interactions may provide a new opportunity for multidrug therapy.
244–251

11. 5′-METHYLTHIOADENOSINE NUCLEOSIDASES—MTANS

11.1. Biological Roles for Bacterial MTANs

The 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidases (MTANs) are bacterial 

enzymes with biological roles in (1) the production of quorum-sensing molecules, (2) 

recycling the MTA from polyamine synthesis to S-adenosylmethionine (SAM), (3) salvaging 
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the adenine and methionine from 5′-deoxyadenosine formed in radical SAM reactions, and 

(4) forming menaquinone in the few species of bacteria using the futalosine pathway of 

menaquinone synthesis (Figure 45).260–267 Even with these multiple roles, the scope of 

MTAN reactions is likely to be underrepresented. Some of the biological functions 

mentioned above have been revealed only in the past decade. Thus, other functions may 

remain to be discovered. The chemical reaction is to hydrolytically cleave the N-ribosidic 

bond between adenine and various 5′-substituted adenosine nucleosides. In bacteria, the 

MTANs replace the functions of the similar reactions catalyzed by MTAP in mammals. 

Phosphorolysis reactions by MTAP provide 5-methylthio-α-D-ribose 1-phosphate as a 

precursor for further conversions, while bacteria express a kinase for 1-phosphoylation of 5-

methylthio-α-D-ribose to permit metabolic conversion to methionine.268

Genetic deletion of the MTAN in E. coli (pfs gene) creates strains that are deficient in biotin 

synthetase and lipoic acid synthase (LipA), reportedly because of accumulation of 5′-

deoxyadenosine, a product inhibitior of these reactions.269–271 MTAN deletion also prevents 

autoinducer-2 (AI-2) synthesis as indicated by AI-2-specific luminescence in the quorum-

sensing Vibrio harveyi reporter strain BB170.272 There are reports that inhibition of one or 

more of the three MTANs expressed in Borrelia burgdorferi (causative agent of Lyme 

disease) exhibits antibotic action, although the mechanism is not yet established.273,274 

Bacterial AI-2 production occurs in Gramnegative and Gram-positive bacteria and has 

potential as a novel antibacterial target.275–277 Biofilms and toxin production by pathogenic 

bacteria are under control of autoinducers. As autoinducer pathways are cell-to-cell 

signaling mechanisms, they control bacterial gene expression but are not essential for 

growth.278–280 The nonessential target property leads to the possibility that inhibitors of 

quorum-sensing pathways might provide a decrease in bacterial pathogenecity without 

inducing resistance, since no selective pressure is placed on the organisms by blocking 

quorum sensing.

11.2. Early and Late Transition States in the Bacterial MTANs

In the search for inhibitors of quorum sensing, transition state structures were solved for the 

MTANs from E. coli, Neisseria meningitides, S. pneumoniae, and Mycobacterium 
tuberculosis.281–284 These transition states provided information for design and synthesis of 

transition state analogues. Conversely, the specificity of transition state analogues for 

distinct transition states permitted screening of MTANs from other pathogenic bacteria to 

deduce transition states and predict additional transition state analogue inhibitors.285 This 

approach, in addition to the experimental determination of several key kinetic isotope effects 

for each enzyme, permitted extension of the transition state information to the MTANs from 

Helicobacter pylori, Staphylococcus aureus, and Klebsiella pneumoniae. Two transition state 

classes were found. Early transition states, with significant N-ribosyl bond order remaining 

at the transition states, were found for N. meningitides and H. pylori, while the remaining 

enzymes had late transition states with fully dissociated leaving groups and a fully 

developed ribocationic transition state, as exemplified by the transition states for the N. 
meningitides and E. coli enzymes (Figure 46). Using MT-ImmA as an index for early 

transition states and MT-DADMe-ImmA as an index for late transition states, other MTANs 

were classified.285,286 The ratio of Kd values for the two inhibitors is required, as individual 
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enzymes have characteristic affinity for these inhibitors. In every case, MT-DADMe-ImmA 

binds more tightly than MT-ImmA because of the improved catalytic site contacts 

mentioned above. However, the ratio of Kd values is diagnostic for MTAN transition state 

structure (Figure 46).

11.3. Femtomolar Transition State Analogues for E. coli MTAN

Transition state analogues show exceptional binding affinity to E. coli MTAN (Figures 47 

and 48).272,285,287 The DADMe-ImmA inhibitor family requires a 2′-deoxy structure for 

chemical stability to accommodate the adjacent pyrrolidine nitrogen. Lack of the 2′-

hydroxyl group combined with the methylene bridge of the DADMe-Immucillin family 

permits a closer interaction between the inhibitor cation and the polarized water nucleophile 

at the catalytic site. Transition state analogues designed for MTANs bind most tightly to E. 
coli MTAN. For exapmle, the MT-DADMe-ImmA molecule (also an inhibitor of human 

MTAP; Figures 44 and 46), dissociation constants of 2, 13, 89, 140, 784, 1400, and 24 000 

pM for E. coli, V. cholerae, H. pylori, N. meningitides, K. pneumoniae, A. aureus, and S. 
pneumoniae MTANs, respectively.272,285 This range of interactions is remarkable given the 

similarity of the catalytic sites of these enzymes.

The dissociation constant of 47 fM is the best slow-onset, tight-binding inhibitor for this 

enzyme and is among the tightest binding for any enzyme–inhibitor interaction (Figure 49). 

For example, the assembly of click chemistry inhibitory fragments by catalytic site-directed 

assembly of tarcine and phenanthridinium adducts at the active site of Electophorus 
acetylcholinesterase gave an azide–alkyne click chemistry adduct with a Kd of 77 fM for T. 
californica acetylcholinesterase and weaker for acetylcho-linesterases from other species.
288,289 Despite the high affinity of catalytic site-directed chemistry for acetylcholinesterases, 

these compounds bind by virture of large van der Waals interactions in deep catalytic site 

channels rather than by incorporating transition state features. Even though the MTA 

substrate for E. coli MTAN has a high apparent affinity, with a Km value of 0.43 μM, the 

Km/Ki* ratio for pClPhT-DADMe-ImmA is 9.1 × 106. The predicted Km/Ki* ratio for a 

perfect analogue of purine N-riboside hydrolases is approximately 1012. Therefore, the best 

inhibitor remains 5 orders of magnitude short of perfection.37

11.4. MTAN Isozyme Specificity for Transition State Analogues

Crystal stuctures of three inhibitors of different affinity for the E. coli MTAN are instructive.
290–292 In all structures the water nucleophile is in position beneath the ribosyl ring in 

approximate position for nucleophilic addition once the ribocation has been formed. With 

5′-methylthiotubercidin, a substrate analogue (0.75 μM Kd), the water nucleophile is 3.5–3.7 

Å from the 4′-O or the ribosyl ring.291 With MT-ImmA (Figure.37), a 77 pM transition state 

analogue, the water nucleophile is 3.0–3.2 Å from the 4′-O, and with MT-DADMe-ImmA (2 

pM Kd) the distance to the 1′-N cation of the pyrrolidine ring is 2.5–2.7 Å. This difference 

in the structures is sufficient to explain the relative inhibitor affinity on the E. coli MTAN. 

Comparison of the molecular electrostatic potential surfaces for the transition state and three 

transition state analogues spanning dissociation constants from 77 pM (MT-ImmA) to 47 fM 

(pClPhT-DADMe-ImmA) does not provide an obvious explanation for the 1600-fold 

difference in affinity (Figure 48). However, thermodynamic analysis for the binding of 
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transition state analogue inhibitors to the E. coli and other bacterial MTANs reveals 

transition state analogues bind to the bacterial MTANs with highly favorable enthalpic and, 

in most cases, also favorable entropic interactions (Figure 50).292 Additional studies were 

designed to explore protein dynamic interactions as possible contributors to the distince 

entropic signatures for bacterial MTANs.

11.5. MTAN Protein Dynamics and Inhibitor Binding

The difference in inhibitor binding affinity for BuT-DADMe-ImmA by the E. coli and V. 
cholerae enzymes has been investigated by computational protein dynamics.293 High-

resolution crystal structures of the MTAN–transition state analogues were used as the 

starting points for dynamic analysis. Intuitively, tight-binding inhibitors are assumed to 

cause a more condensed state of the enzyme–inhibitor complex, and indeed, such complexes 

have been reported for several enzymes.294–299 In most cases, inhibitors bind with some 

degree of enthalpy– entropy compensation, where multiple hydrogen and/or ionic bonds at 

the catalytic sites cause strong favorable enthalpic contributions. However, these more 

ordered, compressed complexes pay an entropic penalty. This is not the case for the bacterial 

MTANs, where entropy and enthalpy are both favorable for most of these interactions, 

resulting in large, negative ΔG values of binding (Figure 50). Unexpectedly, a comparison of 

the RMSF for atoms of BuT-DADMe-ImmA bound at the catalytic sites of E. coli and V. 
cholerae indicate that the more tightly bound inhibitor at the catalytic site of the E. coli 
MTAN has more dynamic flexibility than that of the V. cholerae MTAN, where entropic 

factors are greater for V. cholerae inhibitor binding (Figure 50). Increased dynamic motion is 

apparent for Glu174, the carboxyl group that activates the nucleophilic water molecule. In E. 
coli MTAN, Glu174 is 18% more flexible than its equivalent (Glu175) in V. cholerae 
MTAN. Increased dynamic motion in inhibitor binding is most prominent in the 

hydrophobic 5′-butylthio group, and this is reflected in increased flexibility of the enzyme 

surrounding these inhibitor atoms (Figure 51). Thus, inhibitor atoms show more flexibility 

when bound to E. coli than to V. cholerae MTANs. All atoms of BuT-DADMe-ImmA are 

more flexible in the EcMTAN active site, providing a dynamic explanation for both entropic 

and enthalpic contributions to tighter inhibitor binding to the E. coli enzyme.

11.6. Crystal Structure Contacts for MTAN Transition State Analogues

The dynamic explanation for the tight binding of transition state analogues adds insight 

beyond the structural explanations derived from X-ray crystallography. In 10 distinct 

enzyme–inhibitor distances for the E. coli and V. cholerae complexes bound to DADMe 

inhibitors, none vary by more than 0.2 Å (Figure 52). For these MTANs, the purine leaving 

group interactions include four hydrogen bonds to N1, N6, and N7 from Asp197 or 198 and 

from backbone atoms of Ile152/ Val153. The nucleophilic water is remarkably stabilized, 

with five hydrogen-bond interactions with Glu174/175, Glu12 (both MTANs), Arg193/194, 

and the pyrrolidine nitrogen of the inhibitor. As there is no significant contact difference to 

the inhibitor and only 0.4 Å RMSD for the Cα of amino acids surrounding the catalytic site, 

the difference in inhibitor binding affinity appears to have its origin in the dynamic protein 

components discussed above.
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The enzyme-stabilized nucleophilic water in E. coli methyl-thioadenosine nucleosidase is 

observed both in transition state analysis and in crystallography. Mass spectrometry (MS) 

experiments were used to determine if the water molecule survives the vacuum of MS 

analysis, i.e., if it is a stable part of the enzyme–transition state analogue complex. MS 

analysis of the transition state complex of E. coli MTAN·BuT-DADMe-ImmA (Figures 49 

and 52) gave the expected mass + 18, indicating a single trapped water molecule flies as part 

of the transition state ensemble.300 This result resembles Wolfenden’s earlier experiments 

demonstrating trapped waters with transition state analogues of cytidine deaminase.301,302 

The nucleophilic water is a stable part of hydrolytic transition state complexes.

11.7. MTAN Inhibitors Block AI-2 Quorum Sensing

Powerful inhibitors do not necessarily translate into effective biological function. The 

cellular barrier for drug uptake into Gram negative bacteria prevents many inhibitors from 

acting.303–305 MTAN inhibitors were developed as agents to block quorum sensing without 

placing selective pressure on the parent organisms. In this capacity MTAN inhibitors could 

reduce gene expression in pathways for biofilm and pathogenicity factors and not induce 

antibiotic resistance.272,306–308 These theories were tested in cultures of V. cholerae in the 

presence of BuT-DADMe-ImmA (Figure 53). Overnight growth of pathogenic V. cholerae 
N16961 with increasing concentrations of BuT-DADMe-ImmA inhibited the AI-2 signal to 

give an IC50 of 1.4 nM.272 The MTAN activity in actively growing bacterial cells treated the 

same way was inhibited with an IC50 of 6 nM. Inhibitors at a concentration of 1000 nM did 

not influence the growth of bacteria in overnight cultures. Similar results were obtained with 

BuT-DADMe-ImmA, MT-DADMe-ImmA, and EtT-DADMe-ImmA (Figure 47). AI-2 

production was also inhibited in similar experiments with pathogenic E. coli O157:H7 to 

give an IC50 of 125 nM with BuT-DADMe-ImmA. Neither the E. coli nor the V. cholerae 
strains became resistant to the inhibition of AI-2 by MTAN inhibitors, even after 26 

generations of growth at high concentrations (1 μM) of BuT-DADMe-ImmA. Biofilm 

production was reduced 71% in V. cholerae cultures and 18% in E. coli cultures at 1 μM 

BuT-DADMe-ImmA. Quorum-sensing pathways remain of interest as a drug target, and 

several candidates as quorum-sensing inhibitors have been reported to be in clinical trials. 

Some of these agents also act as bacterial antibiotics, but no transition state analogue acting 

by inhibition on a quorum-sensing pathway has been approved.309–314

11.8. MTAN in Menaquinone Synthesis

As transition state analogues for MTAN were being developed for quorum-sensing 

inhibition, a new pathway was discovered for the bacterial synthesis of menaquinones, 

essential electron transfer agents in many bacterial species (Figure 54).315–319 In the 

canonical menaquinone synthetic pathway in E. coli and most other bacteria, the MenA–

MenG-encoded enzymes convert chorismate to menaquinone via isochorismate.320,321 In 

Streptomyces coelicolor, H. pylori, and Campylobacter jejuni, chorismate is first converted 

to aminofutalosine as an intermediate using the enzymes expressed by the Mqn genes. The 

adenine ring of aminofutalosine is hydrolyzed from aminofutalosine by MqnB for 

subsequent conversions of the apurinic intermediated toward menaquinone. Genomic 

analysis of the Mqn pathway annotated MqnB as an MTAN in these species. Unlike the 

nonessential role of MTANs in quorum sensing and 5′-deoxyadenosine recycling in enteric 
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organisms, the use of an MTAN in menaquinone synthesis in H. pylori predicted it to be 

essential in this organism. Human gastric ulcers are caused by H. pylori, and the potential 

essential function of MqnB here but not in enteric organisms suggested the development of 

an antibiotic specific for H. pylori by targeting MqnB.

11.9. MTAN Transition State Analogues Are H. pylori-Specific Antibiotics

Expression of the MqnB protein from H. pylori demonstrated aminofutalosine in addition to 

the MTA and S-adenosyl-homocysteine as substrates.322,323 Transition state analogues of 

MTANs from other species (described above) revealed BuT-DADMe-ImmA as a 36 pM, 

slow-onset tight binding inhibitor of H. pylori MTAN, giving a Km/Kd ratio of 22 000.323 

BuT-DADMe-ImmA prevented H. pylori growth on 5% horse blood agar to give an IC90 

value of approximately 8 ng/mL, corresponding to a chemical concentration of 23 nM. As 

the Kd is 36 pM for HpMTAN, there may be a barrier to cell entry or it is possible that the 

inhibitor is acting on a different target. Additional genetic analysis is needed to establish the 

mechanism of action. Despite these uncertainties, inhibition of cell growth occurs at 

inhibitor concentrations 1–3 orders of magnitude lower than approved antibiotics for H. 
pylori infections, consistent with inhibition of HpMTAN as an essential step.323

The catalytic site of the H. pylori enzyme is similar to other MTANs (Figures 52 and 55).323 

The adenine product is a common feature of the MTANs, which are capable of accepting a 

variety of 5′-substituents on adenosine nucleosides. A flexible hydrophobic pocket at the 

catalytic site accommodates hydrophobic 5′-substituents. The hydrophobic region in H. 
pylori MTAN is bordered by Leu104, Phe107, Phe208, Met10, and Ile52, where the Phe107 

is a group donated from the adjacent subunit. The flexible hydrophobic region with 

conserved contacts to 9-deazaadenine led to a synthetic chemistry program to improve 

binding to H. pylori MTAN and generate favorable IC90 values. Alternative chemical 

scaffolds were explored.324 Two chemical scaffolds provided tight-binding inhibition, and 

14 transition state analogues with IC90 values at or below 16 ng/mL were identified (Figure 

56). Of these, the dissociation constants for inhibition of H. pylori MTAN varied from 4 to 

170 pM. There was not a linear relationship between Kd value and IC90, indicating that cell 

entry is a significant parameter for these compounds. The highest affinity compounds 

generally show the most potent inhibition of H. pylori growth. For example, the four best 

inhibitors have Kd values of 4, 5, 6, and 7 pM. These same four compounds show IC90 

values of 8, 6, 8, and 10 ng/mL values, respectively, for H. pylori growth inhibition. 

Conversely, the four weakest inhibitors listed in Figure 56, with Kd values of 110, 110, 120, 

and 170 pM, also gave low IC90 values of 9, 16, 16, and 11 ng/mL, suggesting that these 

may have superior penetration into the bacteria. Cations are more favorable for uptake than 

neutral or anionic compounds, and the purine base provides a possible transport recognition 

element.303–305 Distinct chemical scaffolds effective at the inhibition of H. pylori MTAN 

and inhibition of growth improve chances of in vivo efficacy.

11.10. MTAN Interactions with Acyclic Ribocation Mimics

How do the 1-substituted 2-aminopropanol adducts of 9-deazaadenine interact at the 

catalytic site to be effective at the inhibition of H. pylori MTAN and inhibition of H. pylori 
growth? The DADMe inhibitors, for example, BuT-DADMe-ImmA (Figure 55), are 
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stabilized by a hydrogen bond between the nucleophilic water and the 3′-hydroxy group, 

which is also hydrogen bonded to Glu175. In contrast, the hydroxymethyl group in the 

acyclic inhibitor (where R = CH3(CH2)3; Figure 56) is hydrogen bonded only to Glu175. 

The MTAN in complex with an acyclic inhibitor has more conformational freedom and 

consequently is situated differently in the active site (Figure 57). The torsion angle between 

the 9-deazaadenine and the CH2-NH substituent is −115° in the acyclic inhibitor but −75° in 

the 3-hydroxypyrrolidine inhibitors.324 The active site entrance (also the 5′-binding site) is 

hydrophobic (Met10, Ile52, Leu104, Phe107, Pro115, Phe153, Phe208) and spacious to 

accommodate MTA, SAH, aminofutalosine, and the 5′-substituents found in inhibitors 

(Figure 56). The hydrophobic nature of the 5′-substituent region favors van der Waals 

interactions with 5′-alkylthio substituents that reach beyond the cavity to the exterior of the 

protein, a channel open to the solvent (Figure 57). Substituents like the R = hydroxybutyl 

group in the 3-hydroxypyrrolidine inhibitors are extended sufficiently to hydrogen bond to 

an imidazole nitrogen atom of His109 at the protein surface (N···O = 2.69 Å).

11.11. MTAN Transition State Analogues Compared to Current Antibiotics

How do the transition state analogues of Figure 56 compare to the current therapy for H. 
pylori infections associated with human ulcers? Current therapy uses a combination of two 

or three antibiotics, most commonly metronidazole, amoxicillin, clarithromycin, 

levofloxacin, and tetracycline, in addition to a proton pump inhibitor (Figure 58).325–327 The 

rapid spread of antibiotic resistance has also led to sequential therapy initiated with dual 

therapy containing amoxicillin and a proton pump inhibitor followed by a second, triple 

therapy including clarithromycin, metronidazole, and a proton pump inhibitor.328–331 A 

recently recommended first-line therapy is a quadruple therapy including clarithromycin, 

amoxicillin, and metronidazole and including a proton pump inhibitor for 14 days.332

A complication of extensive antibiotic therapy is unfavorable alteration of the normal gut 

flora, leading to repopulation with undesirable organisms, including Clostridium dif f icile. 

Infections with C. dif f icile are causing an estimated half-million infections per year with an 

estimated 29 000 deaths in a 2014 report of the CDC.333–335 C. dif f icile is now the most 

common pathogen causing hospital and care facility infections.336,337 The menaquinone 

pathway of H. pylori is not present in most organisms of the gut microbiome.315–319 The 

bacterial species specificity of MTAN inhibitors was tested on E. coli, S. aureus, K. 
pneumoniae, Shigella flexneri, Slamonella enterica, Psuedomonas aeruginosa, and V. 
cholerae. None of these organisms showed growth sensitivity to MTAP inhibitors at 

concentrations causing complete inhibition of H. pylori growth.323 Therefore, the MTAN 

inhibitors could be useful as species-specific antibiotics, clearing H. pylori infections 

without causing depletion of the gut microbiome.

12. MAMMALIAN PURINE NUCLEOSIDE PHOSPHORYLASES (PNPS)

12.1. Human PNP Genetic Deficiency and Drug Potential

Interest in purine nucleoside phosphorylase increased following the 1975 report by Eloise 

Giblett that humans genetically deficient in purine nucleoside phosphorylase (PNP) develop 

a T-cell immunodeficiency usually apparent by age 2.338–342 Affected infants are normal at 
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birth but gradually develop a loss of T cells, neurological manifestations, and succumb to 

viral infections. Curative treatment occurs only with hematopoietic stem cell transplantation.
343–345 The mechanism of neurological damage is not known, but the loss of T cells is 

linked to a defect in 2′-deoxyguanosine metabolism.341,342 PNP catalyzes the 

phosphorolysis of 6-oxypurine nucleosides and 2′-deoxynucleo-sides and is the only 

enzyme in humans capable of removing the ribosyl group from these compounds to form 

purine bases. Hypoxanthine and guanine bases can be salvaged to IMP or GMP by 

hypoxanthine-guanine phosphoribosyltransferase or be further metabolized to uric acid for 

urinary excretion.346 Genetic deficiency of PNP prevents these reactions, leading to 6-

oxynucleosides, including 2′-deoxyguanosine, to accumulate in the blood and to cause a 

decrease in uric acid levels.340 Activated T-cell clones have active pathways for the transport 

and phosphorylation of 2′-deoxyguanosine by an induced deoxy-cytidine kinase, normally 

used to increase deoxynucleoside salvage to support nucleic acid synthesis in T-cell clonal 

expansion. When excess 2′-deoxyguanosine is present, dGTP accumulates in activated T 

cells causing apoptotic depletion of these cells with the attendant immune deficiency. Soon 

after this discovery, PNP became a drug target for the development of new 

immunosuppressive agents. Over 20 patents from 7 major pharmaceutical efforts were filed 

or awarded on drug design for human PNP by 1998. None of the agents were successful in 

recapitulating the T-cell changes observed with genetic deficiency of PNP.347,348 Mutations 

in human PNP retaining as little as 2% of native PNP activity had reduced disease 

symptoms.349 Inhibitors capable of greater than 98% continuous inhibition would be needed 

to regulate T-cell proliferation via PNP inhibition.

12.2. PNP Isozymes Have Distinct KIE Patterns

Transition state analysis for PNP was initiated with the commercially available bovine 

enzyme, 87% identical in amino acid sequence to the human enzyme and 100% identical in 

contacts to nucleosides bound at the catalytic site.350–352 There is one amino acid difference 

in the phosphate binding site.353,354 The intrinsic kinetic isotope effects for bovine PNP 

were consistent with an early dissociative transition state with partial C1′–N9 bond order 

remaining at the transition state and significant ribocation character at the ribosyl group.350 

There is no significant participation of the nucleophile at the transition state. A large 3H2′ 
KIE of 1.152 indicated strong hyper-conjugation between the C2′–H and the partial vacant 

orbital to the leaving group (Figure 59). Using the same experimental protocol, intrinsic KIE 

analysis for the human PNP gave substantially different isotope effects.355 A diagnostic KIE 

for this reaction is the value for 14C1′ at the reaction center. Recall that symmetric SN2 

reactions have an upper limit of 1.14 for a 14C KIE, while a fully formed ribocation 

intermediate is predicted to give a KIE of 1.00.356–358 The 1.026 KIE for bovine PNP results 

from residual bond order between the developing ribocation and the purine leaving group at 

the transition state. The value of 1.002 for the human enzyme indicates a fully formed 

ribocation at the transition state in an SN1 reaction. The small 3H2′ β-secondary KIE of 

1.031 for human PNP indicated weak hyperconjugation between the C2′–H bond and the 

partially vacant orbital to the leaving group at the transition state. As this value is large 

(1.152) in the bovine PNP, the geometry of the ribocations differs at these transition states. 

Different transition state structures for closely related isozymes with conserved catalytic 

sites had not been documented before this observation. Additional validation of this 
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observation came from the design of transition state analogues that reflect the differences in 

these transition states.

12.3. PNP Isozyme-Specific Transition States

The bovine and human PNP transition states corresponding to the intrinsic KIE values 

(Figure 59) provide information on the bond lengths and electrostatic potential maps (Figure 

60). Bovine PNP has approximately 0.3 Pauling bond order remaining in the N-ribosidic 

bond at the transition state, increasing the bond length to 1.8 Å. The partial loss of the N-

ribosidic bond causes protonation at N7 and generates partial cationic character on the 

ribose. The electrostatic potential maps of the inosine reactant state compared to the bovine 

PNP transition state reveal the partial positive charge (blue) distributed across the N7-

protonated leaving group and the ribocation.359 The nucleophile (arsenate is used to make 

the reaction irreversible)360 has no significant bond order to C1′ at the transition state, is not 

included in the electrostatic maps, and is therefore not an essential component in the design 

of the transition state analogues. The compound proposed to match these features and to 

confer chemical stability as a transition state analogue was Immucillin-H (Figure 60). The 

C-nucleoside confers chemical stability and increases the pKa at N7 to favor protonation at 

neutral pH. Replacement of O4′ with nitrogen gives an iminoribitol with a nitrogen pKa of 

6.9, also favoring protonation and generating cationic character at physiological pH values.
361 The electrostatic potential match between the bovine PNP transition state and 

Immucillin-H suggests both geometric and electrostatic similarity, the two features need to 

convert the catalytic ΔG energy into thermodynamic ΔG energy of transition state analogue 

binding. ImmH was synthesized and found to be a 23 pM transition state analogue for the 

bovine PNP and at 56 pM is also a tight-binding inhibitor for human PNP.359 The 

electrostatic potential map of ImmH assumes it is protonated when bound to PNP, although 

the pKa of 6.9 does not ensure protonation. Solution and solid-state magic-angle NMR were 

used to characterize the chemical shifts of [1′–13C,4′–15N]ImmH to compare the 

ionization states on and off the catalytic sites of human PNP.361 The 4′–15N of ImmH is 

protonated when bound to the enzyme consistent with a transition state mimic. Also, the sp3 

geometry of the 1′–13C of ImmH is distorted toward sp2 geometry when bound to the 

enzyme. The chemical shift for 1′–1H of ImmH in solution is 4.30 ppm for the neutral and 

4.95 ppm for the cationic state. An additional downfield shift to 6.3 ppm occurs in the PNP· 

[1′–13C,4′–15N]ImmH·Pi complex. Distortion at the anomeric carbon for bound ImmH 

toward the sp2 geometry of the transition state is evidenced by the corresponding 6 ppm 

downfield chemical shift observed in [1′–13C]ImmH when bound to the enzyme in solution 

studies. This result is duplicated in the solid-state NMR spectra of human PNP· [1′–13C,4′–
15N]ImmH·Pi. Thus, enforcing full ribocation character and distortion of bound ImmH 

toward ribocation geometry are features of the transition state deduced both from KIE and 

from NMR studies.

12.4. Human PNP Transition State Analogues

A chemically stable mimic of the human transition state was designed by using the nitrogen 

cationic center to replace the C1′ ribocation formed in the fully developed transition state.
362 The 3-hydroxypyrrolidine mimic of the ribocation requires the 2′-deoxy structure for 

chemical stability. The leaving group hypoxanthine is 3.0 Å from the ribocation at the 
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transition state, and this distance was incorporated into the analogue design by a methylene 

bridge between the 9-deazaadenine leaving group and hydroxypyrrolidine. The electrostatic 

match between the human PNP transition state and DADMe-ImmH is strong in the 

ribocationic group, as is the geometry with the hypoxanthine leaving group. An advantage of 

the DADMe-ImmH structure is in the simplicity of the chemical synthetic approach, where 

the Mannich reaction can be used under mild conditions, to insert the methylene bridge from 

formaldehyde between the unprotected 9-deazapurine and the substituted pyrrolidine (Figure 

61).362 DADMe-ImmH is a 9 pM transition state analogue of human PNP and a 110 pM 

inhibitor for the bovine PNP. On the basis of the affinity of these inhibitors for their cognate 

isozymes, detailed knowledge of the transition state structures provides sufficient 

information to design inhibitor specificity into the Immucillin transition state analogues.

12.5. Bovine PNP Structures with Transition State Analogues

Crystal structures explored the interaction of substrate analogues (sulfate and inosine) and 

transition state analogues ImmH and ImmG with phosphate at the catalytic sites of PNPs. 

How is it that the modest atomic substitutions between inosine and Imm-H increase binding 

affinity by a factor of nearly 106? The structures compared catalytic site contacts for 

Michaelis and transition state interactions to explain the nature of the tight-binding 

interactions (Figure 62). Inosine and guanosine Michaelis complexes with PNP in the 

presence of PO4 gave Km values of 17 and 13 μM, respectively. ImmH and ImmG are the 

transition state analogues for each of these substrates (Figure 63). ImmH and ImmG gave 

equilibrium dissociation constants (Ki*) of 23 and 30 pM to yield Km/Ki* ratios of 7.4 × 105 

and 4.3 × 105, respectively, corresponding to increases of –8.1 and −7.8 kcal/mol in binding 

energy. The structural basis for the increased binding affinity of the Immucillins involves 

seven or more new hydrogen or ionic bonds forming in the complexes with ImmH and 

ImmG when compared to the Michaelis complex (Figure 62).363 Specific examples include 

a leaving group interaction where the Asn243 to inosine N7 decreases from 3.3 Å in the 

Michaelis complex to 2.8 Å with ImmH. A new ion pair is formed between the cationic 

iminoribitol and the SO4 or PO4 nucleophiles, where the nucleophile to (neutral) O4′ 
distance is 3.6 Å with inosine and the nucleophile to N4′ cation is 2.8 Å with the 

Immucillins. Increased transition state analogue binding energy can be fully explained by an 

energetic binding gain of only 1.1–1.2 kcal/mol per new ion pair or H-bond interaction. The 

energetic contributions can be tested for ImmH by systematic alteration of groups on the 

Immucillin molecules involved in these interactions (Figure 63).

12.6. Bovine PNP Energetics of Transition State Analogue Binding

The remarkable specificity required to capture transition state binding energy is exemplified 

by comparing 1 (ImmH) and 24 (Figure 63). The difference between 23 pM and 42 μM (1.8 

million-fold) is caused by inversion of N3 and C4, causing a decrease of affinity by a factory 

of 1.8 × 107 in (ΔG = 10.1 kcal/ mol). There are no catalytic site contacts to N3 in the crystal 

structures with these analogues; therefore, the affinity difference is generated by the altered 

protonation state at N7. Weak binding of 24 (Figure 63) is also a reminder that the ribocation 

mimic is a necessary but not sufficient condition for tight binding of transition state 

analogues to PNP. The ribocation mimic and N7 protonation are both essential features of 

the transition state. Trivially, from the 1 and 24 comparison (Figure 63), one could say that 
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the total binding energy of ImmH can be accounted for by the N243 hydrogen bond to N7 of 

the transition state analogue. More accurately, every contact involved in forming the 

transition state provides a cooperative binding interaction. Loss of any one of the transition 

state-forming features causes large losses in binding energy. For example, compound 17 

(Figure 63) retains the protonated N7 feature but is missing the N4′ cation. It is a 2 μM 

inhibitor, a loss of 6.8 kcal/mol compared to 1. Each of the catalytic site contacts to ImmH 

or ImmG that define transition state interactions can be energetically mapped onto the 

ImmH structure (Figure 64).364 Multiple improved interactions between PNP–substrate and 

PNP–transition state analogue reflect evolved protein architecture to find the transition state 

geometry as a preferred protein conformation.

12.7. PNP Reaction Coordinate Motion

The transition state structure of bovine PNP together with crystal structures of substrate, 

transition state analogues, and products bound at the catalytic sites of bovine PNP led to the 

conclusion that the reaction coordinate motion is dominated by the migration of the 

anomeric C1′ of the ribosyl group.365 The hypoxanthine ring, the 5′-hydroxyl group, and 

the phosphate anion remain relatively fixed at the catalytic site, while the anomeric carbon 

departs the purine leaving group and migrates 1.8 Å to form the sugar phosphate. First 

recognized in bovine PNP, this mechanism is called nucleophilic displacement by 

electrophile migration and has also been recognized in many other electrophilic enzymatic 

transferase reactions.366–370 In the ribosyltransfer reactions catalyzed by three 

hypoxanthine-guanine phosphoribosyl transferases and an adenine phosphor-

ibosyltransferase the C1′ migration is 2.1 Å, while migration in hen egg-white lysozyme is 

1.6–1.8 Å (Figure 65).

12.8. Immucillin-H in Clinical Trials

Immucillin-H was the first molecule to be synthesized as a transition state mimic for bovine 

PNP but is also an inhibitor of human PNP with a dissociation constant of 56 pM, 

approximately 3 orders of magnitude more effective as a PNP inhibitor than any of the 

molecules that had previously entered clinical trials.371–373 A proof-of-principle 

pharmacokinetic, pharmacodynamic, and clinical study in T-cell malignancies with ImmH 

(also called BCX-1777 and forodesine) treated patients with an intravenous drug (40 mg/m2) 

once or twice a day over 5 days. The median drug level (5.4 μM) caused an increased plasma 

2′-deoxyguanosine (dGuo) in all patients. Intracellular deoxyguanosine triphosphate (dGTP) 

increased from 2-to 40-fold in patients and correlated with antileukemia activity. This was 

the first published clinical study demonstrating the effectiveness of the PNP inhibitor. In this 

5-day study there were no objective responses, since leukemia cells in the blood and marrow 

reappeared after the 5-day therapy.374 Subsequent studies revealed that ImmH has adequate 

oral availability to permit oral dosing. A phase I study in 13 patients with relapsed or 

refractory peripheral T/natural killer-cell malignancies and once daily oral ImmH (100, 200, 

and 300 mg) indicated no dose-limiting toxicities.375 Approximately one-half of the patients 

showed disease control, and one patient achieved a complete response. Two patients with 

cutaneous T-cell lymphoma (CTCL) achieved partial responses. This study provided 

evidence that relapsed or refractory peripheral T/ natural killer-cell malignancies are 

responsive to PNP inhibition. As inhibition of PNP is a T-cell target, B-cell cancers are less 
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responsive. In a small trial, 8 patients with chronic B-cell lymphocytic leukemia were treated 

orally with 200 mg/day ImmH. Two had transient responses, and five had disease 

progression. Cancer cells from these patients showed an insufficient increase in intracellular 

dGTP (from 6 μM pretreatment to 10 μM post-treatment) relative to dGTP increases in T-

cell therapy, which can reach 60-fold.376 A larger study involved 144 heavily pretreated 

(median 4 prior therapies) cutaneous T-cell lymphoma patients at 200 mg/day oral 

administration. One-half of the patients had stable disease, 11% achieved partial remission, 

but there were no complete remissions.377 After a total of 19 clinical trials in various T-and 

B-cell disorders, ImmH was approved in 2017 in Japan for resistant or relapsed peripheral T-

cell lymphoma (PTCL) under the trade name Mundesine.378,379 Oral dosing and low 

toxicity are features that are expected to provide a convenient alternative therapy for this 

indication.

12.9. Human PNP Structure with Transition State Analogues

The success of Immucillin-H in human disease, even though it was designed from the 

transition state of the bovine enzyme, prompted renewed examination of the transition state 

for the human enzyme. At the time, a difference in transition state structures for isozymes 

with 87% sequence identity was considered remote as described above (Figures 59 and 60). 

DADMe-Immucillin-H (DADMe-ImmH) was the first transition state analogue chemically 

synthesized specifically for the human enzyme. Dissociation constants of 9 pM for human 

PNP and 110 pM for the bovine enzyme demonstrated the utility of transition state 

information for the design of transition state analogues. Crystal structures of human PNP 

with ImmH and DADMe-ImmH, both in complex with SO4 as the nucleophile analogue, 

revealed that the hydroxypyrrolidine ribocation mimic of DADMe-ImmH is deeper in the 

catalytic site, permitting it to make a stronger ion pair between the tightly bound SO4 anion 

and the N1′ cation (Figure 66).380 In the complex with ImmH, the distance is 3.5 Å from 

the SO4 oxygen to N4′ cation and 3.7 Å to the C1′ position of the anomeric carbon. The 

3.7 Å to the C1′ position is the reaction coordinate for the PNP reaction. With DADMe-

ImmH bound, the SO4 oxygen to N1′ cation is 3.0 Å, a more powerful ion pair, and 

consistent with the position of phosphate at the transition state established by KIE analysis. 

The insertion of the methylene bridge between the 9-deazahypoxanthine and the 

hydroxypyrrolidine of DADMe-ImmH “elongates” the molecule, allowing more favorable 

contacts to the nucleophile and the leaving group. The missing 2′-hydroxyl group in 

DADMe-ImmH, necessary for chemical stability, is replaced by a crystallographic water 

with contacts similar to that of the 2′-hydroxyl group of ImmH. With DADMe-ImmH, 

leaving group interactions are stronger to both Asn243 and to Glu201. In general, ImmH is 

too small in the dimension of the reaction coordinate to make optimal interactions both with 

the leaving group and with the nucleophile, while the DADMe-ImmH molecule is “just 

right” in Goldilock terms to fit the catalytic site. These binding interactions reflect the 

transition state analysis of bovine and human PNPs, where the bovine PNP has a reaction 

coordinate of 4.8 Å. Human PNP has approximately 6 Å in its reaction coordinate. Insertion 

of the methylene bridge neatly elongates DADMe-ImmH to span this distance. These 

procrustean interactions can be explored by solid-state NMR.
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12.10. Distortional Binding of Transition State Analogues by Human PNP

The approach is to synthesize ImmH and DADMe-ImmH with 13C and 15N isotopic labels 

to provide NMR signals for analysis of the inhibitors free and in complexes with human 

PNP.361,381,382,385 Distortional forces imposed by the enzyme should be revealed as altered 

chemical shifts and nuclear interactions on the enzyme. Both molecules carry 13C at the C9 

position of the 9-deazahypoxanthine, 13C or 15N at the 1′-position corresponding to the 

anomeric carbon of inosine, and 15N at the position providing a mimic of the ribocation 

charge (Figure 67). Rotational echo double resonance (REDOR) experiments are then used 

for hereronuclear distance measurements, and rotational resonance (R2) experiments were 

used for homonuclear distance measurements.383,384

Crystals were made of the labeled ImmH and DADMe-ImmH for analysis without enzyme 

or were cocrystallized with the enzyme and the crystals subject to magic angle spinning 

solid-state NMR. Crystallography suggests DADMe-ImmH captures more transition state 

binding energy by being a closer geometric match to the human PNP transition state than 

ImmH. These NMR experiments determined if the active site of PNP exerts greater 

distortional forces on ImmH than on DADMe-ImmH to “achieve” its procrustean transition 

state geometry. Spectra from the magic angle spinning solid-state NMR of isotope-labeled 

ImmH and DADMe-ImmH permit precise determinations of internuclear distances. The 

primary chemical shift data indicated more distortion of ImmH than of DADMe-ImmH at 

the catalytic sites (Figures 68 and 69). Recoupling techniques, rotational echo double 

resonance, and rotational resonance established accurate atomistic insight into the geometric 

changes that occurred upon binding of the Immucillin transition state analogues. Human 

PNP stretches the C9–C1′ C-nucleoside covalent bond by 0.10 ± 0.05 Å, from 1.47 Å for 

unbound ImmH to 1.57 Å in the bound complex. This remarkable distortion is 

approximately 10 kcal/mol distortion energy from the enzymatic interaction. Conversely, the 

more flexible DADMe-ImmH molecule showed a slight compression of flexible bonds at the 

catalytic site of human PNP. The C9-methylene bridge carbon was not significantly 

compressed (0.01 ± 0.1 Å). The distance between the C9 and the N1′ of the pyrrolidine 

decreased by 0.18 ± 0.06 Å, an indication that no stretching distortion was needed to 

accommodate DADMe-ImmH into the catalytic site. In solution, the inhibitor cationic 

nitrogen to C9 distances differ (ImmH = 2.72 Å, DADMe-ImmH = 2.87 Å) but are 

approximately the same in the PNP complexes (ImmH = 2.71 Å, DADMe-ImmH = 2.69 Å), 

suggesting an enzymatically favored geometry to resemble the electrostatic nature of the 

transition state. The energetic distortion of ImmH molecules binding to human PNP by 

approximately 10 kcal/mol implies that the intrinsic binding force is the observed (from Kd) 

plus the energy of distortion. With an observed ΔG of binding of −14.1 kcal/mol and ImmH 

distortional energy of approximately 10 kcal/mol, the intrinsic binding energy is on the order 

of −24 kcal/mol, a theoretical dissociation constant of 3 × 10−18 M, the same value obtained 

from the Wolfenden-predicted binding of the transition state for PNP.359 The difference 

between observed and predicted binding energies causes the mutual distortions of the 

enzyme–inhibitor complex.
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12.11. Human PNP Energetics of Transition State Analogue Binding

DADMe-ImmH was the first molecule to be synthesized to mimic the transition state of 

human PNP. As indicated below, it was also the molecule used in clinical trials for psoriasis 

and gout. Subsequent syntheses explored chemical specificity and provided mapping of 

transition state energies (Figures 70 and 71). Energetic properties of DADMe-Immucillin 

binding to human PNP were compared to the parent compound DADMe-ImmH using a 

protocol similar to that for bovine PNP (Figures 62 and 63). The 9-deaza guanine derivative 

DADMe-ImmG binds slightly better than DADMe-ImmH, hence the ΔΔG of −0.5 (Figure 

70). All other substitutions caused a reduced binding affinity.385–387 The largest energy loss 

came from the methylene bridge attachment changed from the C9 to the C8 position of the 

9-deazahypoxanthine ring, a change of 7.8 kcal/ mol. Replacing the hydroxypyrrolidine ring 

with the iminoribitol ring of ImmH (C1′,N4′,2′-OH) misplaces the cation for a loss of 3.1 

kcal/mol binding energy. Providing added flexibility in the ribocation mimic by elimination 

of the 3′–4′ covalent bond of the 3′-hydroxypyrrolidine group decreased binding by 5.4 

kcal/ mol. However, other variants of the 3′-hydroxypyrrolidine group, including open ring 

structures attached to the 9-deazahypoxanthine scaffold, were favorable inhibitors for human 

PNP (Figure 71). ImmH (56 pM), ImmG (42 pM), DADMe-ImmH (8.5 pM), and DADMe-

ImmG (7.0 pM) served as index inhibitions for the synthesis and characterization of 

inhibitors 1–38 with human PNP (Figure 71). Compounds 8–11 served as slow-onset, tight-

binding transition state analogues with dissociation constants of 2.1–8.9 pM, making them 

comparable to the best of the index inhibitors. Instead of incorporating the iminoribitol and 

hydroxypyrrolidine mimics of the ribocation, an open-chain nitrogen cationic mimic of the 

transition state is separated from the 9-deazapurine by one carbon, a distance optimized in 

both ImmH and DADMe-ImmH. The acyclic Immucillins are characterized by 9-

deazahypoxanthine (dHx) or 9-deazaguanine (dG) mimics of the 6-oxypurine leaving group. 

SerMe-ImmG (8) and SerMe-ImmH (10) are achiral diols formed from the eponymous 

serinol, while DATMe-ImmG (9) and DATMe-ImmH (11) are chiral triols.387 These 

compounds include the most powerful inhibitors known for human PNP. Ease of chemical 

synthesis coupled with low picomolar dissociation constants make these exceptional 

candidates for eventual clinical applications. Structural and computational studies were used 

to understand the interactions of acyclic Immucillins at the catalytic sites of human PNP.

12.12. Human PNP Structures with Acyclic Ribocation Transition State Analogues

Cocrystallization of the acyclic Immucillins DATMe-ImmH and SerMe-ImmH (11 and 10; 

Figure 71) with human PNP provided catalytic site contacts to be compared with the 

structures with ImmH and DADMe-ImmH (1 and 2; Figure 71; see Figure 66). The leaving 

group interactions are the same as for ImmH and DADMe-ImmH and include bidentate 

hydrogen bonding from the carbonyl oxygen of Asn243 to NH7 and the imino group with 

the purine O6 at distances of 2.7–3.1 Å (Figure 72).380 Ribocation formation in the PNP 

transition state is assisted by hydrogen bonding of His 257 to the 5′-hydroxyl group. This 

interaction is present for DATMe-ImmH at 2.9 Å but not with SerMe-ImmH where this 

distance is 3.5 Å. Ion pair formation between the NH2+ ribocation mimic and the 

nucleophilic oxygen is present at 3.0–3.1 Å, closer than the ion pair in ImmH and equal to 

that found in DADMe-ImmH. The three ribosyl hydroxyls of ImmH are all hydrogen 

bonded at the catalytic site. With both DATMe-ImmH and SerMe-ImmH only one or two 
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interact. For both inhibitors, the hydroxyl groups nearest the nucleophile form favorable 

hydrogen bonds to the oxygens (2.6–2.8 Å). These acyclic Immucillins show remarkable 

binding affinity considering (1) the His257 interaction is missing in SerMe-ImmH, (2) the 

third hydroxyl group interactions found in ImmH are missing in both compounds, and (3) 

that the intrinsic flexibility of these compounds caused by additional rotatable bonds 

requires an increased entropic penalty on binding. These features were explored in 

thermodynamic analyses using isothermal calorimetry and computational dynamics.

12.13. Thermodynamics of Transition State Analogue Binding to Human PNP

The 56 pM binding of ImmH is driven by a large ΔH = –21.2 kcal/mol with a substantial 

entropic penalty of –TΔS= 7.1 kcal/ mol. DATMe-ImmH binds more tightly at 8.6 pM but 

with a smaller enthalpic component of only ΔH = −17.5 kcal/mol. The increased binding 

affinity comes from a large reduction in entropic penalty to −TΔS = 2.3 kcal/mol. The same 

pattern is seen with SerMe-ImmH, where Kd = 5.2 pM, with ΔH = −20.2 kcal/mol and −TΔS 
= 4.7 kcal/mol. Chemical flexibility of the acyclic Immucillins requires larger enropic loss 

on binding than for ImmH, a more rigid compound, but the opposite was observed for the 

PNP-inhibitor system. Therefore, the altered flexibility is required to come from increased 

protein dynamic flexibility with these inhibitors bound, thereby imposing a smaller penalty 

on system entropy.388

Direct evidence for this entropy–enthalpy compensation based on PNP dynamics is provided 

by H/D exchange experiments and from sedimentation velocity analysis of PNP complexes. 

The time-dependent peptide backbone amide proton exchange with deuterium was measured 

for PNP·PO4, the catalytically active, chemically equilibrating Michaelis complexes 

(PNP·PO4·inosine ↔ PNP·Hx·ribose-1-PO4), and inhibitor complexes PNP·PO4·ImmH and 

PNP·PO4·DATMe-ImmH. The number of H/D-exchanged peptide bonds and their peptide 

location was identified by mass spectrometry. Compared to the resting PNP·PO4 complex, 9 

peptide bonds were protected from exchange in the equilibrating Michaelis complexes, 13 

were protected in PNP·PO4·DATMe-ImmH, and 15 sites per subunit were protected in 

PNP·PO4·ImmH. The complex undergoing the most tightened, clenched conformation is 

PNP·PO4·ImmH. The complex with PNP·PO4·DATMe-ImmH permits greater solvent access 

to peptide bonds but is still tighter than the equilibrating Michaelis complexes under 

conditions where no free PNP exists. These differences in solvent exchange are reflected in 

the ultracentrifugation sedimentation velocity of the same complexes. Compared to 

PNP·PO4, the equilibrating Michaelis complexes, PNP·PO4· DATMe-ImmH and 

PNP·PO4·ImmH had sedimentation rates 0.68%, 0.95%, and 2.21% faster, respectively. This 

remarkable hydrodynamic compaction of PNP·PO4·ImmH reflects the large protein dynamic 

entropic penalty ImmH pays on binding.389 This same property of the PNP·PO4·ImmH 

complex was seen in the magic angle spinning solid-state NMR studies of the PNP· 

PO4·ImmH complex, where the enzyme places approximately 10 kcal/mol distortion force 

on ImmH which also involves reorganization of the protein.381

12.14. Dynamics of Human PNP with Transition State Analogues

Molecular dynamic motions of PNP in complex with transition state analogues were 

analyzed with the CHARMM27/CMAP force field starting from crystal structures with 
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complexes of various transition state analogues. Complexes with transition state analogues 

and reactants were compared using 10 ns molecular dynamics simulations with explicit 

solvent. Comparing the molecular dynamics simulations of the cyclic-carbocation mimic 

ImmH with acyclic SerMe-ImmH revealed the PNP protein complex of SerMe-Imm-H to be 

highly flexible. The chemically flexible and rotatable bonds of SerMe-Imm-H allow the 

inhibitor to flex in concert with the protein environment and to maintain hydrogen bonding 

during motions of the active sites.390 Tight binding of the picomolar acyclic inhibitors 

results from increased dynamic motions for interactions within the active sites. Altered 

numbers of water molecules organized within the different catalytic site complexes may also 

contribute to the thermodynamic binding properties.

Thermodynamics of PNP interactions with chemically distinct transition state analogue 

complexes, the hydrogen–deuterium exchange rates, altered sedimentation rates, and 

molecular dynamic results for human PNP can be interpreted in terms of motions related to 

the transition state. The PNP geometry needed to form the short-lived transition state is 

formed only rarely by realizing coincident and optimized distances between catalytic site 

elements to the leaving group, the ribose, and the phosphate nucleophile.391 When these 

interactions are simultaneously optimized, the transition state forms. Computational 

transition path sampling for PNP indicates that the precise geometry required to form the 

transition state results from local conformational dynamics lasting for a picosecond or less.
392–394 Experimental and computational results suggest that the transition state arises from a 

loose dynamic state rather than a compressed, thermally equilibrated conformation that 

exists for a significant part of the 5 ms catalytic cycle. Transition path sampling of the PNP 

reaction indicates a transition state of approximately 10 fs with a reaction coordinate life of 

approximately 70 fs, occupying less than 10–9 of the catalytic cycle.392

Binding of transition state analogues to human PNP converts the transient dynamic 

interactions that form the transition state to stable, thermodynamic interactions. The 

complexes create a stable protein geometry reflecting the transition state. The protein 

structure selected by catalytic evolution to occur with relatively high probability (among all 

possible protein conformations) is that promoting transition state formation. The transition 

state analogue thus becomes favorably bound to a preferred geometry of the protein relative 

to reactant states. Protein flexibility provides the dynamic catalytic site motions required to 

search for the transition state. With bound transition state analogues, the enzyme forms 

longer-lasting hydrogen bonds and ionic interactions that convert the short-lived dynamic 

excursions of the transition state into long-lived thermodynamic interactions. These 

structures approximate the transition state. Protein evolution favors formation of the 

geometric arrangement that promotes barrier crossing. Transition state analogues capture 

this dynamic state, stabilize it into a thermodynamic state, improve peptide backbone 

packing within the enzyme, and provide large binding energy.

12.15. Biomedical Significance of PNP Inhibitors

Human PNP deficiency causes metabolic accumulation of 2′-deoxyguanosine (dGuo) in the 

blood (section 12.8). Activated T cells are the most affected cells because of their ability to 

accumulate dGuo as excess dGTP. Disruption of DNA synthesis by excess dGTP induces 
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apoptotic cell death specifically in activated T cells. Cellular studies examined a 

combination of ImmH and dGuo to determine if ImmH recapitulated the human disorder at 

the cellular level. The combination of ImmH and dGuo was not toxic for unstimulated 

peripheral T cells, BL-2 or SKW 4.2 B cell leukemia cell lines, or GEO colon carcinoma 

cell line.395 Activated human T cells, CCRF-CEM, and Molt-4 human T-cell leukemia lines 

were all sensitive to the combination of ImmH and dGuo. Cell analysis indicated apoptotic 

cell death. The Jurkat human T-cell leukemia cell line was not sensitive to ImmH and dGuo, 

attributed to its low level of expression of deoxycytidine kinase (dCK in Figure 73), the 

enzyme responsible for the conversion of dGuo to dGMP. In the CCRF-CEM susceptible 

cell line, the dGTP accumulated to approximately 10-fold greater than cellular GTP. A 

CCRF-CEM AraC-8D cell line deficient in membrane transporters to dGuo is resistant to 

ImmH + dGuo treatment. In a CEM-SS cell line (T-cell acute lymphoblastic leukemia, T-

ALL), incubation with ImmH and dGuo increased the dGTP pool 154-fold, while in 

nonactivated human lymphocytes the same treatment increased dGTP by 15-fold.396

Pharmacokinetic studies of ImmH (BCX-1777 in animal studies) indicated high oral 

availability (63%) in mice. In Cynomolgus monkeys, BCX-1777 was absorbed slowly to 

produce a sustained, low blood concentration of the drug, causing an extended increase in 

plasma dGuo. Comparing oral and intravenous administration, oral administration of 8.8 mg/ 

kg was equivalent to 4.4 mg/kg intravenous administration in causing the accumulation of 

dGuo in the blood. Single oral doses caused a more sustained increase in dGuo, with ∼ 80% 

of peak dGuo remaining in the blood at 24 h.397 These preclinical studies led to an extended 

series of human clinical trials, eventually leading to clinical approval for peripheral T-cell 

lymphoma in Japan as Mundesine (section 12.8). Additional studies examined effects on 

autoimmune responses and gout as summarized below.379

12.15.1. ImmH in Autoimmune Indications.—Auto-immune disorders involving 

activated T cells provide another indication for PNP inhibitors.398,399 Self-antigens can be 

recognized by errant T-cell clones, and their response is directed against human tissues, 

causing an array of over 70 disorders.400–402 As these are specific T-cell clonal disorders and 

PNP inhibitors target rapidly dividing, activated T-cell clones, inhibitors of PNP are of 

interest as T-cell-selective immunosuppressive agents. PNP inhibitors have the potential to 

remove the activated autoantigenic clone without affecting the unstimulated peripheral T-cell 

populations.395 ImmH inhibited human lymphocyte proliferation activated by interleukin-2, 

mixed lymphocyte reaction and phytohemagglutinin. As a PNP inhibitor, ImmH was up to 

100-fold more potent than previous PNP inhibitors, Figure 74.395,403 An autoimmune model 

in mouse is the human peripheral blood lymphocyte test. Human T cells are injected, are 

activated by the nonhuman environment, and “reject” the SCID-mouse. ImmH prolonged the 

life span 2-fold or more, equivalent to cyclosporine, an approved immune suppressant.404 

The result suggested use of PNP inhibitors as a novel class of selective immunosuppressive 

agents. Patient reports supporting the use of ImmH (Forodesine in this clinical application) 

come from treatment of two patients with post-transplant graft-versus-host disease as a 

consequence of allogeneic hematopoietic stem cell transplantation. Forodesine induced 

complete remission in both patients. A proposal from this patient observation was that 

Forodesine contributed to primary antileukemic effects and a secondary immunologic effect, 
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allowing development of ongoing graft-versus-leukemia effect.405,406 This observation is the 

object of US patent US20170209447A1 “Use of PNP inhibitor to treat relapse of 

malignancy after hematopoietic stem cell transplant”.407

12.15.2. DADMe-ImmH in Psoriasis.—DADMe-ImmH, the first analogue synthesized 

to mimic the transition state of human PNP, is 6-fold more powerful than ImmH for human 

PNP; DADMe-ImmH (BCX-4208/R3421 in trials) was entered into a phase 2 study by 

Hoffmann-La Roche and BioCryst as an oral agent at 20 and 120 mg/day for patients with 

moderate to severe plaque psoriasis in 2007. This multicenter, randomized, double-blinded, 

placebo-controlled study (NCT00504270) was completed in 2009 with no report or 

additional follow-up.408 No other current development of PNP inhibitors as agents against 

autoimmune disorders is evident in the NCT database or in the clinical literature.

12.15.3. PNP Inhibitors in Gout.—DADMe-ImmH was repurposed to lower blood 

uric acid as a gout agent under the names BCX4208 and ulodesine. DADMe-ImmH was 

found to lower blood urate as a single agent or in combination with allopurinol, a xanthine 

oxidase inhibitor. The rationale is clear, as PNP is the only enzyme in humans to remove the 

purine bases from 6-oxypurine nucleosides or 2′-deoxynucleosides. PNP action is required 

to form purine bases for oxidation to uric acid by xanthine oxidase. Inhibition of PNP causes 

the increase of urate precursors inosine, 2′-deoxyinosine, guanosine, and 2′-

deoxyguanosine in the blood and in the urine to replace urate.409–411 As these nucleosides 

have higher solubility and do not crystallize under physiological conditions, their presence is 

preferred to uric acid in gout patients. Once-a-day oral doses of 40, 80, and 120 mg in 60 

gout patients reduced serum uric acid in all groups. Inhibition of PNP also increased the 

circulating dGuo, causing lymphocyte subsets to be decreased by 30–70% depending on 

ulodesine doses.

Concern about the decreased lymphocytes in the sole-agent study led to a 12-week phase 2 

oral study comparing ulodesine doses of 5, 10, 20, and 40 mg/day in combination with 

allopurinol at 300 mg/day (Figure 75). Compared to allopurinol alone, the combination gave 

a significantly larger fraction of patients reaching the target urate level below 6 mg/dL 

serum.412 In a 24 week extension with 160 patients, one-half of the patients receiving 

ulodesine plus allopurinol achieved urate less than 6 mg/dL compared to 25% of patients in 

the allopurinol–alone group.413 Placebo and drug adverse effects were similar. With 

ulodesine doses of 20 and 40 mg/day 15 patient withdrawals occurred with CD4+ < 350 

cells/μL. At the end of the test period, the immune response was tested with vaccine 

standards. Responses were statistically equivalent for ulodesine-treated and placebo subjects. 

Although four clinical trials have been completed (ClinicalTrials.gov Identifiers: 

NCT01265264, NCT01407874, NCT01129648, and NCT00985127), there is no literature to 

indicate that a phase 3 program is underway.414–418

12.15.4. DADMe-ImmH in Vitro vs Human Pharmacokinetics.—DADMe-ImmH 

binds to PNP with a 9 pM dissociation constant.419 Single-dose oral administration to mice 

indicated full inhibition of erythrocyte PNP for the life of the cells. Human trial DADMe-

ImmH dose-ranging studies also found full inhibition of erythrocyte PNP with a single oral 

dose, followed by a slow recovery equal to the rate of red cell replacement (120 days).420 
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Although DADMe-ImmH binding gives kinetic properties consistent with irreversible 

covalent inactivation in these trials, the inhibitor remains in relatively rapid exchange with 

PNP in erythrocytes. The mechanism of the target residence time was solved by comparing 

functional off rates in vitro and in vivo by activity regain and by [14C]DADMe-ImmH 

exchange rates on the enzyme, in erythrocytes, and in human clinical trials (see Figure 76). 

The in vitro PNP-DADMe-ImmH dissociation rate (t½) is 8.3 min at 37 °C by catalytic 

activity regain experiments. Loss of [14C]DADMe-ImmH from erythrocytes during multiple 

washes is slow and biphasic, a consequence of inhibitor release and rebinding to PNP 

catalytic sites. The slow phase gave a t½ of 84 h. Loss of [14C]DADMe-ImmH from 

erythrocytes in the presence of excess unlabeled DADMe-ImmH increased to a t½ of 1.6 h 

by preventing rebinding. In incubated human erythrocytes, rebinding of DADMe-ImmH is 

50-fold more likely than diffusional loss from erythrocytes.

Humans treated with a single oral dose of DADMe-ImmH in phase 1 clinical trials exhibited 

regain of PNP activity with a t½ of 59 days, corresponding to the erythropoiesis rate in 

humans. Comparing the intrinsic dissociation rate (t½ = 8.3 min) with the human in vivo 

regain of PNP activity (t½ = 59 days) requires that each molecule of DADMe-ImmH rebinds 

> 10 000 times. Catalytic site recapture of DADMe-ImmH by PNP is highly favored in vivo, 

giving extraordinary biological efficacy. This study quantitated the erythrocyte PNP 

concentration to be above 1 μM in the erythrocyte. At 37 °C the DADMe-ImmH Kd is 22 

pM. Thus, the enzyme concentration exceeds the Kd by a factor of over 45 000. Diffusional 

escape across the erythrocyte plasma membrane cannot compete with rebinding to the PNP 

target, even when less than 1% of PNP binding sites are free. Equilibration of the 

Immucillins across the plasma membrane is known to be rapid, as both equilibrative and ion-

linked purine transporters transport the Immucillins.421 Inhibitors with picomolar 

dissociation constants exhibit long lifetimes on their targets in vivo because the probability 

of the target enzyme recapturing inhibitor molecules is greater than diffusional loss to the 

extracellular space (Figure 77).

13. PURINE SALVAGE IN PROTOZOAN PARASITES

13.1. Structure of Plasmodium PNP

P. falciparum is the protozoan parasite responsible for the most severe forms of human 

malaria.422,423 Similar to other protozoan parasites, P. falciparum is a purine auxotroph, 

relying primarily on hypoxanthine as the source for all purine needs of the parasite. In 

contrast, human cells obtain purines from de novo synthesis and use purine salvage 

pathways to conserve the need for de novo synthesis. During most of the human infective 

cycle, P. falciparum lives in erythrocytes where hypoxanthine can be produced from inosine 

phosphorolysis, in turn produced by dephosphorylation of ATP and adenosine deamination. 

Human PNP is the only enzyme to form hypoxanthine in erythrocytes. However, P. 
falciparum also expresses an abundant PNP as a second path for hypoxanthine production. 

The purine base and nucleoside transporter PfENT1 provides the link between erythrocyte 

and parasite purine metabolism.424–426 P. falciparum PNP (Pf PNP) differs from the human 

enzyme. It is a homohexamer with six independent catalytic sites.427–429 In addition to 

inosine, Pf PNP also uses 5′-methylthioinosine (MTI) as a substrate, formed in P. falciparum 
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by deamination of 5′-methylthioadenosine (MTA). MTI is unknown in normal human 

metabolism, as human MTAP uses MTA directly and human adenosine deaminase is 

inactive on MTA.429,430 ImmH is a 56 pM inhibitior of human PNP and a 0.86 nM inhibitor 

of Pf PNP. ImmH was used to test the theory that human and parasite PNPs are essential in 

providing the only path to hypoxanthine production in P. falciparum cultured in human 

erythrocytes. Inosine but not hypoxanthine incorporation into nucleic acids was blocked by 

ImmH. ImmH prevented P. falciparum growth with an IC50 of 35 nM and was reversed by 

hypoxanthine but not inosine, establishing the block at the host and parasite PNPs.431 The 

discovery that MTI is a substrate led to the synthesis and testing of 5′-methylthio-

Immucillin-H (MT-ImmH), a 2.7 nM inhibitor for the Pf PNP but a weaker 303 nM inhibitor 

for human PNP. Structures for ImmH and MT-ImmH with Pf PNP were compared to that 

from mammalian PNP to demonstrate the differences in mammalian and parasite enzymes 

(Figure 78).427,429

13.2. Structure of Plasmodium Adenosine Deaminase

Discovery of MTI as a substrate for PNP in P. falciparum suggested the parasite expression 

of an MTA deaminase. Adenosine deaminases (ADAs) have been isolated and compared 

from six Plasmodium species, including P. falciparum.427,432,433 P. falciparum ADAs 

deaminate adenosine and MTA with approximately equal efficiency, unlike mammalian 

ADAs which do not use MTA. Coformycins are transition state analogues of the mammalian 

ADAs and also inhibited P. falciparum ADA with a slow-onset tight-binding Kd of 260 pM. 

5′-Methylthiocoformycin (MT-coformycin) was proposed as a way to develop a 

Plasmodium-specific transition state analogue for P. falciparum ADA.434 The P. falciparum 
ADA was inhibited by MT-coformycin with a slow-onset tight-binding Kd of 250 pM. In 

contrast, human ADA showed no significant inhibition by MT-coformycin at 10 μM, a 

discrimination of greater than 400 000 for the parasite deaminase. The structural basis for 

MTA and MT-coformycin specificity was solved with the crystal structure of Plasmodium 
vivax ADA (PvADA).432 The complex with MT-coformycin revealed the expected Zn2+ 

coordination to be present with both 2′-deoxycoformycin and MT-coformycin but also 

revealed an unprecedented binding geometry for the 5′-methylthioribosyl group. Compared 

to Plasmodium ADA complexes with adenosine or 2′-deoxycoformycin, the 5′-

methylthioribosyl group of MT-coformycin is rotated 130° with respect to the 5′-ribosyl 

(Figure 79). The unusual geometry of MT-coformycin is stabilized by a hydrogen-bond 

network between Asp172, the 3′-hydroxyl, and a structural water molecule that occupies the 

5′-hydroxyl binding site when deoxycoformycin is bound. The water found in the MT-

coformycin structure is displaced with deoxycoformycin binding. The essential role of 

Asp172 was demonstrated by site-directed changes deleting Asp172 or mutating Asp172 to 

Ala or Glu. No catalytic activity is observed in any of these mutants. As anticipated for a 

transition state analogue, the mutation also destroys MT-coformycin binding.432 Cultured P. 
falciparum parasites treated with coformycin or MT-coformycin are growth inhibited when 

MTA is the sole purine source. However, the addition of inosine, hypoxanthine, or MTI 

restores growth, demonstrating that these compounds are accessible to the parasites and that 

this MTA deamination pathway is not as essential as the formation of hypoxanthine via PNP, 

as described above.
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13.3. PNP Inhibitors Are Effective in Primate Infections of P. falciparum

Metabolic production of hypoxanthine in erythrocytes infected with P. falciparum relies on 

salvage from the purine pool of the host (Figure 80).431,436 Creating a condition of purine 

starvation for the parasite requires inhibition of human and parasite PNPs. An analysis of 

DADMe-Immucillin specificity for human and parasite PNPs led to the selection of 

DADMe-Immucillin-G (DADMe-ImmG; 4, Figure 71), a transition state analogue with Kd 

values of 7 and 890 pM for human and parasite PNPs, respectively. At near-physiological 

hypoxanthine concentrations (<10 μM), DADMe-ImmG inhibited growth of drug-sensitive 

and drug-resistant P. falciparum strains with IC50 values near 150 nM for all strains.435 The 

efficacy of DADMe-ImmG in blocking hypoxanthine production was demonstrated by direct 

analysis. Intracellular hypoxanthine in infected erythrocytes was 21 μM without treatment 

and was below detectable levels (<4 nM) with DADMe-ImmG treatment.

The efficacy of DADMe-ImmG in P. falciparum cultures led to testing in active infections in 

Aotus lemurinus lemurinus monkeys. Only primates are susceptible to P. falciparum 
infections, and P. falciparum (FVO strain) is lethal in Aotus if untreated. Oral treatment with 

DADMe-ImmG, 50 mg kg−1, twice a day for 7 days cleared active P. falciparum infections 

between the fourth and the seventh day of treatment (Figure 81).435 Aotus blood remained 

parasite negative for up to 9 days post-treatment. However, the treated monkeys showed 

regrowth of parasites after treatment was terminated but at a lower rate of growth. DADMe-

ImmG showed no drug-associated toxicity in Aotus. Aotus provides a challenging model for 

inducing hypoxanthine starvation. Humans have normal plasma hypoxanthine of 2.7 μM, but 

in Aotus, the normal erythrocyte hypoxanthine and inosine concentrations are 64 and 3 μM, 

respectively.435,437,438 The administration of DADMe-ImmG as a PNP inhibitor

13.4. P. falciparum Are Slow to Develop Resistance to DADMe-ImmG

Transition state analogues function by converting the rapidly fluctuating dynamic excursions 

normally involved in efficiently forming the transition state into stable thermodynamic 

interactions.253 Mutations against transition state analogue binding are thus mutations away 

from catalytic function. Transition state analogues used as antibiotics are thus expected to be 

slower in developing target mutations. When P. falciparum was cultured under incremental 

DADMe-ImmG drug pressure, drug resistance developed slowly.439 Initial phases of drug 

resistance were caused by an increase in Pf PNP gene copy number (3–4-fold) and 

corresponding PNP protein expression. Increased drug pressure caused additional Pf PNP 

gene copies (up to 14-fold gene copy number), some of which contained point mutations 

Met183Leu (M183L) or Val181Asp (V181D) at catalytic site residues (Figure 82). Mutant 

Pf PNPs from resistant clones demonstrated reduced affinity for DADMe-ImmG but also 

had reduced catalytic efficiency. In native Pf PNP, Glu184 forms bidentate hydrogen bonds 

with the 2′-and 3′-hydroxyls of the substrate or transition state iminoribitol transition state 

analogues (Figure 78). Crystal structures of the M183L and V181D mutants demonstrated 

disrupted catalytic site interactions with the hydroxypyrrolidine group of DADMe-ImmG for 

V181D. The catalytic defects for V181D (4-fold decrease in kcat/Km; 42 fold increased 

inhibitor Kd) are overcome by the Pf PNP gene amplification. In contrast, the clone with 

M183L was nearly inactive (6 × 10–5 of native kcat/ Km), far below viable activity. The 

M183L clone also had gene amplification with expression of a combination of native and 
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M183L PNPs. It was proposed that subunit hybrids of native and M183L PNPs provide 

sufficient catalytic activity while decreasing the effect of inhibitor. No test of that hypothesis 

has been reported. Resistance developed slowly over 136 generations (2136 clonal selection). 

Thus, transition state analogue inhibitors against Pf PNP are slow to induce resistance. The 

World Health Organization treatment guidelines recommend multiple drug therapy for 

treatment of malaria using agents with distinct mechanisms of action.440 No approved 

antimalarials function by inhibition of purine salvage; thus, PNP inhibitors are anticipated to 

have favorable characteristics for use in drug combinations.

13.5. Transition State Analogue for Trichomonas vaginalis PNP

Trichomonas vaginalis is a common human protozoan parasite and the causative agent of 

trichomoniasis, the most common curable sexually transmitted disease in the Unites States.
441–443 Trichomonas vaginalis is unusual among the protozoan parasites in expressing 

enzymes for adenine and adenosine-based purine salvage pathways.444 Adenine salvage has 

been proposed to involve a broad-specificity PNP acting to form adenosine coupled to an 

adenosine kinase to form intracellular AMP. T. vaginalis PNP (TvPNP) is proposed to 

function in the reverse direction relative to the PNP of the human host as well as an altered 

purine base specificity. With adenine/adenosine specificity, Immucillin-A (ImmA; Figure 63, 

18) and DADMe-Immucillin-A (DADMe-ImmA) were tested as transition state mimics 

(Figures 83 and 84). They resemble adenosine at early and late transition states with TvPNP. 

As human PNP does not accept 6-amino purines, ImmA and DADMe-ImmA showed 

specificity for the T. vaginalis PNP. ImmA was a slow-onset tight-binding inhibitor of 

TvPNP with an equilibrium dissociation constant of 87 pM.445 TvPNP·ImmA·PO4 inhibitor 

residence time has a half-life of 17.2 min and a Km/Kd ratio of 70 100. DADMe-ImmA (6-

amino analogue of DADMe-ImmH; Figure 71, 2) mimics a late ribocation transition state 

for TvPNP. It has a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, 

and a Km/Kd ratio of 203 300. The slightly tighter binding of DADMe-ImmA indicates a 

late SN1-like transition state. The 6-amino-9-deazapurine group of ImmA and DADMe-

ImmA makes them insignificant inhibitors of human PNP. Crystal structures revealed a 2.7 

Å ionic interaction between the nucleophilic PO4 oxygen anion and the N1′ cation of the 

hydroxypyrrolidine. This interaction is weaker in the TvPNP·ImmA·PO4 structure at 3.5 Å 

(Figure 84). A more favorable interaction in the TvPNP·ImmA·PO4 structure includes 

hydrogen bonds between the 2′-hydroxyl and the protein that are not present in 

TvPNP·DADMe-ImmA·PO4 (Figure 83). However, the tighter ion pair is energetically 

dominant to explain the tighter binding of DADMe-ImmA (Figure 84). Structures with 

TvPNP reflect the more intimate interactions permitted by the methylene bridge of the 

DADMe-Immucillins. Subsequent biological experiments with cultured T. vaginalis 
organisms indicated that TvPNP is not an essential target, possibly due to the direct 

conversion of adenosine to AMP without the participation of TvPNP. These findings support 

the earlier work implicating the purine nucleoside kinase (aka adenosine kinase) as a critical 

enzyme in purine salvage in this organism.444

13.15.1. Immucillin-A Becomes an Antiviral.—ImmA was included in a small-

molecule search for antivirals.446 The compound exhibited antiviral activity in cultured cells 

against Filoviridae (Marburg, Ebola), Togaviridae (Eastern Equine Encephalitis, Western 
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Equine Encephalitis), Bunyaviridae (Rift Valley Fever, La Crosse), Arenaviridae (Lassa, 

Junin), Paramyxoviridae (Respiratory Syncytial, Measles), Orthomyxoviridae (Influenze), 

Picornaviridae (Human rhinovirus 2), and Flavivir-idae (Yellow fever, Japanese encephalitis, 

Dengue virus) with effective concentration values (EC50) of 3.4–44 μM. The most potent 

viral inhibition was with the Filoviridae where the EC50 values were 3–12 μM. More recent 

studies found EC50 values of 1–3 μM for West Nile and Tick-borne encephalitis viruses and 

4–12 μM for various strains of Zika virus.447,448 In biosafety level 4 containment animal 

studies at the United States Army Medical Research Institute of Infectious Diseases 

(USAM-RIID), postexposure intramuscular administration of ImmA (BCX4430 in 

preclinical trials) protected against Ebola virus and Marburg virus disease in rodent models.
446,449 In nonhuman primate preclinical trials, BCX4430 completely protected cynomolgus 

macaques from Marburg virus infection when administered as late as 48 h after infection 

(Figure 85). There were no signs of systemic toxicity or adverse local reactions, supporting 

additional development as an antiviral.

Although ImmA is a transition state analogue with respect to TvPNP, its antiviral 

mechanism of action is reported to be as a prodrug for an unusual nucleotide triphosphate 

chain termination of viral RNA polymerase.446 Human cells phosphorylate ImmA to ImmA 

5′-triphosphate with similar efficiency to the conversion of extracellular adenosine to ATP. 

The ImmA 5′-triphosphate is incorporated into the viral RNA but not the human host cell 

RNAs. ImmA has both 3′-and 5′-hydroxyl groups and thus would not be considered a 

traditional chain terminator. Experimental studies with HCV NS5B polymerase 

demonstrated ImmA incorporation followed by two additional nucleotide additions to the 

growing RNA with subsequent chain termination. Although the chemical mechanism of this 

unusual termination has not been reported, it is possible that the cation of ImmA forms an 

ion pair with one of the adjacent phosphodiester anions to stabilize an RNA conformation 

that is unproductive for the addition of additional nucleotides.

13.5.2. Phase 1 Clinical Trial for Immucillin-A.—A Phase 1 clinical study to 

evaluate the safety, tolerability, and pharmacokinetics of BCX4430 (Galidesivir in trials; 

Clinical-Trials.gov, Identifier: NCT02319772) was initiated in December 2014 by BioCryst 

Pharmaceuticals with the National Institute of Allergy and Infectious Diseases as a 

collaborator.450 A total of 94 healthy participants were evaluated for the safety, tolerability, 

and pharmacokinetics of single, ascending doses of BCX4430 versus placebo in healthy 

subjects. The latest literature report on the Phase 1 trial was in 2016 and indicated “for 

single doses of 0.3–10.0 mg/kg, plasma exposure to BCX4430 was dose-related and linear. 

The first multi-day cohort was evaluated at a dose of 2.5 mg/kg QD for 7 days, and the dose 

escalation is continuing. To date, BCX4430 injections have been safe and well tolerated.”451 

As 5′-phosphorylation of BCX4430 is required to provide the active agent, chemical 

synthetic efforts have been reported to produce a phosphonate prodrug to improve the 

delivery to target cells, but these await evaluation for biological efficacy.452
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14. HIV-1 PROTEASE TRANSITION STATE MIMICS AS DRUGS

14.1. Brief Background of HIV-1 Protease as an Antiaids Target

A review exemplifying transition state analogues would be incomplete without considering 

the biological research, inhibitor design, and clinical success story for the application of 

HIV-1 protease inhibitors. An important chapter of surviving HIV-1 infection is the 

development of the aspartic protease inhibitors against the essential, viral-encoded HIV-1 

protease. This essential enzyme has been called “The triple threat” target for HIV infections 

because of the multiple steps (at least three) impacted in maturation of the virus when the 

protease is inhibited.453 Fully functional HIV-1 protease is a homodimer creating a single 

catalytic site with two essential Asp residues, one from each subunit, whose carboxylate 

groups are involved in catalysis. Paradoxically, each Gag-Pol poly protein contains a 

catalytically inactive single half of the protease required for function. Initiation of 

proteolysis is thought to occur by the interaction of two intact, uncleaved, poly proteins to 

form active protease in the context of an intact poly protein dimer.454 Immature virus 

particles containing intact Gag-Pol poly proteins are then processed by the dimer at the nine 

proteolytic substrate sites to produce fully functional proteins including the reverse 

transcriptase, RNase H, integrase, and the most active form of the protease. Blocking the 

protease, either in the Gag-Pol dimeric form or in its fully released form, interferes with all 

infective processes associated with these proteins, which can only create fully infective 

viruses after Gag-Pol peptide hydrolysis. Research efforts have led to high-affinity inhibitors 

with most analogues containing one feature of the transition state, an sp3 center where a 

substrate carbonyl reaction center has been reduced to the secondary alcohol positioned to 

occupy the catalytic site where the susceptible peptide bond sp2 carbonyl group is converted 

at the transition state to the sp3 secondary alcohol in the gem-diol intermediate and in the 

transition state leading to peptide bond loss (Figure 86).

14.2. Clinically Approved HIV-1 Protease Inhibitors

Aspartic proteases constitute a significant drug target group, including HIV-1 protease, 

renin, BACE1, and an Alzheimer disease target, γ-secretase.455 Humans express 15 aspartic 

proteases; therefore, drug design approaches for the specific HIV-1 protease target must 

include specificity motifs at the adjacent amino acid binding sites to direct the inhibitor 

action toward the target enzyme. The success of the program for development of HIV-1 

protease inhibitors has led to the inclusion of HIV-1 inhibitors in every formulation of highly 

active antiretroviral therapy (HAART). Also included are inhibitors against reverse-

transcriptase and/or integrase targets.456 Although the list of approved agents for HIV-1 

protease is long and resistance is slow to develop when protease inhibitors are used in 

combination with agents acting on other targets in HAART therapy, resistance to most 

HIV-1 protease inhibitors has occurred.457,458 Continued drug design efforts search for 

substituent groups at N-or C-terminal amino acid side chain binding sites. The current FDA-

approved drugs (Figure 87) include an sp3 secondary alcohol at the putative cleavage site 

surrounded by substituents to occupy adjacent binding sites for amino acids in the normal 

function of the Gag-Pol peptide.459,460
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14.3. Thermodynamics of the HIV-1 Protease Inhibitors

Five HIV-1 protease inhibitors were approved prior to the year 2000 with dissociation 

constants in the range of 15–2000 pM (Figure 87). Subsequently, four additional drugs were 

approved with dissociation constants from 1.3 to 16 pM. All of the inhibitors contain the 

transition state mimic center, namely, the sp3 secondary alcohol at the putative cleavage site, 

with the exception of Tipranavir, where the alcohol is at an sp2 center. All inhibitors include 

relatively large hydrophobic surface areas and multiple sites capable of accepting or 

donating hydrogen bonds. For example, Lopinavir, a 1.3 pM inhibitor, has three freely 

rotating phenyl rings for hydrophobic interactions, eight sites as potential hydrogen-bond 

acceptors, and three hydrogen-bond donor groups. Binding thermodynamics indicate that the 

earlier inhibitors were less driven by enthalpy and more by the entropic hydrophobic 

interactions than the more recent and more tightly binding analogues.461 Recent information 

suggests that even more powerful inhibitors can be made to the HIV-1 protease by 

substituents remote from the site of peptide bond hydrolysis. For example, inhibitors similar 

to those already approved (Figure 87) but modified to include a boronic acid group have 

been shown to improve binding affinity to the HIV-1 protease by at least an order of 

magnitude.462

14.4. Are the HIV-1 Protease Inhibitors Transition State Analogues?

Transition state theory predicts that mutations that decrease the binding of transition state 

analogues will also reduce catalytic efficiency by a similar degree. The theory has been 

tested by comparing catalytic site mutants or distinct substrate and transition state analogue 

pairs for similar changes in chemical potential and binding of transition state analogues.463 

This hypothesis was tested by transition state analysis to compare the transition state 

structures of native and multidrug-resistant HIV-proteases.464 Kinetic isotope effects were 

measured and interpreted for the chemically rate-controlling step of proton transfer from the 

active site Asp125 with partial hydrogen-bond formation to the accepting nitrogen and 

partial bond loss from the carbonyl carbon to the amide leaving group. Near-identical KIEs 

were observed for native and Ile84Val multidrug-resistant HIV-1 proteases, indicating highly 

similar transition states. The Ile84Val mutation provides resistance to most approved HIV-1 

protease inhibitors. Computational analysis of the cause of the Ile84Val resistance to 

amprenavir indicated a decreased van der Waals interaction to the hydrophobic ring at the 

R2 position, not by altered transition state interactions.465,466 The observation that resistance 

mutations have smaller effects on the reaction rate (transition state formation) than on 

inhibitor binding indicates that transition state forces may not be the dominant elements in 

the interactions of HIV-1 protease inhibitors.

15. CONCEPTS AND CONCLUSIONS

15.1. Technology and Theory for Transition State Analysis

In a review covering transition states, mechanism, transition state analogue design, and 

potential applications, expansion to cover the detailed methods of isotope effect 

determination and theory would prove (even more) unwieldly. Readers are directed to earlier 

work that provides comprehensive reviews of methods, theory, practice, and applications to 

other enzymes. The Sixth Annual Steenbock Symposium in 1976 is recognized as a major 
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event in the application of kinetic isotope effects to enzymatic reactions. The meeting 

resulted in a thin but valuable monograph combining theory and practice. In addition, it 

provides a link to the historic development of isotope effect theory.467 W. W. (Mo) Cleland, 

in addition to his part in organizing the Steenbock Symposium, was an early advocate of 

using isotope effects to examine enzymatic transition states and to solve mechanistic enzyme 

problems.468 Practical approaches to measuring small KIEs by competitive methods and 

statistical analysis of uncertainties and methods to unravel intrinsic KIE values from 

experimentally observed ones have been reviewed.16–19 The application of KIE principles to 

glycoside hydrolysis and base-excision repair enzymes overlap with some of the combined 

experimental and computational work presented here and has also been reviewed.125,469,470 

Computational approaches to provide the convergence between KIE measurements and 

transition state structure is the subject of a recent book chapter and the development of a 

new suite of computational programs to coordinate isotope effects and bond vibrational 

properties.471,472

15.2. Transition State Dynamic Concepts

The notion of tight-binding transition state analogues was a well-understood concept, 

primarily from the work of Wolfenden, long before it developed into a practical approach for 

the logical design and development of drug candidates. Predictions of Linus Pauling that 

enzymes evolved to match features of the transition state were prescient, although his 

proposal that enzymes select out the activated states of reactants from solution did not 

anticipate the dynamic protein rearrangements needed to bring the Michaelis complex to the 

transition state. Wolfenden correctly pointed out that enzymes operating near the diffusion 

limit must, by necessity, function only on ground state reactant molecules. The nature of 

enzymes in complexes with substrates and transition state analogues is now abundantly 

informed by structural, spectroscopic, and computational studies comparing Michaelis 

complexes to those of transition state analogues. Spectral dynamic studies revealed bound 

reactant molecules exist in multiple, rapidly interchanging energetic states with respect to 

the bonds in the reaction coordinate.473 The most energetic are converted to the transition 

state, a protein conformational state with all contacts between enzyme and reactants 

optimized for the few femtoseconds needed for transition state formation. Because 

femtosecond motions forming transition states are dictated by local bond vibrational modes, 

they are mass sensitive, as demonstrated with heavy [2H, 13C, 15N]enzymes.474–478 In the 

normal reaction coordinate, chemical changes induce release of the products. Transition 

state analogues take advantage of the protein architecture, evolved to favor the transition 

state geometry. Transition state analogues convert the favored dynamic conformation of the 

transition state into a thermodynamically stable state in complex with the analogue. These 

interactions cause the protein to condense around the transition state analogue, a process 

well documented by structural approaches.389 Instead of the millisecond reactant and 

product exchange rates in normal catalysis, transition state analogues are released on the 

minute to hour time scale, therefore freezing enzyme function to provide extended biological 

inhibition.420
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15.3. Binding of Ribocation Transition State Analogues

Many of the enzymes described here have ribocationic transition states, and a cation defines 

part of the chemical mimicry of their transition state analogues. In the PNP, MTAP, and 

HGPRT families, the ribocation mimic is stabilized by an ion pair formed with the anion 

catalytic site nucleophiles. Without that stabilization, much of the binding energy is lost 

(e.g., Figure 44). Other ribocation-forming enzymes, for example, the MTANs, ribosome-

inactivating proteins, and nucleoside hydro-lases do not have anion nucleophiles to ion pair 

with transition state analogue cations but contain water molecules as incipient nucleophiles. 

One might expect that anionic groups from the enzyme would stabilize the ribocation in 

these enzymes, but that is not the case. Instead, the nearest group to the cation of these 

transition state analogues is usually the nucleophilic water molecule, often within hydrogen-

bond distance of the ribocation. These enzymes often receive assistance in ribocation 

formation by neighboring-group participation with close O4′– O5′ interactions and 

hydrogen bonding to the O2′ and O3′ hydroxyls from enzymatic carboxyl groups. Leaving 

group interactions play a major role in some of the hydrolases, while others receive more 

activation from formation of the ribosyl cation, exemplified in section 5.3 and Table 1.

15.4. Distinct Transition States from High-Homology Catalytic Sites

Why is it that closely related enzymes form distinct transition states? Human and bovine 

PNPs are 87% identical overall and are crystallographically indistinguishable in their 

catalytic site contacts to the purine. One amino acid difference occurs in the contacts to 

phosphate, but phosphate has no significant bonding to the ribocation at the transition state. 

Transition state differences were established from intrinsic KIE values and were sufficiently 

distinct to permit design of species-specific transition state analogues (Figure 60). The 

ability of near-identical catalytic sites to form distinct transition states has been interpreted 

in terms of different dynamic excursions at the catalytic sites to form transition state 

interactions. Differences arise from the altered dynamic architectures of sequences remote 

from the catalytic sites. Support for this hypothesis came from transition state analysis with 

a chimeric PNP. Non-conserved amino acids from the bovine enzyme, remote from the 

catalytic site, were substituted into the human enzyme. The transition state and kinetic 

properties for the chimeric enzyme differed from either parent.479,480

Another example of distinct catalytic site function from remote interactions comes from the 

MTANs. E. coli and S. enterica MTANs are 95% identical in amino acid sequence, 

crystallographically indistinguishable in contacts at the catalytic sites, and catalyze the same 

reactions. Yet the inhibition with the transition state analogue pClPhT-DADMe-ImmA is 

0.04 pM for the E. coli enzyme and 2.7 pM for the S. enterica enzyme, a factor of 67.272 

Larger differences occur in other bacterial MTANs, attributed to differences in the dynamic 

architecture, even in enzymes with near-identical catalytic sites. Large differences in affinity 

for transition state analogues for closely related MTANs can be attributed to distinct 

enthalpic contributions of inhibitor binding because of altered dynamic states with distinct 

but related transition states.293 Creating structurally equivalent catalytic sites from slightly 

different ones does not create equivalence for transition state interactions. For example, 

catalytic site contacts to substrates differ by two amino acids between the E. coli and the V. 
cholerae MTANs, enzymes with 60% identity.481,482 Transition state analogues favor the E. 
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coli enzyme by up to 3 orders of magnitude. Mutation of the catalytic site amino acids 

(Ala113Pro and Val152Ile) in VcMTAN to match those of EcMTAN resulted in transition 

state analogue binding even more unlike those of EcMTAN, another indication of the 

dominant role of remote protein dynamics influencing catalytic site function.

15.5. Applying Transition State Analysis to Drug Design

Every enzyme has one or more transition states, and all enzymes can be explored by KIEs to 

provide mechanistic and transition state information. However, can we expect to apply 

transition state drug design to every enzyme? No. Dehydrogenase transition states are 

defined by the degree to which the hydride (and proton) transfers have occurred between 

donors and acceptors at their transition states. The role of the enzyme is to align donor–

acceptor pairs appropriately and for sufficient time (femtosecond) to support transfer. 

Understanding these details does not inform design of transition state analogues, as the 

transition state is defined by the transfer of single atoms. There is not yet a suitable mimic to 

reflect these single-atom transfers as transition state analogues. Also, although there are 

inhibitors of dehydrogenases (e.g., oxalate for lactate dehydrogenase) they are not faithful 

mimics of the transition state.

Phosphotransferases, especially the protein kinases, are a large family of highly desirable 

drug targets. Their transition states present a challenge similar to the dehydrogenases. 

Phospho-transferase transition states are defined by the bond orders to the attacking 

nucleophile, the leaving group, and the extent of distortion in the transferring phosphoryl 

(PO –) group toward a planar intermediate (SN1, loose transition state) or a compressed SN2 

(tight transition state) species.483,483 Transition state analogues are well known for 

phosphoryl transferases, including AlFx,, BeFx, MgFx, and VOx species.484 While some of 

these are powerful inhibitors they are nonspecific, toxic, and nondruggable molecules. 

Presently, we have not been sufficiently clever to incorporate such mimics into stable, 

druggable molecules, but we have only scratched the surface of the periodic table in 

transition state analogue design. It is important to note the lack of transition state analogues 

does not mean the lack of drugs. The pharmaceutical industry is robustly designing and 

exploiting powerful and occasionally specific inhibitors to target the protein kinases in 

molecules that capture binding site energy but do not incorporate transition state features.

Astute readers will note that all of the powerful transition state analogues described here 

arise from enzyme chemistries classified as substitutions at carbon. In the 

ribosyltransferases, the reaction center is a neutral sp3 carbon in the reactant state and 

becomes an sp2 planar, cationic reaction center at or near the transition state. The transition 

state differs from the reactant in both geometry and charge, providing two design principles 

for stable molecules that mimic the transition state. In the case of the adenosine deaminase 

family reaction geometries are the opposite, but the same principles apply. The reaction 

center is sp2 in the reactants, and the enzyme-enforced addition of water creates an sp3 

Meisenheimer-like transition state (or possibly an intermediate) with distinct geometry and 

purine ring ionization states, permitting stable mimics of the transition state to be 

synthesized. Finally, HIV-1 protease is also substituted at carbon, with the first transition 

state involving the conversion of the targeted sp2 carbonyl to the sp3 diol from the addition 
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of the aspartic acid-activated water nucleophile. The powerful inhibitors of HIV-1 protease 

all contain some geometric mimic of this sp3 mimic, although adjacent interactions are also 

critical in tight-binding interactions.

15.6. Future

Review of a subject as broad as transition states, mechanisms, and analogues requires 

consideration of a manageable research area, considered retrospectively. Here, the focus has 

been on targets and transition state analogues informed by experimental and computational 

isotope effects. The geometric and electrostatic information from transition state analysis has 

provided design elements as chemical blueprints for synthesis of transition state analogue 

candidates. Through the ever-evolving power of computational chemistry, at some time in 

the near future, it is likely that computational analysis alone might be sufficient to provide 

accurate models of enzymatic transition states. When that happens it will permit a more 

direct path to the design of these powerful inhibitors.
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Figure 1. 
Thermodynamic box for describing the equilibrium binding constant of the transition state 

as described by Pauling and formalized by Wolfenden. E and A are enzyme and reactant, 

kchem and kenz are the rates of transition state formation without and with enzyme, and Kd 

and Kd‡ are dissociation constants for the Michaelis and transition state complexes, 

respectively.
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Figure 2. 
Enzymatic synthesis of radiolabeled reactants PRPP from specifically labeled glucose or 

ribose. Product of a single-pot coupled synthesis yields ATP. Subsequent conversions to 

AMP, PRPP, inosine, and adenosine are shown. Isotopic labels in any of the reactants can be 

used to label the desired position in products. Other transferases can replace APRTase to 

generate other nucleotides as intermediates or products.21–23

Schramm Page 84

Chem Rev. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Crystal structure of E. coli AMP nucleosidase hexamer with formycin 5′-phosphate at the 

catalytic sites (A), and detailed contacts between the enzyme and formycin 5′-phosphate at 

the catalytic sites (B). Catalytic site contacts are from the parental and adjacent (*) subunit 

contacts. From PDB structure 1T8S. Adapted with permission from ref 35. Copyright 2004 

Elsevier.
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Figure 4. 
Kinetic isotope effects for [1′–14C]AMP primary effect and [1′–3H]AMP α-secondary 

effect with different enzyme conditions and compared to the acid-catalyzed solvolysis of 

AMP in 0.1 M HCl at 50 °C.21,22 % KIE = 100% (KIE – 1.000).
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Figure 5. 
Formycin 5′-phosphate differs from AMP by a chemically stable C–C ribosidic bond and 

elevated pKa at N7 to mimic protonation of this group at the transition state.
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Figure 6. 
Substrate 2′-deoxyadenosine (2′-dAdo) enzyme-stabilized intermediate at the catalytic site 

and the natural product transition state analogue inhibitor, deoxycoformycin. The Zn2+-

activated water nucleophile is shown. In clinical use, the analogue is known as pentostatin.
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Figure 7. 
Zn2+ cation at the catalytic site of bovine adenosine deaminase from PDB 1FKX, D296A 

mutant. Zn2+ ion is the central sphere in the figure and is in contact with the protein ligands 

and the 6-hydroxyl group of 6-hydroxydihydroadenosine.
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Figure 8. 
Dissociation constants (Kd) for inhibiton of ADAs from bovine (Bt), human (Hs), and 

Plasmodium falciparum (Pf) sources. Reproduced from ref 434. Copyright 2007 American 

Chemical Society.
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Figure 9. 
Reaction coordinate and transition state structures for the P. falciparum (PfADA), human 

(HsADA), and bovine (BrADA) transition states with molecular electrostatic potential maps 

of reactant, transition state, and product. Reproduced from ref 71. Copyright 2007 American 

Chemical Society.
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Figure 10. 
Kinetic isotope effects and bond lengths(Angstroms)at the transition state of CfNH. The N-

ribosidic bond is nearly cleaved, with weak nucleophilic participation to form a partially 

developed ribocation.
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Figure 11. 
Chemical features of the transition state for CfNH incorporated into candidates as transition 

state analogues.88
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Figure 12. 
Stereoviews of a transition state analogue bound to the catalytic site of CfNH. Upper panel 

shows the contacts to the catalytic site Ca2+, and lower panel indicates the contacts to the 

pAPIR transition state analogue. Reproduced from ref 96. Copyright 1996 American 

Chemical Society.
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Figure 13. 
Distance map for the catalytic site of CfNH with contacts to the catalytic site and pAPIR as 

a catalytic site ligand. His82 is 3.6 Å from the leaving group and has been considered a 

potential leaving group proton donor. Note the 2.7 Å neighboring group interaction between 

O5′ and O4′. Reproduced from ref 96. Copyright 1996 American Chemical Society.
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Figure 14. 
Interaction map for the catalytic site of TvNH with contacts to the catalytic site Ca2+ and 

inosine as a catalytic site ligand. Asp10Ala mutant prevented hydrolysis of the inosine. 

Trp83 and Trp260 are stacked with the leaving group. Reproduced with permission from ref 

94. Copyright 2006 Elsevier.
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Figure 15. 
Analogues of the transition states for IU-NH (CfNH) and IAG-NH (TbbNH) demonstrating 

ribocation and leaving group interaction differences.97,98
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Figure 16. 
ADP ribosylation of eukaryotic elongation factor 2 (eEF2), G-stimulatory protein α, and G-

inhibitory protein α by diphtheria, pertussis, and cholera toxins, respectively. Attacking 

nucleophile atoms are designated by the electrons. Note the inversion of configuration at C1 

of the ribosyl group.
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Figure 17. 
(A) Synthesis of isotopically labeled [1′–14C]NAD+ by coupled enzymatic reactions. 

Enzymes are (1) hexokinase, (2) glucose 6-phosphate dehydrogenase, (3) 6-

phosphogluconate dehydrogenase, (4) 5-phosphoriboisomerase, (5) 5-phosphoribosyl 1-

pyrophosphate synthatase, (6) nicotinate phosphoribosyltransferase, (7) NAD+ 

pyrophosphorylase, (8) pyruvate kinase, (9) glutamate dehydrogenase, and (10) adenylate 

kinase. Single-pot incubation (steps 1–10) converts glucose to NaAd+. Reaction is stopped at 

step 11; NaAD+ is purified and converted to NAD+ by NAD+ synthetase (12).113 Different 

labels in the starting glucose or the nicotinic acid added in step 6 provide NAD+ with any 

desired label in the NMN+ portion of the molecule. From the method of Figure 2, label can 

be placed at any position in ATP and incorporated into the AMP portion of NAD+ by 

incorporation at step (B) Reaction coordinate distances for ADP-ribosylating cholera, 

pertussis, and diphtheria toxins at their transition states as determined by kinetic isotope 

effect analysis. All distances are in Angstroms. Hydrolysis refers to the toxin-catalyzed 

solvolysis of NAD+ in the absence of the protein nucleophile ADP-ribosylation acceptor. All 

of these toxins catalyze NAD+ solvolysis. ADP-ribosyl transferase activity to Gαi3 peptide 

for pertussis toxin is to the C20-terminal peptide in which transfer occurs to Cys at amino 

acid 4 of the peptide. ADP-ribosyl transferase to eEF-2 used full-length eEF2 isolated from 

baker’s yeast.
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Figure 18. 
Design of transition state analogues for ADP-ribosylating cholera, pertussis, and diphtheria 

toxins. Features of the ribocation are provided by the hydroxypyrrolidine, a long bond to the 

leaving group is provided by the methylene bridge, and recognition elements of the 

carboxamide group are retained.129
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Figure 19. 
Chemical synthetic scheme for 3-hydroxypyrrolidine transition state analogues for ADP-

ribosylating cholera, pertussis, and diphtheria toxins.129
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Figure 20. 
Transition state structure of ricin A-chain acting on stem– loop RNA at pH 4.0. (Upper left) 

Reactant adenylate electrostatic potential at the van der Waals surface. (Upper right) 

Transition state electrostatic potential showing fully dissociated adenine. Reproduced from 

ref 154. Copyright 2000 American Chemical Society.
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Figure 21. 
Synthetic route to hydroxypyrrolidine transition state analogues of ribosome-inactivating 

proteins: (i) DMTrCl (1.5 equiv), DMAP (catalytic), (iPr)2NEt (2 equiv), pyridine, room 

temperature, 5 h; (ii) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.5 equiv), 

2,4,6-collidine (2.5 equiv), 1-methylimidazole (1 equiv), methylene chloride, 0 °C, 30 min; 

(iii) Expedite DNA/RNA synthesis system. Reproduced from ref 156. Copyright 2004 

American Chemical Society.
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Figure 22. 
Transition state analogue inhibitors of ricin A-chain. 1N, DA, BZ, and deoxyG (dG) inserts 

into the stem–loop structures replace adenosine at the depurination site for the reaction and 

are shown below the respective stem loops.159

Schramm Page 104

Chem Rev. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 23. 
Catalytic site contact maps of ricin A-chain (A) and saporin L3 (B) with a cyclic transition 

state analogue inhibitor bound to the active sites. Purines and catalytic site groups involved 

in π-stacking are in orange. Water molecules are drawn as red dots. Hydrogen bonds are 

shown as dashed lines (green). Hydrogen bonds are in Angstroms. Reproduced with 

permission from ref 161. Copyright 2009 Proceedings of the National Academy of Sciences.
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Figure 24. 
Transition state geometry, electrostatic potential surface (EPS), and NBO charges for the 

reaction of saporin L3. Transition state geometry (a), EPS values for transition state (b), 

reactant (c), and products (d) are shown. nuc is the nucleophilic water. Reproduced from ref 

175. Copyright 2016 American Chemical Society.
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Figure 25. 
Transition state analogues for saporin L3. Structure is covalently closed and O2′ protected 

from RNases. It provided a scaffold for A of both ricin A-chain and saporin L3 (Figure 23).
178
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Figure 26. 
Comparison of electrostatic potentials for the transition state (a) of saporin L3 and the 

transition state mimic (b) of a truncated 2-base transition state mimic (c). This truncated 

inhibitor is a 3.3 nM TS analogue. Reproduced from ref 175. Copyright 2016 American 

Chemical Society.
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Figure 27. 
Catalytic site contact map for human HGPRT in complex with ImmGP.190 Light green 

circles represent crystallographic water oxygens. O2A is the nearest to the reaction center 

and is proposed to be the nucleophilic oxygen.
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Figure 28. 
Catalytic site contact map for P. falciparum HGXPRT in complex with ImmHP. Similar to 

the structure of the human enzyme, O2A is the nearest to the reaction center and is proposed 

to be the nucleophilic oxygen and the O5′–N4′ distance is 2.7 Å. Reproduced from ref 191. 

Copyright 1999 American Chemical Society.
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Figure 29. 
Acyclic aza-C-nucleoside phosphonate inhibitors of P. falciparum HGXPRT.
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Figure 30. 
Synthetic strategy for one family of the acyclic aza-C-nucleoside phosphonate inhibitors: (a) 

triethyl phosphite, 120 °C; (b) H2NNH2, EtOH; (c) NaBH4, EtOH; (d) 35% aq HCl, 60 °C; 

(e) 48% HBr 90 °C; (f) 2-picoline borane, MeOH. Reproduced with permission from ref 

202. Copyright 2013 Elsevier.
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Figure 31. 
Lysophospholipid prodrug approaches to antimalarials. Prodrug approach summarized in the 

text was adapted to the AIPs. (A) Phospholipase specificity pattern. (B) Synthetic approach 

to prevent phospholipase A and D action. Table provides the specific substituents in B and 

the IC50 values for growth of P. falciparum parasites in human erythrocytes. Reproduced 

with permission from ref 189. Copyright 2012 Elsevier.
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Figure 32. 
Active site of Pf HGXPRT bound to the 0.65 nM inhibitor of Figure 29 and MgPPi. 

Hydrogen bonds are represented as dashed lines. All distances are in Angstroms. Two-

dimensional representation of the active site where the ionic bond between pyrophosphate 

and the ribocation mimic is represented as a thick dashed line. Water molecules are 

represented as red dots, and the hydrophobic residues interacting with the purine ring are 

drawn in orange. Reproduced with permission from ref 189. Copyright 2012 Elsevier.
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Figure 33. 
Reaction, transition state, and proposed transition state analogue inhibitors for P. falciparum 
and human OPRT-catalyzed OMP pyrophosphorolysis. OPRT transition states are 

characterized by fully dissociated dianionic orotate, a ribocation, and weak nucleophile (PPi) 

participation. Iminoribitol, pyrrolidine, or acyclic ribocation groups as mimics of the 

ribocation were proposed. Methylene or ethylene linkers resemble the extended bond 

distance to approximate the transition state. PRPP, 5-phospho-α-D-ribosyl 1-pyrophosphate. 

Reproduced with permission from ref 222. Copyright 2013 American Society for 

Biochemistry and Molecular Biology.
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Figure 34. 
Inhibition constants (nM) for potential transition state analogues of P. falciparum (blue) and 

human (red) OPRT enzymes. Reproduced with permission from ref 222. Copyright 2013 

American Society for Biochemistry and Molecular Biology.
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Figure 35. 
Synthesis of the amidrazone 10, reported to be an inhibitor of yeast OPRT. (a) (BnO)2PO2H, 

DEAD, THF, 2 h, 25 °C; (b) Et3O+PF6–, CH2Cl2, 2 h, 25 °C; (c) o-hydrazinoPhCO2H, i-

Pr2Net, CH2Cl2, 16 h, 25 °C; dil aq HCl; (d) 8 M HCl, 16 h, 25 °C. Reproduced with 

permission from ref 225. Copyright 2006 Elsevier.
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Figure 36. 
Arsenolysis reaction catalyzed by MTAP, transition state structure, and intrinsic KIE values 

used to determine the transition state structure.238
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Figure 37. 
Transition state analogues synthesized to resemble the transition state structure of human 

MTAP and their dissociation constants.238,239
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Figure 38. 
Hypothetical mechanism of action for MTDIA, a transition state analogue inhibitor of 

MTAP. MeTR1P is 5-methylthioribose 1-phosphate, and CpG-DNA refers to the DNA 

methylation sites at CpG islands. AdoHcy is adenosyl homocysteine, Hcy is homocysteine, 

Ado is adenosine, and Met is methionine.
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Figure 39. 
Human MTAP stereoviews of monomer (A) with bound MT-ImmA and phosphate (red) and 

trimer (B), and electron density omit map for bound MT-ImmA, phosphate, and two ordered 

water molecules (C). Reproduced from ref 238. Copyright 2004 American Chemical 

Society.
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Figure 40. 
Contacts for MTAP·MTA·SO4 (A) compared to MTAP·MT-ImmA·PO4 (B). Significant 

changes are in bold for the MTAP·MT-ImmA· PO4 structure. L279B and H137B are from 

the neighbor subunit and participate in van der Waals interactions. Reproduced from ref 238. 

Copyright 2004 American Chemical Society.
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Figure 41. 
Stereoview of the MTAP catalytic site in complex with pClPhT-DADMe-ImmA and 

phosphate. Active site residues and those from the adjacent subunit are colored in yellow 

and cyan, respectively. p-Cl-PhT-DADMe-ImmA and phosphate are colored in gray and 

orange/red, respectively. Hydrogen bonds (<3.1 Å) are indicated as dashed lines. 

Reproduced from ref 254. Copyright 2011 American Chemical Society.
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Figure 42. 
Thermodynamic signatures for the binding of adenine and transition state analogues to 

human MTAP·PO4. Reproduced from ref 254. Copyright 2011 American Chemical Society.
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Figure 43. 
Heat capacity changes and optimal binding temperatures for MTAP. (A) ΔCp for inhibitor 

binding. DADMe-ImmH binding to PNP (9 pM) is included as a control. (B) Free energy of 

inhibitor binding to MTAP as a function of temperature. Optimal binding temperature is the 

minima. DADMe-ImmH binding to PNP is added for comparison. Reproduced from ref 255. 

Copyright 2016 American Chemical Society.
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Figure 44. 
Thermodynamic box for the cooperative binding of phosphate and MT-DADMe-ImmA to 

human MTAP.254
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Figure 45. 
Functions of the bacterial MTANs. Abbreviations: S-adenosylhomocysteine (SAH), 5′-

deoxyadenosine (5′-DOA), S-ribosyl homocysteine (SRH), and 5-methylthioribose (MTR). 

Autoinducer-2 molecules are formed from 4,5-dihydroxy-2,3-pentadione.
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Figure 46. 
(A) Molecular electrostatic potentials of early and late dissociative MTAN transition states 

compared to MT-ImmA, MT-DADMe-ImmA, early and late transition state analogues. 

Arrows indicate partial positive charge around C1′ of the E. coli transition state, mimicked 

at the 1′-pyrolidine nitrogen of MT-DADMe-ImmA and 4′-iminoribitol nitrogen of MT-

ImmA. (B) Transition state analogue specificity for early and late transition states. 

Reproduced from refs 283 and 286. Copyright 2007 American Chemical Society.
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Figure 47. 
Transition state analogues for E. coli MTAN. These are all slow-onset tight-binding 

inhibitors as indicated by the Ki* designation. Values are for the equilibrium binding 

constant following slow-onset inhibition. These 5′-substituted-DADMe-ImmA molecules 

are late transition state analogues to mimic the late, dissociative transition state of E. coli 
MTAN (Figure 46).287 Selected Ki values are compared for V. cholerae and H. pylori 
isozymes in Figure 49.
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Figure 48. 
Molecular electrostatic potential surfaces (MEPs) for (a) the transition state of E. coli 
MTAN, (b) MT-ImmA, (c) MT-DADMe-ImmA, and (d) pClPhT-DADMe-ImmA. MEPs 

were calculated in Gaussian98/cube for the optimized geometry and visualized with Molekel 

4.0 at a density of 0.008 electron/b. Stick models have the same geometry as the MEP 

surfaces. Values of Kd are dissociation constants for the inhibitors following slow-onset 

inhibition or Ki* in slow-onset analysis. Reproduced from ref 281. Copyright 2005 

American Chemical Society.
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Figure 49. 
Examples of transition state analogue affinity for E. coli, V. cholera, and H. pylori MTANs. 

These are slow-onset tight-binding inhibitors. Values are for the equilibrium binding 

dissociation constants following slow-onset inhibition.285 nd = not reported.
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Figure 50. 
Thermodynamic profiles of ΔH, –TΔS, and ΔG for the binding of first-and second-

generation inhibitors to the first active site of E. coli MTAN, S. enterica MTAN, and V. 
cholera MTAN. Reproduced from ref 292. Copyright 2012 American Chemical Society.
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Figure 51. 
Root-mean-square fluctuation (RMSF) of individual BuT-DADMe-ImmA heavy atoms 

when occupying the E. coli MTAN active site (red) compared with the V. cholerae MTAN 

active site (blue). Reproduced from ref 293. Copyright 2013 American Chemical Society.

Schramm Page 133

Chem Rev. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 52. 
Inhibitor–enzyme contacts for V. cholerae and E. coli MTANs with DADMe-Immucillin 

transition state analogues. Data are taken from the Protein Data Bank (PDB) entries 3DP9 

and 1Y6Q, respectively. All distances (Angstroms) are between heavy (non-hydrogen) 

atoms. Backbone RMSD of these active site amino acids from crystal structures is 0.4 Å. 

Distances in black are from structure of E. coli MTAN in complex with MT-DADMe-ImmA. 

Those in blue are from the structure of V. cholerae MTAN in complex with BuT-DADMe-

ImmA.293
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Figure 53. 
Inhibition of AI-2 quorum sensing in overnight cultures of V. cholerae by increasing 

concentrations of BuT-DADMe-ImmA. No growth inhibition was observed. Reproduced 

with permission from ref 272. Copyright 2009 Nature Publishing.
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Figure 54. 
Synthesis of menaquinone (MK) in E. coli and S. coelicolor. SEPHCHC, 2-succinyl-5-

enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate; SHCHC, (1R,6R)-2-succinyl-6-

hydroxy-2,4-cyclohexadiene-1-carboxylate; DHNA, 1,4-dihydroxy-2-naphthoate. Pathway 

enzymes: E. coli Men proteins: MenF, isochorismate synthase; MenD, SEPHCHC synthase; 

MenH, SHCHC synthase; MenC, o-succinylbenzoate (OSB) synthase; MenE, OSB-CoA 

synthase; MenB, DHNA-CoA synthase; Ydil, DHNA-CoA thioesterase; MenA, DHNA 

polyprenyltransferase; MenG, demethylmena-quinone/demethylphylloquinone 

methyltransferase; MqnA (SCO4506), chorismate dehydratase; MqnE (SCO4494), 

aminofutalosine synthase; MqnB (SCO4327), aminofutalosine hydrolase; MqnC 

(SCO4550), DHFL cyclase; MqnD (SCO4326), DHNA synthase; MqnX, amino-

deoxyfutalosine deaminase. Compounds are depicted in their quinol forms. Conversion of 

menaquinol to MK is believed to be nonenzymatic. Reproduced with permission from 

Biocatalytic Potential of Enzymes Involved in the Biosynthesis of Isoprenoid Quinones. 

Chemcatchem 2018, 9, 124–135. Copyright 2018 Wiley Online Library.
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Figure 55. 
Catalytic site contacts for H. pylori MTAN in complex with BuT-DADMe-ImmA. 

Reproduced from ref 323. Copyright 2012 American Chemical Society.
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Figure 56. 
Transition state analogue inhibitors selected for low IC90 values for growth of H. pylori. 
Directed chemical library of transition state analogue inhibitors was synthesized and tested 

for inhibition of H. pylori MTAN and for bacterial growth inhibition. Reproduced from ref 

101 with permission. Copyright 2018 American Chemical Society.
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Figure 57. 
MTAN from H. pylori bound to R = butyl for the 1-substituted 2-aminopropanol adducts of 

9-deazaadenine. (Left) Electron density of 1RMSD for the bound ligand. For maps 

calculated with 2Fobs – Fcalc coefficients. (Right) Surface representation of the MTAN 

protein surface showing the buried 9-deazaadenine and the hydrophobic channel leading to 

the solvent. PDB entry 4YO8. Reproduced from ref 324. Copyright 2015 American 

Chemical Society.
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Figure 58. 
Comparing transition state analogue inhibitors for growth of H. pylori to current antibiotic 

therapy agents.
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Figure 59. 
Intrinsic KIE values for the arsenolysis of inosine by bovine and human PNPs. Each KIE 

shown here was measured in independent experiments with an inosine molecule isotopically 

labeled in the indicated positions.350,351
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Figure 60. 
PNP reactants, transition state structures, and transition state analogues: (A) Bovine PNP; 

(B) human PNP.355,359
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Figure 61. 
Synthesis of the DADMe-Immucillins by the Mannich reaction.362 Conditions: (a) 30% 

aqueous formaldehyde, NaOAc, H2O, 95 °C. R1 = OH, SBn, SPhpCl, or OAc. R2 = OH or 

OAc. R3 = OH, NH2, Cl, or N3. R4 = H or NH2.
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Figure 62. 
Catalytic site contacts in the complexes of bovine PNP–inosine–SO4, PNP–ImmH–PO4, and 

PNP–ImmG-PO4. Distances (in Angstroms) in panels a, b, and c are from Protein Data Base 

files 1A9S, 1B8O, and 1B8N, respectively. Interactions shown in b and c that are 0.2 Å or 

more closer than those in panel a are shown in red, and those that are 0.2 Å or more distant 

in panels b and c than in panel a are shown in blue. All contacts of 3.0 Å or closer are shown 

together with selected contacts > 3.0 Å for important interactions. Reproduced from ref 122. 

Copyright 2001 American Chemical Society.
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Figure 63. 
Transition state analogue variants to test the effect of catalytic site contacts in bovine PNP as 

indicated in Figure 62. Note the difference in units from pM to μM. Compound numbers 1 

and 2 are ImmH and ImmG, respectively. Energetic contributions from important 

interactions are summarized in Figure 64. Reproduced from ref 364. Copyright 2002 

American Chemical Society.
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Figure 64. 
Energetic differences caused by atomic subustitutions in transition state analogues of bovine 

PNP. Values are energentic differences expressed in ΔG, kcal/mol, between 1 (ImmH) and 

the other compounds from Figure 63, as expressed in the subscripts. Reproduced from ref 

364. Copyright 2002 American Chemical Society.
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Figure 65. 
Reaction coordinate motion in bovine PNP based on the crystal structures with ImmH and 

phosphate bound (gray) compared to enzyme with hypoxanthine and ribose 1-phosphate 

bound (red).365
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Figure 66. 
Human PNP catalytic site distances for ImmH and DADMe-ImmH bound at the catalytic 

sites with SO4 as the nucleophile analogue. Red dashed line highlighted in yellow represents 

the reaction coordinate distances in the normal reaction. From PDB structures 1RSZ and 

3BGS.380
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Figure 67. 
Isotope labels in ImmH (left) and DADMe-ImmH (right) to compare bond distortions at 

these bonds for inhibitors in solution or bound at the catalytic sites of human PNP. Blue 

arrows indicate atomic interactions for REDOR distance measurements, and blue brackets 

are for R2 homonuclear distance measurements. Reproduced with permission from ref 381. 

Copyright 2013 National Academy of Sciences.
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Figure 68. 
Magic angle spinning solid-state NMR of labeled ImmH (upper panel) and DADMe-ImmH 

(lower panel) to compare bond distortions. Peaks at 108.6 and 104 ppm are the 9-13C in 

bound and free ImmH. Peaks at 62.9 and 54.0 are the 1′–13C label in bound and free 

ImmH. Peaks at 103.0 ppm and 102.3 ppm are the 9-13C label in bound and free DADMe-

ImmH. Peaks at 47.4 and 45.8 ppm are the 13CH2 in diastereomers of free protonated 

DADMe-ImmH. Pak at 45.0 ppm corresponds to the 13CH2 label in the sole diastereomer 

present in PNP-bound protonated DADMe-ImmH. Reproduced with permission from ref 

381. Copyright 2013 National Academy of Sciences.
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Figure 69. 
Internuclear distance changes for ImmH (left) and DADMe-ImmH (right) comparing bonds 

for inhibitors in solution or bound at the catalytic sites of human PNP. Reproduced with 

permission from ref 381. Copyright 2013 National Academy of Sciences.
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Figure 70. 
Energetic differences caused by atomic subustitutions in transition state analogues of human 

PNP. Values are energentic differences, expressed in ΔΔG, kcal/mol, between DADMe-

ImmH and related compounds with the atomic substutions indicated by the arrows.
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Figure 71. 
Dissociation constants for human PNP comparing cyclic with acyclic Immucillins. 

Compounds marked with an asterisk exhibited slow-onset inhibition kinetics. Values are 

equilibrium dissociation constants in pM. Source of Ki values. Reproduced from ref 387. 

Copyright 2009 American Chemical Society.
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Figure 72. 
Catalytic site contacts between human PNP, DATMe-ImmH, and SerMe-ImmH transition 

state analogue inhibitors with sulfate or phosphate. Relative distance between inhibitors and 

the surrounding catalytic site residues is shown in Angstroms. Adapted with permission 

from ref 380. Copyright 2010 National Academy of Sciences.

Schramm Page 154

Chem Rev. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 73. 
Role of PNP deficiency in dGuo accumulation and T-cell toxicity. DNA recycling generates 

dGuo which accumulates in the absence of PNP activity. dGuo is phosphorylated in 

activated T cells by their elevated dCK activity. High levels of dGTP inhibit ribonucleotide 

diphosphate reductase (RDR). Activated T cells induce dCK and repress 5′-nucleotidases 

(5′-NT). Reproduced with permission from ref 395. Copyright 2001 National Academy of 

Sciences.
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Figure 74. 
SCID mouse–human T-cell autoimmune rejection model. In this trial, ImmH is designated 

BCX-1777. Reproduced with permission from ref 403. Copyright 2001 Elsevier.
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Figure 75. 
DADMe-ImmH (called Ulodestin in this trial) lowers serum urate in combination with 

allopurinol in gout patients. Percent of patients achieving serum urate less than 6.0 mg/dL 

for Ulodesine and Allopurinol dosing groups.. Reproduced with permission from ref 411. 

Copyright 2014 Elsevier.
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Figure 76. 
Single oral administration of DADMe-ImmH (Ulodesine in this trial) rapidly inhibited 

erythrocyte PNP activity in normal human volunteers. Reproduced with permission from ref 

420. Copyright 2017 American Society of Biochemistry and Molecular Biology.
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Figure 77. 
Cartoon showing the rebinding (kon) of DADMe-ImmH inside human erythrocytes. As the 

intrinsic koff (t½) rate is 8.3 min, the on rate is required to be >10 000 more rapid, >20 s−1. 

Reproduced with permission from ref 420. Copyright 2017 American Society of 

Biochemistry and Molecular Biology.
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Figure 78. 
Catalytic site contacts for ImmH and SO4 at the catalytic sites of Pf PNP (PDB ID 1NW4) 

(a) compared with MT-ImmH and SO4 in PfPNP (PDB ID 1Q1G) (b) and ImmH and PO4 in 

bovine PNP (PDB ID 1B80) (c). Amino acid residues labeled a in panels a and b are from 

the parent subunit, and those labeled b are from the neighbor subunit across the dimeric 

interface. Distances are given in Angstroms. Reproduced with permission from ref 427. 

Copyright 2004 American Society of Biochemistry and Molecular Biology.
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Figure 79. 
Catalytic site contacts for MT-coformycin (upper panel) and deoxycoformycin (lower panel) 

at the catalytic sites of PvADA. Relative position of MT-coformycin (PDB entry 3EWC) 

compared to deoxycoformycin (PDB entry 2PGR) and the active site residues of PvADA. 

The water molecule is drawn as a dot in the upper panel. Hydrogen bonds and zinc ion 

interactions are depicted as dashed lines. Distances are given in Angstroms.432
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Figure 80. 
Purine salvage pathways for formation and utilization of hypoxanthine in human 

erythrocytes and in P. falciparum parasites. Horizontal arrows indicate transport from red 

blood cells (RBCs) to the parasite. ADA, PNP, and HGXPRT are adenosine deaminase, 

purine nucleoside phosphorylase, and hypoxanthine-guanine-xanthine 

phosphoribosyltransferase. Structures of the human and Plasmodium PNPs are indicated.435
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Figure 81. 
Blood P. falciparum counts in infected control Aotus (IUM, n = 1) or infected treated 

monkeys (ITM, n = 3). Arrow indicates mefloquine cure of the Aotus control. Shaded bar on 

the abscissa indicates DADMe-ImmG treatment days. Reproduced with permission from ref 

435. Creative Commons 2011 Attribution License. during Aotus infections caused the 

erythrocyte hypoxanthine to decrease to undetectable levels (<0.3 μM). Inhibition at PNP 

caused the blood inosine to increase to 50 μM, demonstrating the metabolic block at PNP. It 

is anticipated that hypoxanthine starvation therapy would be more successful in humans, but 

to date, there are no reports of this therapy in clinical trials.
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Figure 82. 
Characteristics of P. falciparum resistant to DADMe-ImmG. (A) IC50 values for P. 
falciparum growth for clones with 5.5–7.2-fold increased IC50 values. (B) IC50 values for P. 
falciparum growth for clones with 260–980-fold increased IC50 values. (C) Western blot 

intensity for PfPNP protein in drug-resistant clones. (D) Western blot intensity from highly 

resistant clones. (E) P. falciparum chromosomes (innermost circle). Peak height is relative to 

genomic reads of 10 kb contiguous regions. Three control clones (inner tracks) show no 

amplified regions. Three outer tracks correspond to 2 μM DADMe-ImmG-resistant isolates. 

Amplified Pf PNP regions are seen in all resistant strains in chr5. (F) Gene amplification in 

chr5 for three highly–resistant clones. Clones have distinct boundaries for gene 

amplification, each containing the coding region for the PfPNP gene. Reproduces with 

permission from ref 439. Copyright 2018 National Academy of Sciences.
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Figure 83. 
Crystal structure of TvPNP with ImmA or DADMe-ImmA and PO4 bound in the active site. 

The asymmetric unit was used to generate the hexamer by applying 2-fold crystallographic 

symmetry (upper panel). Monomer pairs are represented with similar colors. (Lower panel) 

Superposition of the Immucillins at the active sites of the two TvPNP structures. The 

complex with ImmA is in pink, and the complex with DADMe-ImmA is in cyan. H4* is a 

catalytic site interaction from the adjacent subunit. Reproduced from ref 445. Copyright 

2006 American Chemical Society.
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Figure 84. 
Omit maps for ImmA, DADMe-ImmA, and phosphate (3σ) around the inhibitors (green) 

and the 2FoFc map contoured at 1σ around the Asp204 (in blue). Distances between the C1′ 
of ImmA (left) and the N1′ of DADMe-ImmA (right) and the phosphate groups are shown 

in Angstroms. Reproduced from ref 445. Copyright 2006 American Chemical Society.
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Figure 85. 
Marburg virus infections in cynomolgus macaques treated with BCX4430 (ImmA; Tx). 

Animals (n = 6) in each group were infected with virus on day 0. BCX4430 (15 mg/kg) was 

given twice a day by i.m. injection starting at 1, 24, or 48 h after exposure to the virus. 

Vehicle indicates no BCX4430 was given. Reproduced with permission from ref 446. 

Copyright 2014 Nature Publishing.
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Figure 86. 
Chemical mechanism for HIV-1 protease. Structures are (1) enzyme–substrate complex, (2) 

water attack TS, (3) tetrahedral gem-diol intermediate, (4) proline N-protonation TS, (5) 

protonated amide intermediate, (6) cleavage of scissile C–N bond TS, and (7) enzyme–

product complex. For transition structure 2, the r(C–O) bond distance is the distance between 

the oxygen of the attacking water and the carbonyl carbon of the peptide. For transition 

structure 4, r(N–H) is the bond distance between the nitrogen on the proline and the proton on 

the catalytic aspartate and r(H–O) is defined as the bond distance between the oxygen and the 

proton on the catalytic aspartate. Finally, in transition structure 6, r(C–N) is the bond distance 

of the scissile bond of the peptide. Reproduced with permission from ref 464. Copyright 

2012 National Academy of Sciences.
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Figure 87. 
Clinically approved inhibitors for HIV-1 protease. Kd values and year of approval are 

indicated. The transition state center is highlighted. Adapted with permission from ref 459. 

Copyright 2017 Elsevier Paris.
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Table 2.

Symmetric and Asymmetric Acyclic Nucleoside Bisphosphonate Ki Value with Human and P. falciparum 

Purine PRTs198–201

No. Base Acyclic moiety Human HGXPRT Ki[μM] P. f. HGXPRT Ki[μM]

1a G 0.03 0.07

1b Hx 1 5

2a G 0.6 0.5

2b Hx 0.7 NI
a

27 8-Br-G 0.4 0.9

20 G 0.006 0.07

21 Hx 1.8 3

22 8-Br-G 0.1 2

23 8-Br-Hr 2.5 NI

24 7-deaza-G 0.1 4

25 7-deaza-Hx 4.6 6

a
No inhibition obseved. Base abbreviations are guanine (G), hypoxanthine (Hx), and 8-bromo (8-Br).
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