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ABSTRACT As a major etiological agent of human dental caries,
Streptococcus mutans resides primarily in biofilms that form on
the tooth surfaces, also known as dental plaque. In addition to
caries, S. mutans is responsible for cases of infective endocarditis
with a subset of strains being indirectly implicated with the onset
of additional extraoral pathologies. During the past 4 decades,
functional studies of S. mutans have focused on understanding
the molecular mechanisms the organism employs to form robust
biofilms on tooth surfaces, to rapidly metabolize a wide variety
of carbohydrates obtained from the host diet, and to survive
numerous (and frequent) environmental challenges encountered
in oral biofilms. In these areas of research, S. mutans has served as
amodel organism for ground-breaking new discoveries that have,
at times, challenged long-standing dogmas based on bacterial
paradigms such as Escherichia coli and Bacillus subtilis. In addition
to sections dedicated to carbohydrate metabolism, biofilm
formation, and stress responses, this article discusses newer
developments in S. mutans biology research, namely, how
S. mutans interspecies and cross-kingdom interactions dictate
the development and pathogenic potential of oral biofilms and
how next-generation sequencing technologies have led to a
much better understanding of the physiology and diversity of
S. mutans as a species.

In 1924, J. Clarke isolated an organism from carious
lesions and called it Streptococcus mutans, because he
thought the oval-shaped cells observed were mutant
forms of streptococci (1). However, it was in the late
1950s when S. mutans gained widespread attention
within the scientific community, and by the mid-1960s,
clinical and animal-based laboratory studies depicted
S. mutans as an important etiologic agent in dental caries
(2). The natural habitat of S. mutans is the human oral

cavity, more specifically, the dental plaque, a multispe-
cies biofilm formed on hard surfaces of the tooth. It has
been largely accepted that the cariogenic potential of
S. mutans resides in three core attributes: (i) the ability to
synthesize large quantities of extracellular polymers of
glucan from sucrose that aid in the permanent coloni-
zation of hard surfaces and in the development of the
extracellular polymeric matrix in situ, (ii) the ability to
transport and metabolize a wide range of carbohydrates
into organic acids (acidogenicity), and (iii) the ability to
thrive under environmental stress conditions, particu-
larly low pH (aciduricity) (3). While S. mutans does not
act alone in the development of dental caries, studies
from several laboratories have convincingly demon-
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strated that S. mutans can alter the local environment
by forming an extracellular polysaccharide (EPS)-rich
and low-pH milieu, thereby creating a favorable niche
for other acidogenic and aciduric species to thrive. As a
human pathogen, S. mutans is also implicated in sub-
acute bacterial endocarditis, a life-threatening inflam-
mation of heart valves, while a subset of strains has been
linked to other extraoral pathologies such as cerebral
microbleeds, IgA nephropathy, and atherosclerosis.

Strains of S. mutans can be classified into four sero-
logical groups (c, e, f, and k) based on the composition
of cell-surface rhamnose-glucose polysaccharide, with
∼75% of strains isolated from dental plaque belonging
to serotype c, ∼20% to serotype e, and the remaining
5% classified as serotypes f or k (4). While biochemical
and genetic approaches to dissect the biology of S. mu-
tans have been used for at least the past 4 decades,
the publication of the complete genome sequence of
the S. mutans strain UA159 in 2001 (5) dramatically
changed the landscape, and today, S. mutans is one of
the best-characterized Gram-positive pathogens. In this
article, we highlight some of the key studies that have led
to our current understanding of S. mutans genetics,
physiology, and virulence. For a historical perspective
and complete survey of the field, we direct the reader to
the review articles in references 2, 3, and 6–9.

GENETIC AND PHENOTYPIC
HETEROGENEITY
The first S. mutans genome sequenced (serotype c strain
UA159) was found to contain ∼2.0 Mb of DNA and
to encode approximately 2,000 genes (5). As the cost
of next-generation sequencing technologies has gone
down, genomes from dozens of S. mutans strains have
been sequenced and assembled and are now available on
public databases such as the NCBI (www.ncbi.nlm.nih
.gov/assembly/?term=streptococcus+mutans). This influx
of genome sequences has led to an increase in compar-
ative genomic studies focused on S. mutans (10–13).
One of the first such studies was based on the shot-
gun genome sequence from 57 geographically diverse
S. mutans clinical isolates. This study concluded that the
S. mutans pan-genome contains a minimum of ∼3,300
possible genes and has a core genome (genes that are
common to all strains) of 1,490 genes (14). This means
that in any one S. mutans isolate, ∼500 genes could be
distinct from any other strain, perhaps significantly in-
fluencing virulence potential or fitness. The same group,
using population demographic analysis based on single
nucleotide polymorphisms of the core genes, determined

that a large expansion took place in the S. mutans
population between 3,000 and 10,000 years ago, which
coincided with the advent of human agriculture and
increased consumption of carbohydrates in the human
host diet (14). This study also identified 73 unique core
genes that are found only in S. mutans and not in its
closest relatives, many of which are involved in carbo-
hydrate metabolism and acid resistance (14). In a follow-
up study, Palmer et al. (15) characterized 15 of the most
genetically diverse isolates of the 57 strains sequenced by
Cornejo et al. (14) and found great variation in the
phenotypes directly related to virulence, including the
ability to form biofilm in the presence of sucrose and
the ability to tolerate low pH and oxidative stresses,
suggesting that not all strains of S. mutans are equally
virulent and providing a rational explanation for why
attempts to correlate the carriage of certain genotypes of
S. mutans with the incidence of dental caries has proven
so difficult (10, 16–18).

Work to characterize the unique core and noncore
genes is ongoing and will likely lead to a greater under-
standing of the physiology and diversity of S. mutans as a
species. For example, one of the unique core hypothetical
genes, SMu.1147, which encodes a small peptide, was
found to regulate genetic competence and other traits of
general importance to S. mutans virulence (19). In con-
trast, efforts to characterize the noncore genes indicate
that they likely provide a competitive advantage under
particular circumstances. Such is the case for a galactose-
specific phosphotransferase system (PTS) transporter
found in several strains (20). Among the many noncore
genes of S. mutans identified in recent years, those encod-
ing the collagen-binding proteins (CBPs) Cnm and Cbm
were shown to confer adhesion to collagen and lami-
nin, invasion of endothelial and epithelial cells, and
virulence in the Galleria mellonella invertebrate model
(21, 22) as well as in rabbit and rat models of infec-
tive endocarditis (23, 24). Epidemiological studies in-
dicate that cnm is present in approximately 15% of S.
mutans isolates, whereas cbm is rarely found (∼2%)
(21, 22). Genes encoding CBPs have an uneven distri-
bution among the different serotypes and are found at
higher frequency among serotype e, f, and k strains but
are rarely present in serotype c strains (25). Notably,
CBP+ S. mutans strains are more frequently isolated
from dental plaque of individuals with bacteremia and
infective endocarditis, suggesting a correlation between
the production of these adhesins and systemic infections
(26). Interestingly, the presence of cnm in S. mutans
strains isolated from saliva has been linked to IgA ne-
phropathy, cerebral microbleeds, and cognitive impair-
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ment (27, 28). Finally, animal and clinical studies have
suggested an association of CBPs in caries risk and se-
verity (27, 29, 30).

CARBOHYDRATE METABOLISM
As a lactic acid bacterium, S. mutans relies exclusively
on glycolysis for energy production (Fig. 1). A signature
characteristic of this organism is its ability to metabo-
lize a large variety of carbohydrates. The genome of the
UA159 type strain encodes 14 phosphoenolpyruvate-
dependent sugar:PTSs with specificities for various
mono- and disaccharides, as well as two ATP-binding
cassette (ABC) transporters involved primarily in inter-
nalizing oligosaccharides (5). Sucrose is a β2,1-linked
disaccharide composed of glucose and fructose that has
proven, for a number of reasons, to be the most cario-
genic of all carbohydrates. S. mutans has evolved mul-
tiple pathways to catabolize sucrose for acid production
(31), and several glycosyltransferase enzymes (Gtfs) con-
vert sucrose into a glue-like extracellular polymer glu-
can that promotes the buildup of biofilms by way of
cellular attachment to dental surfaces and other oral
microorganisms (7). As discussed in more detail below,
recent multispecies modeling studies have confirmed the
unique roles of Gtfs in the formation of a heterogeneous,
diffusion-limiting, low-pH matrix that is conducive to
both dental demineralization and the eventual domi-
nance by acid-tolerant species (7, 32).

Carbon Catabolite Repression
Most bacteria have evolved regulatory capacities that
enable them to respond efficiently to changes in carbon
source and thereby shift gene regulation, a phenomenon
called carbon catabolite repression (33, 34). The ma-
jority of low-GC Gram-positive bacteria depend on a
LacI-type transcriptional regulator called CcpA to en-
sure that catabolic genes for less preferred carbohydrates
are suppressed when a preferred carbohydrate (normally
glucose) is present. Interestingly, S. mutans deviates from
this paradigm in that CcpA plays a less direct role. In-
stead, the glucose/mannose-PTS (EIIMan) system regu-
lates the expression of catabolic operons required for
assimilating secondary carbohydrates such as oligo- and
disaccharides (35). Inactivation ofmanL, which encodes
the A and B domains of the EIIMan permease, results in
enhanced expression of the fruAB and levDEFG (EIILev)
operons. These operons contain genes which encode two
different fructanases, FruAB for hydrolyzing fructose
polymers (36), and a fructose/mannose-PTS (37), re-
spectively. As a result, a manL mutant demonstrates

improved growth on media supplemented with fruc-
tose polymers such as inulin or levan (35). CcpA and its
cofactor HPr-Ser-P are also involved in this regulation
(38, 39). Whereas CcpA interacts directly with cog-
nate cis-elements called cre (catabolite response element)
near the fruA promoter, ManL influences fruAB and
levDEFG expression independently of CcpA (39). It is
now believed that EIIMan-dependent glucose transport
influences carbohydrate metabolism via substrate-specific
signaling, which occurs primarily at submillimolar con-
centrations of carbohydrate (38). However, substrate-
level regulation is also influenced indirectly by CcpA
under excess-carbohydrate conditions, since CcpA ap-
pears to regulate the transcription of manL (38, 39). A
transcriptomic study of amanL deletion strain validated
the key roles of EIIMan in global gene regulation (40),
and transcriptional studies of a ccpA deletion strain re-
vealed both a central role for CcpA in controlling carbon
flux and the existence of a substantial network of CcpA-
independent genes (41, 42).

Catch and Release
To further explore substrate-dependent carbon catab-
olite repression in S. mutans, Zeng et al. assessed the
relative contributions of various sucrolytic enzymes (31).
The majority (>95%) of sucrose encountered by S.
mutans is believed to be internalized via the EIIScr PTS
(43, 44), while the rest is likely metabolized extracellu-
larly by the glucosyltransferases (GTFs) and fructosyl-
transferase. Enhanced transcription of the fruAB and
EIILev operons was observed in the presence of sucrose,
with such activation requiring both the sucrose PTS
(ScrA) and the LevQRST regulatory pathways. LevQRST
is an unconventional four-component system that acti-
vates transcription of fruAB and EIILev in response to
extracellular fructose or mannose (37, 45). Since free
fructose was detected in the culture media of an S. mu-
tans strain deficient in all extracellular sucrolytic enzymes
after treatment with sucrose (46), it was hypothesized
that following sucrose internalization and subsequent
cleavage of sucrose-6-P into glucose-6-P and unphos-
phorylated fructose by the ScrB hydrolase, some of the
fructose is released into the medium and can activate
the LevQRST circuit but is insufficient to trigger CcpA-
dependent carbon catabolite repression. Such a strategy
of carbohydrate metabolism would be energetically ef-
ficient and avoid perturbing intracellular ATP levels,
which is particularly important to a bacterium such as
S. mutans that actively pumps protons out of the cell at
the expense of ATP to maintain pH homeostasis. Inter-
estingly, fructose may not be the only carbohydrate to be
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FIGURE 1 Carbohydrate metabolism in S. mutans. While S. mutans can metabolize a large variety of carbohydrates, the figure
shows the metabolism of most common dietary sugars (fructose, glucose, and sucrose). Sucrose is a β2,1-linked disaccharide
composed of glucose and fructose that has proven to be the most cariogenic of all carbohydrates. In the extracellular envi-
ronment, sucrose is a substrate of glucosyltransferase (GTF) and fructosyltransferase (FTF) enzymes, which catalyze the pro-
duction of glucans and fructans, respectively. The formation of glucans plays a key role in virulence, because they contribute
to biofilm buildup by forming a glue-like polysaccharide matrix. Fructans serve as short-term extracellular carbohydrate sources
and are degraded by the fructanase enzyme FruA, yielding fructose, which can be internalized for energy production. Glucans
are susceptible to the action of an extracellular dextranase, DexA, which breaks down the α1,6-linkages, thereby yielding
oligosaccharides (e.g., maltodextrans). After being transported into the cell, oligosaccharides are degraded intomonosaccharides
by the action of the DexB glucosidase. Oligosaccharides are primarily transported into the cells by ATP-binding cassette (ABC)
transporters (e.g., Msm and MalXFGK transport systems), whereas monosaccharides (e.g., glucose and fructose) and disac-
charides (e.g., sucrose) are predominantly taken up by the phosphoenolpyruvate:sugar PTS. In S. mutans, multiple PTSs can
transport the same carbohydrate, with at least three PTSs being involved in fructose transport and several PTSs and permeases
being involved in glucose transport. In the intracellular environment, carbohydrates are phosphorylated and processed to
fructose-6-phosphate (Fru-6-P) and fermented by glycolysis with production of organic acids, mainly lactic acid. In addition,
glucosamine-6-phosphate (GlcN-6-P) is synthesized from Fru-6-P and serves as an initial precursor for cell wall biosynthesis.
Cells can synthesize an intracellular polysaccharide (IPS), a polymer of the glycogen-amylopectin type, when carbohydrates are in
excess that can be stored as intracellular granules and are used as an energy source reserve during starvation.
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released and reinternalized by S. mutans. Recent studies
have characterized maltose and maltooligosaccharide
metabolism and demonstrated the presence of free glu-
cose in the culture medium that is apparently rein-
ternalized by way of the glucose-PTS EIIMan (47, 48).
Transient expulsion of glucose was also observed when
S. mutans was grown on a mixture of glucose and lac-
tose (49). Considering diffusion limitations within bio-
film matrices (50), hexose release may likely serve as
temporary energy storage and/or as a carbohydrate
source for neighboring cells that may not be actively
invested in metabolizing these disaccharides. This would
thereby represent a bet-hedging strategy within the pop-
ulation and also contribute to a mutualistic relationship
with other microorganisms that are closely associated
with S. mutans (51, 52).

BIOFILM FORMATION
As a major etiological agent of human dental caries,
S. mutans lives primarily in biofilms on the tooth sur-
faces, the so-called dental plaque. Strains of S. mutans
produce up to three GTFs, GtfB, -C and, -D, that utilize
the glucose moiety of sucrose as the substrate to syn-
thesize glucose polymers of glucans (also known as
mutans) (Fig. 1) (7). GtfB synthesizes water-insoluble
glucans rich in α(1-3)-linkages, GtfC produces a mixture
of soluble glucans rich in α(1-6)-linkages and insoluble
glucans, and GtfD makes primarily soluble glucans (of-
ten called dextran). These polymers, especially the α3,1-
linked water-insoluble glucans, are major constituents of
plaque biofilm matrices. Gtfs also bind to other oral
microbes, even those that do not naturally express Gtfs,
thereby converting them into de facto glucan produc-
ers (7). In addition, S. mutans encodes several surface-
associated glucan-binding proteins, GbpA, -B, -C, and
-D. Together, the Gtfs, Gbps, and adhesive glucans serve
as an integrated scaffold for sucrose-dependent biofilm
formation central to this organism’s cariogenicity by
promoting the local accumulation of microbial cells
while forming a diffusion-limiting polymeric matrix that
protects the embedded bacteria (Fig. 2).

S. mutans also possesses multiple high-affinity surface
adhesins that enable colonization even in the absence of
sucrose. One of the most widely studied adhesins is the
dual antigen I/II, also known as P1, SpaP, or PAc. This
structurally complex multifunctional adhesin mediates
bacterial attachment to the tooth’s salivary pellicle via
interactions with the host scavenger receptor glycopro-
tein GP340 or DMBT-1 (53–55). The AgI/II family ad-
hesins also interact with other bacteria and host proteins

such as fibronectin and collagen (53, 56). Relative to
the wild type, a P1-deficient mutant demonstrates re-
duced binding to saliva or GP340-coated surfaces, ab-
errant biofilm formation, and reduced cariogenicity in
a rat caries model (57, 58). In addition, P1 and WapA,
another surface-localized adhesin, have been recently
shown to form fibrillar amyloid aggregates (59). Amy-
loids are increasingly recognized as integral bacterial
biofilm matrix components that interact with extracel-
lular DNA (eDNA) and confer stability to the exopoly-
saccharide matrix (60). An srtA mutant lacking the only
surface-anchoring sortase enzyme found in S. mutans is
severely defective in biofilm development and does not
produce amyloid, suggesting that fibril nucleation oc-
curs at the cell surface (61). Treatment of S. mutans
with known amyloid inhibitors inhibits biofilm forma-
tion via P1 and WapA-dependent mechanisms (59). In
addition to P1 andWapA, a third amyloidogenic protein
(SMU_63c) was recently identified. This secretory pro-
tein serves as an apparent negative regulator of biofilm
cell density and genetic competence (59). Its production
is associated with K+ availability and influenced by
growth phase (62).

Several cell envelope-associated proteins also con-
tribute to S. mutans biofilm formation, including AtlA,
RgpG, BrpA, and Psr. AtlA is an autolysin whose defi-
ciency results in decreased autolysis and longer chain
length and drastically reduces biofilm formation re-
gardless of the carbohydrate used for growth (63). RgpG
is the first enzyme of the biosynthetic pathway for
rhamnose-containing glucose polymers, a major surface
antigen of oral streptococci responsible for the different
serotypes (64, 65). RgpG deficiency does not impair
growth but leads to a pronounced reduction of cell sur-
face antigens and major defects in cell morphology and
cell division (65). RgpG-deficient mutants display long
chains of swollen “squarish” dividing cells and form
fewer biofilms irrespective of carbohydrate source. The
BrpA and Psr proteins are members of the LytR-CpsA-
Psr family of proteins that are widespread in Gram-
positive bacteria (66–68). Deletion of brpA has little
effect on growth but causes major impairment in biofilm
formation. The brpA mutant is also less tolerant to acid
and oxidative stresses and more susceptible to cell en-
velope antimicrobial agents, all of which likely contrib-
ute to its reduced biofilm phenotype. Psr also strongly
influences S. mutans biofilm formation and acid toler-
ance, but unlike BrpA, Psr deficiency does not diminish
oxidative stress tolerance or resistance to cell envelope
antimicrobial agents. Both BrpA and Psr exhibit ligase
functions for cell wall antigens, such as the rhamnose-
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FIGURE 2 Biofilm formation and host-pathogen interactions in S. mutans. Early colo-
nizers (e.g., S. gordonii, Streptococcus mitis, and Actinomyces spp. among others) attach
to the tooth enamel via salivary proteins and start to form three-dimensional biofilms
under noncariogenic conditions. At pH levels close to neutrality, production of H2O2 by
peroxigenic bacteria and other antimicrobial products produced by oral commensals
prevents the overgrowth of specific pathogens (e.g., S. mutans) on dental biofilms. Gly-
cosyltransferases (GTFs) secreted by S. mutans adsorb onto the enamel pellicle or bac-
terial surfaces. In the presence of sucrose, GTFs catabolize sucrose to produce large
amounts of insoluble and soluble glucans, which contribute to the buildup of a robust
extracellular polysaccharide matrix (EPS), particularly insoluble components. The EPS
matrix serves as an architectural scaffold for the biofilm structure, mediating tight ad-
herence to the tooth enamel and bacteria, as glucans provide binding sites for S. mutans
glucan-binding proteins (GBP) and other organisms. Extracellular DNA (eDNA) is another
functional constituent of the oral biofilm matrix, forming nanofibers that connect cell to
cell and cell to substratum and that contribute to biofilm structural integrity and stability.
Continuous intake of sucrose by the host leads to a series of ecological and structural
shifts that favor the growth of aciduric and highly acidogenic bacteria, such as S. mutans.
These changes alter the oral biofilm metabolism so that copious amounts of organic acids
are produced, contributing to a decrease in environmental pH. Once S. mutans becomes
dominant, the secretion of large amounts of mutacins kills nearby competitors such as
peroxigenic streptococci. The constant low-pH milieu surrounding the hydroxyapatite
structure of the enamel leads to demineralization and initiates the carious process.
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containing glucose polymers, and thereby globally im-
pact cell envelope composition. Deficiency of either BrpA
or Psr results in a reduction of cell wall antigens and their
concurrent accumulation in cell-free culture medium
(65). Finally, eDNA is another functional constituent of
the S. mutans biofilm matrix; eDNA forms nanofibers
that connect cells to one another and to the substratum
contributing to bacterial adherence and biofilm struc-
tural integrity and stability (69).

STRESS TOLERANCE
The ability of S. mutans to adapt to sudden and sub-
stantial environmental changes within the dental plaque
is a key attribute that contributes to its status as the
major etiologic agent of dental caries. Fermentable car-
bohydrates consumed by the host provide a substrate
for S. mutans and other lactic acid bacteria that ulti-
mately results in the production of acidic end products
that accumulate within the biofilm. To thrive at low pH
values, S. mutans mounts the so-called acid tolerance
response, a robust transcriptional and physiologic ad-
aptation mechanism that encompasses the induction of
pathways that contribute to cytoplasm buffering and
changes in membrane fatty acid composition, ultimately
protecting the cellular machinery from acid damage and
contributing to the survival of the bacteria during stress
(Fig. 3) (3, 6, 70). Collectively, the different cellular
processes that constitute the acid tolerance response
contribute to the ability of S. mutans to maintain an
intracellular pH that is more alkaline than the sur-
rounding environment (ΔpH) by about 0.5 to 1 pH unit
(71). Environmental acidification also triggers S. mutans
to modify the composition of the plasma membrane in a
way that may alter proton permeability. These modifi-
cations are accomplished by increasing the proportion of
monounsaturated fatty acids (both by incorporating
exogenous fatty acids and by de novo synthesis) and by
increasing the length of the carbon chains composing
these membrane fatty acids (72). Inactivation of the gene
responsible for biosynthesis of monounsaturated fatty
acids in S. mutans, fabM, results in extreme sensitivity
to low pH, inability to maintain ΔpH, and reduced vir-
ulence in a rat caries model (73, 74). In addition to
changes in fatty acid composition, the phospholipid
cardiolipin has also emerged as an important contribu-
tor to acid tolerance, because deletion of the cardiolipin
synthase (cls) increased acid sensitivity (75).

Alkalinization of the cytoplasm occurs either by
pumping protons out of the cell or through the generation
of neutralizing molecules. In S. mutans, the membrane-

bound F1F0-ATPase (F-ATPase) is the primary mecha-
nism by which protons are extruded to maintain pH
homeostasis. The S. mutans F-ATPase is transcription-
ally induced by low pH values and has an optimal pH of
6.0, which is lower than that of most streptococci as-
sociated with oral health (76, 77). Some oral strep-
tococci utilize the urease enzyme (e.g., Streptococcus
salivarius) or the arginine deiminase system (e.g., Strep-
tococcus gordonii) to produce the neutralizing mole-
cules ammonia and CO2 in order to cope with acid
stress. Although these pathways are absent in S. mutans,
the agmatine deiminase system (AgDS), analogous to
the arginine deiminase system, is present in this species
(78, 79). The AgDS converts agmatine, a decarboxylated
derivative of arginine found in dental plaque, to ammo-
nia, CO2, putrescine, and ATP. Though the AgDS does
not appear to have a considerable impact on environ-
mental alkalinization, the ammonia generated internally
may contribute to neutralization of the cytoplasmic pH,
while the ATP generated can be used to fuel proton ex-
trusion via the F-ATPase (80). Malolactic fermentation
converts malate, an acid commonly found in wine and
in fruits such as apples, to the less acidic lactate and to
CO2. The CO2 product can then be used for cytoplas-
mic neutralization by conversion to bicarbonate via car-
bonic anhydrase. In S. mutans, transcription of the genes
encoding the malolactic enzyme and permease is acid-
inducible, and malolactic fermentation activity was found
to be optimal at an extracellular pH of 4.0 (81). Most
importantly, malate was shown to protect S. mutans
against acid killing and was associated with maintenance
of ATP pools during starvation (82).

While the dental plaque environment was initially
thought to be anaerobic, it is now known that the oral
microbial community has a high capacity to reduce ox-
ygen, resulting in the generation of toxic reactive oxy-
gen species (83). Most S. mutans strains are susceptible
to exposure to H2O2, which can be generated by me-
tabolism of other species within the dental plaque, such
as peroxigenic streptococci, or is contained as a com-
ponent of oral hygiene and tooth bleaching products.
Exposure to high levels of H2O2, and its more damag-
ing breakdown products hydroxyl radical and superox-
ide anion, can rapidly cause irreversible cellular damage
by triggering mismetallation of enzymes, by damaging
proteins through oxidation of sulfurous amino acids and
metal-binding sites, and by disturbing DNA integrity
(84). Although oral streptococci lack catalase, S. mu-
tans utilizes a number of scavenging and protective
systems to prevent the accumulation of toxic reactive oxy-
gen species. Among these are a manganese-dependent
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FIGURE 3 Acid stress tolerance mechanisms of S. mutans. The ability of S. mutans
to catalyze fermentable dietary carbohydrates into organic acids can promptly drop the
environmental pH. Exposure to sublethal low pH triggers an acid-adaptive response
known as ATR (acid tolerance response), which is a robust transcriptional and physiologic
adaptation mechanism for pH homeostasis through alteration of proton permeability,
generation of neutralizing molecules, and changes in membrane fatty acid composition.
The membrane F1F0-ATPase (F-ATPase) is transcriptionally induced by low pH and serves
as the primary mechanism by which protons are extruded to maintain pH homeostasis.
The modifications in membrane composition refer to an increase in the proportion of
monounsaturated fatty acids (UFA) over saturated fatty acids (SFA) and in the length of the
carbon chains composing the membrane fatty acids. Production of neutralizing mole-
cules, such as ammonia and CO2, is also an important way to cope with acid stress. In
S. mutans, the agmatine deiminase system (AgDS) converts agmatine, a decarboxylated
derivative of arginine found in dental plaque, to ammonia, CO2, putrescine, and ATP. The
ammonia generated internally may contribute to cytoplasmic buffering, while the ATP
generated can be used to fuel proton extrusion via the F-ATPase. A decrease in envi-
ronmental pH also triggers activation of malolactic fermentation (MLF), which converts
malate to the less acidic lactate and to CO2. The CO2 product can then be used for
cytoplasmic neutralization by conversion to bicarbonate (HCO3

–) via carbonic anhydrase.
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superoxide dismutase, an alkyl hydroperoxidase reduc-
tase, a thioredoxin reductase, and a glutaredoxin system
(GshA/B/R) (85). Tight control of free iron in the cell
is an important aspect of minimizing exposure to reac-
tive oxygen species, because free radical formation is a
direct result of the Fenton chemistry, when H2O2 comes
into contact with ferrous iron. For this reason, the iron
binding protein Dpr is a critical mediator of oxidative
stress exposure in S. mutans (86, 87). Finally, the Spx
regulators, SpxA1 and SpxA2, are responsible for the
transcriptional activation of virtually every major oxida-
tive stress response gene in S. mutans (85, 88). Not sur-
prisingly, spx deletion strains were ill-equipped to tolerate
oxidative challenges and caused fewer sulcal caries lesions
in rats fed a highly cariogenic diet (85, 89, 90).

SIGNALING PATHWAYS
Two-Component Signal Transduction
Systems (TCSTSs)
TCSTSs play important roles in bacterial adaptation,
survival, and virulence by sensing changes in the envi-
ronment and altering the expression of specific sets of
genes to mount coordinated responses to environmental
stimuli. In TCSTSs, a signal is sent by phosphotransfer
between histidine senor kinases and their cognate re-
sponse regulators, triggering the response regulators to
dimerize and bind to conserved DNA motifs, ultimately
tuning cellular functions such as biofilm formation, stress
tolerance, and nutrient uptake (91). The genome of the
type strain UA159 encodes 14 TCSTSs and one orphan
response regulator with no genetic link to a histidine
kinase (92). Among those, ComDE, LevRS, VicRK, and
the orphan CovR regulator have been studied in some
detail and shown to coordinate the expression of a
number of virulence attributes. The LevRS system, which
is important for management of carbohydrate metabo-
lism, was introduced in the “Carbohydrate Metabolism”

session, whereas the ComDE system, which is involved in
the regulation of bacteriocin production and compe-
tence, is discussed in the next paragraph. VicRK influ-
ences acid and oxidative stress responses and competence
and is the only TCSTS essential in S. mutans (93, 94).
Several studies have proposed phosphotransfer cross talk
between VicRK and the LiaFSR TCSTS, which con-
tributes to surface adhesion, mutacin production, and the
ability to tolerate environmental stresses, including cell
envelope damage and heat shock (95–98). In addition,
VicRK and CovR directly regulate genes implicated in
the synthesis of and interaction with extracellular poly-
saccharides (7, 99). For example, transcription of gbpB is

positively regulated by VicR (100, 101), while gtfB, gtfC,
and gbpC are repressed by CovR (99).

Quorum Sensing (QS)
QS systems are communication networks that enable
microbes to sense and respond to environmental condi-
tions such as nutrient availability and population density,
because signaling molecules naturally accumulate along
with bacterial density. In Gram-positive bacteria, QS is
coordinated by peptide pheromones, which serve as ex-
tracellular signaling molecules that trigger changes in gene
expression and, ultimately, activation of a coordinated
response by the population (102–104). In S. mutans, QS
systems have evolved to regulate production of bacterio-
cins (known in S. mutans as mutacins), which are peptide
antibiotics used in defense against other oral microbes
(105–107) and in competence (natural transformation), a
transient state in which the organism is primed to take up
foreign DNA (Fig. 4). The competence-stimulating pep-
tide signaling molecule (CSP) (also called the mutacin-
inducing peptide) is encoded by comC. Once CSP has
been secreted and processed, it is recognized by the
TCSTS ComDE (104, 108, 109). Activated (phosphory-
lated) ComE regulates mutacin production by recognizing
a conserved sequence in the promoter region of its target
genes (95, 110, 111). Also sharing regulatory links with
ComDE in S. mutans is another TCSTS, CiaRH, which
contributes to biofilm formation, acid tolerance, and en-
try into competence, possibly by interacting with CSP
(112). Among the consequences of ComE activation is the
stimulation of comRS, the QS pathway directly respon-
sible for competence activation via the alternative sigma
factor ComX (also called SigX) (113, 114). Once ex-
ported to the extracellular space, the prepeptide ComS is
presumably processed into the peptide pheromone XIP
(comX- or sigX-inducing peptide) (114, 115). When
imported back into the cell via the oligopeptide permease
system, XIP is sensed by ComR, which binds to conserved
inverted repeat sequences upstream of both comX and
comS, thereby causing auto-induction of the ComRS
pathway and activation of ComX-regulated genes. It is
worth noting that while all S. mutans isolates sequenced
to date possess a functional ComRS-ComX system, not
all strains harbor a complete ComCDE pathway, nor are
all isolates equally competent (15).

The mutacins produced by S. mutans are catego-
rized as either lantibiotics (broadly active against Gram-
positive bacteria) or nonlantibiotics (most active against
closely related species), and production of these mole-
cules is strain specific (116). Mutacins provide a com-
petitive advantage to S. mutans by inhibiting the growth
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of neighboring bacterial species (117, 118). A close
relationship exists between competence induction and
mutacin production, because a threshold concentration
of CSP activates ComDE to result in increased mutacin
production (95, 111). Adding to the layers of regulation
of mutacin production are two LytTR regulatory sys-
tems, HdrRM and BrsRM, which include a membrane-
bound inhibitor protein that prompts the activity of
the transcriptional regulator (119, 120). In this case, an

overlap in the regulatory systems that govern mutacin
production and competence is again observed because
LytTR systems also induce competence through ComX
(120, 121). A complete understanding of the environ-
mental conditions that trigger these regulators and hence
influence mutacin production is yet to be achieved.

Another S. mutans QS mechanism employs the
autoinducer-2 (AI-2), the collective name for a group of
furanones formed as a by-product of LuxS-mediated

FIGURE 4 Quorum-sensing systems involved in the regulation of bacteriocin production
and competence in S. mutans. Cell density, nutrient availability, and other environmental
conditions induce the expression of comC, a gene encoding the competence-stimulating
peptide (CSP) precursor. The CSP propeptide is cleaved off inside the cell and exported
through a specific ABC transporter encoded by comAB. In the extracellular environment,
CSP then undergoes a final postexport processing mediated by the SepM protease. Upon
reaching a certain threshold, mature CSP is recognized by the two-component system
ComDE, triggering a phosphorylation cascade. Activated (phosphorylated) ComE acti-
vates transcription of (i) comC and comDE, creating a positive feedback loop, (ii) genes
involved in mutacin production, and (iii) by a yet-to-be-determined mechanism, comRS,
the quorum-sensing pathway directly responsible for competence activation via the al-
ternative sigma factor ComX. Once exported to the extracellular milieu, the prepeptide
ComS is processed into the peptide pheromone XIP (comX- or sigX-inducing peptide). XIP
is transported back into the cell via the oligopeptide permease system (Opp) and sensed
by the Rgg-type regulator ComR. Activated ComR binds to both comX and comS
promoters, thereby causing auto-induction of ComRS and activation of late (ComX-
regulated) competence genes.
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methyl metabolism (122). The lack of species specificity
of AI-2 signaling molecules, which are produced by both
Gram-positive and Gram-negative organisms, facilitates
interspecies communication as population growth con-
tributes to accumulation of AI-2. Deficiency of LuxS
reduces the ability of S. mutans to tolerate acid and
oxidative stress and to form biofilms, especially during
growth in sucrose (123, 124). In agreement with those
phenotypes, LuxS deficiency causes alterations in ex-
pression of a large number of genes, including those with
known roles in stress tolerance response and biofilm
formation (123–125). Addition of synthetic AI-2 to the
growth medium can restore the phenotypes of LuxS
mutants with regard to the stress tolerance response,
biofilm formation, and the expression of selected genes
(124, 125). To date, however, a specific receptor for AI-2
has yet to be identified (125).

Regulatory Nucleotides
The regulatory nucleotides (p)ppGpp and cyclic-di-AMP
have also been shown to modulate biofilm formation and
stress responses in S. mutans (126–128). Guanosine tet-
raphosphate (ppGpp) and guanosine pentaphosphate
(pppGpp), collectively called (p)ppGpp, are the effector
molecules of a conserved stress response referred to as the
stringent response (129). Three (p)ppGpp-metabolizing
enzymes have been identified in S. mutans: RelA is a bi-
functional synthetase/hydrolase contributing to metabo-
lism of (p)ppGpp, while two small alarmone synthetase
enzymes, RelP and RelQ, harbor only the synthetase
domain (130). In S. mutans, changes in (p)ppGpp pools
affect biofilm formation, carbohydrate metabolism, and
stress tolerance, suggesting an overlap between cir-
cuits that govern general stress tolerance and biofilm
formation. While the mechanism is not completely un-
derstood, (p)ppGpp pools also modulate competence
signaling through interactions with an ABC-type trans-
porter, RcrRPQ, and at least one peptide encoded within
rcrQ (126, 131). Cyclic di-AMP is an emerging second
messenger in bacteria that has been shown to play im-
portant roles in bacterial fitness and virulence (132).
In S. mutans, increased cyclic-di-AMP levels promoted
biofilm formation through interactions with the VicRK-
gtfB network that ultimately resulted in in the tran-
scriptional activation of gtfB (128).

INTERSPECIES AND CROSS-KINGDOM
INTERACTIONS
Interactions between S. mutans and certain members of
the dental plaque community have been documented

and have recently been shown to exert a major influence
on the development and pathogenicity of plaque. These
interactions can be synergistic, i.e., promote S. mutans
growth, or antagonistic, i.e., inhibitory to S. mutans. A
classic example of an antagonistic interaction occurs
between S. mutans and members of the mitis strepto-
cocci group such as Streptococcus sanguinis and S. gor-
donii. Specifically, several members of the mitis group
secrete millimolar concentrations of H2O2, which can be
highly inhibitory to S. mutans (118). On the other hand,
strains of S. mutans not only produce mutacins that
are specific against mitis streptococci, but most are also
generally more aciduric than species from the mitis
group. This antagonistic relationship becomes more evi-
dent in dental plaque, whereby there is an inverse as-
sociation between the abundance of oral commensal
streptococci such as S. sanguinis and S. gordonii (abun-
dant in healthy plaque) and that of S. mutans (abundant
in caries lesions) (133) (Fig. 2).

While production of lactic acid by S. mutans is inhib-
itory to the growth of many acid-sensitive oral commen-
sals, lactic acid serves as a carbon source for Veillonella
spp., a prevalent genus in the oral cavity (134). Thus, it
is thought that Veillonella may act as an “acid sink,”
preventing the dental biofilm from reaching extremely
low pH values that even aciduric organisms such as
S. mutans may not be able to survive. This nutritional
mutualism may explain the close association of Veil-
lonella with streptococci in the oral cavity, which excrete
lactate as a waste product of carbohydrate fermenta-
tion. In dual-species biofilms, S. mutans and Veillonella
parvula form distinctive structures and display increased
resistance to chlorhexidine and other antimicrobials when
compared to single-species biofilms (135, 136). Using a
three-species mixed culture, Liu et al. showed that the
presence of V. parvula negated the growth inhibition of
S. mutans caused by peroxigenic S. gordonii (137).

In addition to bacteria, the oral cavity is also colonized
by yeasts. Candida albicans in particular is frequently
found in the oral mucosa. Interestingly, C. albicans is
often associated with S. mutans and detected in high
numbers in cases of early childhood caries (138). Recent
studies have shown that the S. mutans GtfB enzyme
binds to mannan receptors on the C. albicans surface,
leading to enhanced adherence and biofilm accumula-
tion by C. albicans and thereby enhancing biofilm for-
mation and cariogenicity (139, 140). At the same time,
C. albicans synthesizes farnesol, which enhances extra-
cellular polysaccharide production by S. mutans (52).
In a rat caries model, coinfection with S. mutans and
C. albicans led to higher levels of microbial carriage in
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plaque biofilms and significantly increased the cario-
genic potential of dental plaque, resulting in aggressive
disease onset and rampant caries lesions (140).

S. MUTANS AS A MODEL ORGANISM:
SHIFTING LONG-STANDING PARADIGMS
Key advances in the field of bacteriology have come from
studies with Escherichia coli and Bacillus subtilis, which
represent the Gram-negative and Gram-positive bacte-
rial paradigms, respectively. Despite the important con-
tributions of these two species to bacteriology research,
no model organism is a perfect representative of other
species. In the case of Gram-positive organisms, B. sub-
tilis is a free-living sporulating organism found in soil
and plants but not in humans. Conversely, S. mutans is
an obligate human pathogen with a biofilm-dependent
lifestyle. It does not come as a surprise that a greater
overlap in the mechanisms of gene regulation and met-
abolic pathways are observed between S. mutans and
related Gram-positive pathogens that share a host-
associated lifestyle. Such organisms, like S. mutans,
generally have compact genomes with low GC contents.
Like E. coli and B. subtilis, S. mutans is highly amena-
ble to genetic manipulation and is therefore also easy
to study and control in the laboratory setting. Among
closely related streptococci, it has the most complete
and sophisticated set of genetic tools that can be used
in combination with simple and efficient in vitro and
in vivo models to enhance our current understanding
of S. mutans biology and beyond (141). As a result,
a number of S. mutans investigations have challenged
long-standing bacterial dogmas that were established
based on work conducted with E. coli and B. subtilis.
One such example is the signal recognition particle (SRP)
pathway involved in cotranslational protein translocation
(142). The first clue that protein transport in S. mutans
differs from the established E. coli model came from
the identification of an acid-sensitive transposon mu-
tant in which ffh encoding the 54-kilodalton homolog of
the eukaryotic SRP was insertionally inactivated. Subse-
quently, all three conserved bacterial elements of the
cotranslational translocation SRP pathway, including the
particle components Ffh and small 4.5S cytoplasmic
RNA, along with the membrane-associated SRP receptor
FtsY, were proven dispensable in S. mutans. This was
noteworthy because the SRP pathway was long believed
to be essential for viability in all living cells. An expla-
nation for this surprise lay in the presence in S. mutans of
two paralogs of the YidC/Oxa/Alb family of membrane-
localized chaperone insertases found in bacteria, mito-

chondria, and chloroplasts. Unlike Gram-negative bac-
teria, most Gram-positive organisms possess two, if not
more, YidC homologs. Another almost universal dis-
tinguishing feature between Gram-positive and Gram-
negative bacteria, also discovered in S. mutans, is the
SRP accessory factor YlxM, which interacts with both
Ffh and scRNA and influences the GTPase activity
of the Ffh/FtsY heterodimer, which is necessary for
pathway component recycling once ribosome/nascent
protein chain complexes are delivered to the membrane-
localized SecYEG translocon (143). Another example
occurred during the initial characterization of the en-
zyme responsible for the synthesis of (p)ppGpp in S.
mutans, the effector molecule of the bacterial strin-
gent response (see “Signaling Pathways” section). Before
the work with S. mutans, the bifunctional RelA enzyme
(also known as Rsh or Rel) was considered the sole en-
zymatic source of (p)ppGpp synthesis and degradation
in all Firmicutes. The serendipitous finding that dele-
tion of relA did not abolish (p)ppGpp production in S.
mutans led to the discovery of two additional enzymes,
RelP and RelQ, capable of synthesizing (p)ppGpp (130).
Subsequent bioinformatics and genetic analysis revealed
that these enzymes are ubiquitous in Firmicutes, and they
were eventually found in other bacterial species.

S. MUTANS AS A THERAPEUTIC TARGET
IN CARIES PREVENTION
While caries is a polymicrobial disease, selective target-
ing of S. mutans in dental biofilms is viewed as a suitable
approach for its prevention. This is mainly because the
synthesis of insoluble glucans from sucrose by S. mutans
is central for the formation of a stable biofilm matrix
that facilitates bacterial colonization of the tooth surface
and, at the same time, serves as a diffusion barrier help-
ing to maintain the acidic milieu within which cariogenic
bacteria thrive (144). One of the current lines of thought
in dental caries prevention is that it may be possible to
halt the development of cariogenic biofilms by selectively
targeting S. mutans such that the oral microbiome as-
sociated with health is not disturbed. Most of the early
research conducted in the late 1960s into the 1980s fo-
cused on the development of anti-S. mutans vaccines.
Despite some recent successes in animal models with
vaccines containing or encoding single or a combination
of antigens (145–148), emphasis on an immunopro-
phylactic approach has slowed somewhat due to the
many challenges in obtaining long-term salivary IgA re-
sponses, safety concerns with antistreptococci antibody
cross-reactivity, and providing species-specific protec-
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tion without disrupting related beneficial commensal
organisms. Over the past 2 decades or more, a number
of natural products, such as propolis (149), curcumin
(150), cranberry (151), and green tea extracts (152)
among many others, have been shown to be effective
against S. mutans biofilms and to prevent dental caries,
although to date, none of these products has proven to
be selective toward S. mutans. More recently, antimi-
crobial peptides (AMPs), small molecules, and probio-
tics have emerged as promising new approaches for the
development of novel anticaries strategies that specifi-
cally target S. mutans. While AMPs kill bacteria indis-
criminately, the selective killing of S. mutans by AMPs
has been achieved by creating a synthetic peptide that
combines a large-spectrum AMP with the S. mutans-
specific CSP (153, 154). Phase 2 clinical trials recently
showed that a single varnish application of one such
peptide achieved significant reductions of S. mutans in
the oral cavity (155). More recently, a small molecule
derived from 2-aminotriazole (designated 3F1) was also
shown to selectively disperse S. mutans biofilms (156).
Most importantly, 3F1 was shown to reduce caries
without disturbing the oral microbiome in a rat caries
model. An alternative approach to combat S. mutans
and therefore prevent dental caries may be the use of
alkalinogenic bacteria as a probiotic or the use of sub-
strates for such alkalinogenic activities, e.g., arginine,
as a prebiotic. This is because some oral bacteria can
neutralize plaque pH by producing large quantities of
ammonia by metabolizing arginine or urea, thereby
creating an environment favorable to health-associated
bacteria (157). A promising candidate is a highly ar-
ginolytic streptococcal strain, designated A12, isolated
from supragingival plaque of a caries-free individual
(158). Not only did the A12 strain neutralize acid by
metabolizing arginine, but it was also shown to kill
S. mutans by producing H2O2 and to interfere with sig-
naling pathways that control bacteriocin production.

FUTURE PERSPECTIVES
Evidence accumulated over many decades has clearly
shown that S. mutans is a major agent in dental caries
vis-à-vis its capacity to orchestrate changes in the plaque
microbiome via EPS and acid production. Thus, con-
tinued efforts to elucidate how S. mutans senses and
responds to environmental cues through interconnected
circuits that govern stress tolerance and biofilm for-
mation can facilitate the identification of new targets
for caries treatment and prevention. As the biology of
S. mutans continues to be unraveled, a better under-

standing of the consequences of genomic and phenotypic
heterogeneity among strains is an important area for
development. Specifically, how S. mutans isolates with
different properties contribute to the different stages of
disease through synergistic or antagonistic interactions
with the microbiome is a largely unexplored area. Future
investigations should also consider the role of certain
strains of S. mutans in systemic infections.
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