
RESEARCH ARTICLE

Managing genomic variant calling workflows

with Swift/T

Azza E. Ahmed1,2☯, Jacob Heldenbrand3☯, Yan Asmann4, Faisal M. Fadlelmola1, Daniel

S. KatzID
3, Katherine Kendig3, Matthew C. Kendzior5, Tiffany Li3, Yingxue Ren4,

Elliott Rodriguez3, Matthew R. Weber5, Justin M. Wozniak6, Jennie Zermeno3, Liudmila

S. MainzerID
3,7*

1 Centre for Bioinformatics & Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan,

2 Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Khartoum,

Khartoum, Sudan, 3 National Center for Supercomputing Applications, University of Illinois at Urbana-

Champaign, Urbana-Champaign, Illinois, United States of America, 4 Department of Health Sciences

Research, Mayo Clinic, Jacksonville, Florida, United States of America, 5 Department of Crop Sciences,

University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America, 6 Argonne

National Laboratory, Argonne, Illinois, United States of America, 7 Institute for Genomic Biology, University of

Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America

☯ These authors contributed equally to this work.

* lmainzer@illinois.edu

Abstract

Bioinformatics research is frequently performed using complex workflows with multiple

steps, fans, merges, and conditionals. This complexity makes management of the workflow

difficult on a computer cluster, especially when running in parallel on large batches of data:

hundreds or thousands of samples at a time. Scientific workflow management systems

could help with that. Many are now being proposed, but is there yet the “best” workflow man-

agement system for bioinformatics? Such a system would need to satisfy numerous, some-

times conflicting requirements: from ease of use, to seamless deployment at peta- and exa-

scale, and portability to the cloud. We evaluated Swift/T as a candidate for such role by

implementing a primary genomic variant calling workflow in the Swift/T language, focusing

on workflow management, performance and scalability issues that arise from production-

grade big data genomic analyses. In the process we introduced novel features into the lan-

guage, which are now part of its open repository. Additionally, we formalized a set of design

criteria for quality, robust, maintainable workflows that must function at-scale in a production

setting, such as a large genomic sequencing facility or a major hospital system. The use of

Swift/T conveys two key advantages. (1) It operates transparently in multiple cluster sched-

uling environments (PBS Torque, SLURM, Cray aprun environment, etc.), thus a single

workflow is trivially portable across numerous clusters. (2) The leaf functions of Swift/T per-

mit developers to easily swap executables in and out of the workflow, which makes it easy

to maintain and to request resources optimal for each stage of the pipeline. While Swift/T’s

data-level parallelism eliminates the need to code parallel analysis of multiple samples, it

does make debugging more difficult, as is common for implicitly parallel code. Nonetheless,

the language gives users a powerful and portable way to scale up analyses in many comput-

ing architectures. The code for our implementation of a variant calling workflow using Swift/

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ahmed AE, Heldenbrand J, Asmann Y,

Fadlelmola FM, Katz DS, Kendig K, et al. (2019)

Managing genomic variant calling workflows with

Swift/T. PLoS ONE 14(7): e0211608. https://doi.

org/10.1371/journal.pone.0211608

Editor: Li Chen, Auburn University - Harrison

School of Pharmacy, UNITED STATES

Received: January 16, 2019

Accepted: June 8, 2019

Published: July 9, 2019

Copyright: © 2019 Ahmed et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code is available

from https://github.com/ncsa/Swift-T-Variant-

Calling Code is documented on http://swift-t-

variant-calling.readthedocs.io/en/latest/.

Funding: This research is part of the Blue Waters

sustained-petascale computing project, which is

supported by the National Science Foundation

(awards OCI-0725070 and ACI-1238993) and the

state of Illinois. DSK and JMW are supported by

the NSF award ACI-1550588. Blue Waters is a joint

effort of the University of Illinois at Urbana-

Champaign and its National Center for

http://orcid.org/0000-0001-5934-7525
http://orcid.org/0000-0001-7121-0214
https://doi.org/10.1371/journal.pone.0211608
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211608&domain=pdf&date_stamp=2019-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211608&domain=pdf&date_stamp=2019-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211608&domain=pdf&date_stamp=2019-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211608&domain=pdf&date_stamp=2019-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211608&domain=pdf&date_stamp=2019-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211608&domain=pdf&date_stamp=2019-07-09
https://doi.org/10.1371/journal.pone.0211608
https://doi.org/10.1371/journal.pone.0211608
http://creativecommons.org/licenses/by/4.0/
https://github.com/ncsa/Swift-T-Variant-Calling
https://github.com/ncsa/Swift-T-Variant-Calling
http://swift-t-variant-calling.readthedocs.io/en/latest/
http://swift-t-variant-calling.readthedocs.io/en/latest/

T can be found on GitHub at https://github.com/ncsa/Swift-T-Variant-Calling, with full docu-

mentation provided at http://swift-t-variant-calling.readthedocs.io/en/latest/.

Introduction

Advancements in sequencing technology [1, 2] have paved the way for many applications

of Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES) in genomic

research and the clinic [3, 4]. Be it primary variant calling, RNASeq, genome assembly or

annotation, a genomics analysis invariably involves constructing a complex workflow that

could be hard to manage for large sample sizes (hundreds and beyond, [5–7]) that necessitate

the use of large computer clusters. In such cases, features like resiliency and auto-restart in

case of node failures, tracking of individual samples, efficient node utilization, and easy debug-

ging of errors and failures are very important. Without a high-quality workflow manager,

these requirements can be difficult to satisfy, resulting in error-prone workflow development,

maintenance and execution. An additional challenge is porting the workflow among different

computing environments, a common need in collaborative and consortium projects.

Monolithic solutions, where a single executable runs the entire analysis, can replace the

complex multi-stage workflow and obviate the need for workflow management. Examples of

these solutions for primary variant calling include Isaac [8], Genalice [9] and Dragen [10].

These programs offer a plethora of options, but may be too rigid for some analyses, prevent-

ing users from swapping algorithms for better accuracy or making adjustments for different

species (reference genome, ploidy, known SNP sets etc.) [11]. These monolithic solutions

are also developed and maintained by private companies, which may delay or preclude the

incorporation of novel approaches and algorithms developed by the scientific and medical

community.

Multiple workflow management systems are now available [12] that differ in their design

philosophy and implementation. None so far have been found to be the “best” choice for bio-

informatics, although some winners are emerging, such as the Common Workflow Language

(CWL [13]) and the Workflow Definition Language (WDL [14]), see Discussion. Key distin-

guishing features are the underlying language and syntax in which the workflow is expressed,

and the monitoring and parallel processing capabilities of workflows while executing. Swift/T

[15] is one such workflow management system, composed of Swift—a high-level, general-

purpose dataflow scripting language [16], and Turbine—a workflow execution engine [17].

The greatest purported advantages of Swift/T are its high portability and ability to scale up to

extreme petascale computation levels [18]. Additionally, a number of features make this lan-

guage an attractive choice for complex bioinformatics workflows [19]:

• Abstraction and portability, where cluster resource management is largely hidden from the

user, allowing the same code to be seamlessly ported among clusters with different schedulers;

• Modularity through the use of leaf functions to define heavyweight processing tasks that are

called as need arises;

• Extensibility through easy integration of functions written in other languages;

• Dataflow-based programming framework that ensures efficient use of compute resources

through compile-time optimization for distributed-memory computing models and hybrid

parallelism, resulting in high scalability;

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 2 / 20

Supercomputing Applications. LSM was awarded

an allocation on the Blue Waters supercomputer,

which was used for some of the computational

tests. This work used the Extreme Science and

Engineering Discovery Environment (XSEDE),

which is supported by National Science Foundation

grant number ACI-1548562. DSK was awarded an

allocation on XSEDE, which was used for some of

the computational tests. LSM, AEA and FMF are

H3ABioNet members and supported by the

National Institutes of Health Common Fund under

grant number U41HG006941. The content is solely

the responsibility of the authors and does not

necessarily represent the official views of the

National Institutes of Health.

Competing interests: The authors have declared

that no competing interests exist.

https://github.com/ncsa/Swift-T-Variant-Calling
http://swift-t-variant-calling.readthedocs.io/en/latest/
https://doi.org/10.1371/journal.pone.0211608

• Code readability due to its C-like syntax; and

• Code expressibility—inclusion of standard programming features, such as conditional execu-

tion, iteration, and recursive functions [20].

We explored Swift/T as a choice in the space of currently available workflow management

systems. This paper documents our experience implementing, debugging and deploying a

genomic variant calling workflow in Swift/T available at https://github.com/ncsa/Swift-

T-Variant-Calling and documented on http://swift-t-variant-calling.readthedocs.io/en/latest/.

Methods and results

Our chosen use case is genomic variant calling, commonly performed in accordance with the

Best Practices established by the GATK team (Genome Analysis Toolkit) [21–23]. It is likely

that the GATK will continue to be the standard in research and medicine for those reasons,

and also due to the need for HIPAA [24]/CLIA [25] approval and compliance. The GATK is

well trusted, validated by the community, and grandfathered in. Thus, the need for a generic,

modular and flexible workflow built around the toolkit will persist for some time. We focused

only on the primary analysis: the steps from aligning raw reads through variant calling, exclud-

ing any downstream steps, such as phasing and annotation. Additionally, we focused on small

variant discovery, i.e. the detection of SNPs and InDels, not including structural variant call-

ing. The implementation focused on WGS and WES data. The included functionality was suf-

ficient to test the power and ability of Swift/T and evaluate its usefulness in creating extensible

workflows that could be augmented with additional steps.

The variant calling workflow consists of multiple steps that require conditional adjustments

based on the analysis use case, such as whole genome vs. exome sequencing, paired- or single-

end reads, species or ploidy, etc. The primary role of the workflow management system, such

as Swift/T, is to handle this conditional branching and coordinate the launch of command-line

tools in accordance with the user-defined configuration and data dependencies, while effi-

ciently managing the computational resources. The underlying workflow language should

make it easy to develop and maintain such complex workflows. Based on our prior experience

in scaling-up the variant calling workflow [26–28], and that of others [29–31], we have put

together a list of requirements to be satisfied while redesigning the workflow in Swift/T, and

used them to evaluate the performance of the language for our purposes.

Workflow design requirements

Modularity. By definition, a workflow is a series of computational tasks, where outputs of

one task serve as inputs to the next. Each task can be performed by a selection of bioinformat-

ics software package options driven by the nature of the analysis (Table 1). This flexibility can

be enabled by constructing modular workflows, such that each executable is incorporated via

a generic wrapper, making it easy for the developer to swap executables at the task level. For

example, at the level of the Alignment task, the workflow language should permit easy swap-

ping of BWA MEM [32] for Novoalign [33], conditionally on an option stated in a configura-

tion or run file.

Many tools in Table 1 can take a long time to run on deeply-sequenced samples. This poses

a problem for analyses run on computer clusters that have a restrictive maximum job walltime

limit. Thus it is useful to break up the workflow into stages—integrated sets of tasks that can be

viewed as higher-level modules. Each module is then executed as its own cluster job that fits

within the maximum walltime constraint. Chaining such modules together into one executable

script effectively requires support for “workflows of workflows”.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 3 / 20

https://github.com/ncsa/Swift-T-Variant-Calling
https://github.com/ncsa/Swift-T-Variant-Calling
http://swift-t-variant-calling.readthedocs.io/en/latest/
https://doi.org/10.1371/journal.pone.0211608

The modular architecture has additional advantages conferring economy of compute

resources and maintainability of code. It allows the user to run a portion of the workflow on

the resources optimal for that particular stage, which is useful when a workflow has many fans

and merges, but the fans have different node-widths among them. In case of runtime failure, it

also enables users to restart the workflow at a failed stage without having to recompute success-

ful upstream calculations. The latter advantage, however, is obviated if the workflow manage-

ment system itself provides seamless workflow restart from the point of failure—a required

feature for complex workflows running at scale. Finally, modularity ensures that the imple-

mentation of individual stages can be altered without breaking the workflow, as long as inputs

and outputs remain consistent. This way, workflows can be updated with new methodologies

as the scientific field and respective tools evolve.

Data parallelism and scalability. A major expectation of a good workflow management

system is the ability to develop a single code path that will automatically run in parallel on

multiple samples and not force the user to manually code data-level parallelism. This implicit
parallelism is not just a matter of convenience, but a significant performance boost. Bioinfor-

matics tools are commonly implemented as multithreaded executables that are not MPI-

enabled. Thus, in Bash workflows each task on each sample has to be run as an individual clus-

ter job. If the cluster does not support job arrays, its workload manager can get overwhelmed

by the high number of jobs when analyzing large datasets, leading to slow queues or failures.

In contrast, a proper workflow management system should run a workflow as a single multi-

node job, handle the placement of tasks across the nodes using embedded parallel mecha-

nisms, such as MPI, and scale well with the number of samples.

The workflow manager should also support repetitive fans and merges in the code. For exam-

ple, in variant calling it is common to cut the walltime of analysis by splitting the input sequenc-

ing data into chunks, performing alignment in parallel on all chunks, merging the aligned files

per-sample for sorting and deduplication, and finally splitting again for parallel realignment and

recalibration per-chromosome (Fig 1, left panel). This pattern of parallelization is more complex

than merely running each task on each input sample—yet is a common workflow requirement.

Finally, in bioinformatics we only need certain tools to run on multiple samples in parallel.

Other tasks, such as creating folders, user notification or running QC on the whole stage, can

and sometimes should be run sequentially. Therefore, it is beneficial to support differential use

of data-level parallelism in some modules but not others.

Table 1. Tools commonly used in genomic variant calling workflows.

Workflow Task Bioinformatics tools

Alignment BWA MEM [32], Novoalign [33], Bowtie2 [34]†

Soringt SAM Novosort [33], Samtools [35], Sambamba [36]†

Marking

duplicates

Samblaster [37], Novosort [33], Picard [38]

Indel

Realignment‡

GATK [39]

Base Recalibration

Variant Calling GATK HaplotypeCaller [40] or UnifiedGenotyper, Samtools mpileup† [35], Platypus† [41],

Strelka2† [42]

Joint Genotyping GATK GenotypeGVCFs

† Options absent from our implementation
‡ Indel realignment is not necessary past GATK version 3.6, but can be included to comply with legacy analyses, and

to enable the use of non-GATK variant callers that require realignment.

https://doi.org/10.1371/journal.pone.0211608.t001

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 4 / 20

https://doi.org/10.1371/journal.pone.0211608.t001
https://doi.org/10.1371/journal.pone.0211608

Real-time logging and monitoring. When analyzing many samples at once, especially in

a production environment where the data flow continuously through the cluster, it is impor-

tant to have a good system for logging and monitoring progress of the jobs. At any moment

during the run, the analyst should be able to assess (1) which stage of the workflow is running

for every sample batch, (2) which samples may have failed and why, (3) which nodes are being

used by the analysis, and their health status. Additionally, a well-structured post-analysis

record of all events executed on each sample is necessary to ensure reproducibility of the analy-

sis. This can be manually accomplished by developing a system of runtime logs captured via

stdout dumps, and handling user notification via mailx, but both are quite tedious to code

for complex, branched, multi-task workflows. A good workflow manager should provide these

capabilities implicitly.

Portability. A developer should be able to write a workflow once and then deploy it in

many environments: clusters with different node configuration, multiple queues and job

schedulers, in HPC or in the cloud. For a workflow as complex as genomic variant calling, hav-

ing to change and adapt for each different cluster is extremely counterproductive.

Implementation of design requirements in Swift/T

Modularity. The Swift/T language natively supports modularity by defining a “worker”

for each executable (“leaf function” in Swift/T terminology), to be called at the appropriate

Fig 1. Swift/T variant calling code, under the hood. Left: Patterns of parallelization implemented in our Swift/T variant calling workflow. Right: Colored blocks

represent the different stages of the workflow. Black blocks indicate methods within the respective modules.

https://doi.org/10.1371/journal.pone.0211608.g001

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0211608.g001
https://doi.org/10.1371/journal.pone.0211608

place in the workflow. For example, we implemented the choice to align reads either using

BWA MEM or Novoalign, as follows.
@dispatch=WORKER
app (file output, file outLog) bwa_mem (string bwaexe, string read1,
string read2, string INDEX, string bwamemparams[], int PBSCORES,
string rgheader)
{
bwaexe “mem” bwamemparams “-t” PBSCORES “-R” rgheader
INDEX read1 read2 @stdout=output @stderr=outLog;

}
@dispatch=WORKER
app (file output, file outLog) novoalign (string novoalignexe, string
read1, string read2, string INDEX, string novoalignparams[], int
PBSCORES, string rgheader)
{
novoalignexe “-c” PBSCORES “-d” INDEX “-f” read1 read2 “-o” “SAM”
rgheader @stdout=output @stderr=outLog;

}

Here each executable is wrapped using the generic “worker” syntax, and workers are condi-

tionally invoked in a compact fashion to perform the Alignment task of the workflow.
import bioapps.align_dedup;
if (vars[“ALIGNERTOOL”] == “BWAMEM”)
{
exec_check(vars[“BWAEXE”], “BWAEXE”);
// Directly return the .sam file created from bwa_mem
outputSam, alignedLog, tmpalignedLog = bwa_mem_logged(vars

[“BWAEXE”], reads[0], reads[1], vars[“BWAINDEX”], [vars[“BWAMEMPAR-
AMS”]], threads, rgheader, sampleName);
}
else
{ // Novoalign is the default aligner
exec_check(vars[“NOVOALIGNEXE”], “NOVOALIGNEXE”);
// Directly return the .sam file created from novoalign
outputSam, alignedLog, tmpalignedLog = novoalign_logged(vars

[“NOVOALIGNEXE”], reads[0], reads[1], vars[“NOVOALIGNINDEX”], [vars
[“NOVOALIGNPARAMS”]], threads, rgheader, sampleName);
}

Subworkflows, or “stages”, are implemented as individual Swift/T app functions that are

chained together by the primary workflow script (Fig 1, right panel). At each stage, the user

can direct the workflow to generate the output files necessary for the next stage, or pass on

the output generated from a previous run. At the end of each stage, there is an implicit wait

instruction that ensures all tasks have finished before the next stage can run (also see next

section).

Data parallelism and scalability. The “data flow” programming model of Swift/T implic-

itly supports parallel execution of tasks. Statements are evaluated in parallel unless prohibited

by a data dependency or resource constraints, without the developer needing to explicitly code

parallelism or synchronization. Swift/T will automatically wait on a process to finish if the next

step depends on its output. For example, after read alignment, the step to mark duplicates in

an aligned BAM (picard_logged) depends on the previous step (novosort_logged),

which produces a sorted BAM (alignedsortedbam) to serve as input to the deduplication

step. The essense of implicit parallelization is that picard_logged will wait until novo-
sort_logged is finished due to this data dependency.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0211608

// Sort
alignedsortedbam, sortLog, tmpnovosortLog = novosort_logged(vars
[“NOVOSORTEXE”], alignedBam, vars[“TMPDIR”], threads, [], string2int
(vars[“NOVOSORT_MEMLIMIT”]), sampleName);
// Mark Duplicates
dedupSortedBam, picardLog, metricsfile, tmppicardLog = picard_logged
(vars[“JAVAEXE”], vars[“JAVA_MAX_HEAP_SIZE”], vars[“PICARDJAR”], vars
[“TMPDIR”], alignedsortedbam, sampleName);

There are some places in the workflow where a stage must wait on another, yet a direct data

dependency does not exist. For example, log information begins to be produced right away as

the Alignment module begins execution. The output log folder must first exist for this purpose,

but the asynchronous parallel execution function of Swift/T may start the Alignment module

before it runs the statement to create the log folder. This can be addressed by explicitly forcing

the wait either via the “=>” symbol, via wait() statement, or via a dummy variable that

“fakes” a data dependency.
mkdir(LogDir) =>
mkdir(AlignDir) =>
void mkdirSignal = mkdir(tmpLogDir);
wait (mkdirSignal) {
alignedsam = alignReads(vars, sampleName, reads, rgheader);

}

The above example illustrates the use of a wait() statement, and also the drawbacks

of enforcing implicit parallelism across the entire workflow. In bioinformatics, patterns of

execution are usually mixed: individual commands running in parallel on many samples are

intermixed with serial blocks of code that perform quality control, data management, user

notification, or other tasks. It would be useful to have these blocks fenced-off to prevent Swift/

T from attempting to run them all asynchronously and in parallel. Parsl, the next step in evolu-

tion of Swift language, has that capability [43, 44].

Nonetheless, Swift/T does take care of parallelism in a smart and transparent way that

makes efficient use of resources. The user should still take care to request a reasonable number

of nodes: too few—and many samples will be processed in series; too many—and resources

will be reserved unnecessarily. Beyond that there is no need to worry about task placement, as

Turbine will take care of it. This is extremely useful, because bioinformatics programs do not

always scale well to the full number of cores available on the compute nodes, and therefore run-

ning multiple instances of a task simultaneously on the same node may improve the overall

efficiency. For example, BWA MEM normally scales well up to eight threads, so running two

eight-thread processes in parallel on a 16-core node is more efficient than running two sixteen-

thread processes in series. We implemented this as user-level options that specify the number

of cores per node and the number of programs to run on each node simultaneously. From

there the workflow determines the number of threads to use for each bioinformatics program,

and Swift/T uses Asynchronous Dynamic Load Balancing (ADLB) [45] to distribute those pro-

grams across nodes as they become available at run time. Without ADLB one would have to

code this explicitly for each job scheduler, which becomes very complicated on clusters that do

not support node sharing, i.e. only one job is allowed to run per node. In the latter case a vanilla

Bash workflow [46] would need to incorporate an MPI wrapper (e.g. [47]) to take care of pro-

gram placement across nodes. The MPI backend of ADLB fulfills that function in Swift/T.

We verified correctness of the task dependency chains and parallel execution by tracking

start and end times of each task for multiple samples in some of our tests (see next section and

Fig 2).

Real-time logging and monitoring. The underlying MPI-based implementation of Swift/

T logic makes it possible to leverage standard MPI logging libraries to collect run-time details

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 7 / 20

https://doi.org/10.1371/journal.pone.0211608

about the status of every sample. We used the Message Passing Environment (MPE) library

[45] to log the usage of the MPI library itself and ADLB calls [48], and implemented visualiza-

tion in Jumpshot viewer. To enable such logging requires installation of the MPE library in

addition to the standard Swift/T components (C-utils, ADLB library, Turbine and STC). This

turned out to be a bit cumbersome because it requires creation of new functions: tcl wrap-

pers around MPE to log when each executable starts and stops.

Another approach to tracking the workflow run time execution is to manually implement

Swift/T leaf functions such that the start and end timing of each function are logged. A timing

graph can be generated using R script based on this information, showing the analysis steps

across samples, chromosomes and specific applications (Fig 2). Interactivity is added via Shiny

R package [49]. This is a fairly manual approach, little better than the Bash echo date state-

ments. Nonetheless, it permits one to view the patterns of pipeline execution even if it fails,

and partial logs can similarly be viewed as the pipeline is running. To obtain the up-to-date

trace, one can type in the R terminal:
if (!require(shiny)) {
install.packages(‘shiny’)
library(shiny)

}
runGitHub(repo = “ncsa/Swift-T-Variant-Calling”, ref = “master”,
\subdir = “src/plotting_app”)

In conclusion, logging and monitoring can be usefully implemented in a Swift/T workflow,

but are not adequately supported at the time of this writing and require quite a bit of work.

Portability. Swift/T runs as an MPI program that uses the Turbine [17] and ADLB [45]

libraries to manage and distribute the workflow execution on local compute resources (desk-

top/laptop), parallel computers (clusters/HPCs), and distributed systems (grid/cloud). Its

built-in wrappers can launch jobs on many common resource schedulers, such as PBS Torque,

Cobalt, Cray aprun, and SLURM [51], using the -m flag passed to the Swift/T executable, i.e.

swift-t -m slurm. Through these unified wrappers, the user is only left with the trivial

task of specifying the required computational resources: queue, memory, wall time, etc.:
export PPN=<PROGRAMS_PER_NODE>
export NODES=<NUMBER_OF_NODES_TO_RESERVE>
export PROCS=$(($PPN � $NODES))
export WALLTIME=<HH:MM:SS>

Fig 2. Timing provenance tracking of a 3-sample pipeline run (synthetic whole exome sequencing dataset at 30X,

50X and 70X) on Biocluster [50]. This plot view is interactive, allowing full pan and zoom and was generated using

plotly library in R.

https://doi.org/10.1371/journal.pone.0211608.g002

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 8 / 20

https://doi.org/10.1371/journal.pone.0211608.g002
https://doi.org/10.1371/journal.pone.0211608

export QUEUE=<Queue>
export SWIFT_TMP=/path/to/directory/temp
swift-t -m slurm -O3 -n $PROCS
-o /path/to/where/compiled/should/be/saved/compiled.tic
-I /path/to/Swift-T-Variant-Calling/src/
-r /path/to/Swift-T-Variant-Calling/src/bioapps/path/to/Swift-

T-Variant-Calling/src/VariantCalling.swift
-runfile=/path/to/your.runfile

We verified both portability and scalability conferred by Swift/T by testing on a variety of

HPC systems with a range of cluster setups, job schedulers and patterns of execution (Table 2).

Portability across resource schedulers works as expected, although unique setups may require

tweaks, such as setting of environmental variables [52], with configuration of 1 sample/node

and 2 samples/node.

All other functionality of our workflow was also fully validated on soybean and human Illu-

mina sequencing data, as well as synthetic datasets. The complete list of tested options and fea-

tures can be found on our GitHub repository [53].

Robustness against failure. Swift/T has native support for restarting a task after failure.

The user controls the maximum number of allowed retries, and a randomized exponential

backoff delay is applied between them, attempting to rerun the task until success or the pipe-

line terminates, whichever is sooner. Retries do not correct for bugs in the pipeline code, but

only for Swift/T leaf function failures that are not related to compilation errors or “assert”

failures.

This is useful when applications fail for nondeterministic reasons, such as a filesystem

under load slowing down I/O and making the application wait for data, thus causing it to time

out. However, when running wide jobs on large clusters, it is also necessary to have robustness

against node failure. In collaboration with the Swift/T team, we introduced the support for

moving the retries of the failed task to another, randomly chosen, MPI rank. For reproducibil-

ity purposes, random number generation in Swift/T defaults to start from the same seed,

which is dependent on the MPI rank where the process is to be evaluated, unless the seed is

specified by the turbine variable “TURBINE_SRAND”.

Table 2. Swift/T delivers on its promise of portability and scalability. Synthetic data were generated using the NEAT synthetic read simulator [54]. Node sharing column

indicates whether the cluster permits jobs to share the same node.

System Resource

manager

Node type # nodes per

run

Node

sharing

Test data

iForge [55] PBS Torque IvyBridge,

20 cores,

256 GB RAM

1-8 No Soy NAM [56] using 2, 6, 12, or 16 sample

batches †

XSEDE Stampede2 [57] Slurm KNL,

68 cores,

4 hardware threads/

core,

96 GB DDR4,

16 GB MCDRAM

1 Yes GIAB NA12878 Illumina HiSeq Exome

(NIST7035) [58];

Synthetic chr1 exome seq 50X

Biocluster [50] Slurm Dell PowerEdge R620,

24 Cores,

384 GB RAM

1; 3 Yes Synthetic WES 30X;

Synthetic WES 50X;

Synthetic WES 70X

Single server at CBSB, H3ABioNet

node

N/A HP Proliant dl380p

gen. 8

24 cores

125 G RAM

1 Yes Synthetic chr1 exome seq 50X

† This Swift/T variant calling workflow was also used on iForge for a variety of analyses on WES and WGS data in different species.

https://doi.org/10.1371/journal.pone.0211608.t002

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0211608.t002
https://doi.org/10.1371/journal.pone.0211608

Discussion

Complexity of problems in biology means that nearly every kind of analytics is a multi-step

process, a pipeline of individual analyses that feed their outputs to each other (e.g. [59–61]).

The algorithms and methods used for those processing steps are in continual development by

scientists, as computational biology and specifically bioinformatics are still rapidly developing.

Few studies can be accomplished via a single integrated executable. Instead, we deal with a het-

erogeneous medley of software of varied robustness and accuracy, frequently with multiple

packages available to perform seemingly the same kind of analysis—yet subtly differing in

applicability depending on the species or input data type. Thus bioinformatics today requires

advanced, flexible automation via modular data-driven workflows. This is a tall order, consid-

ering the added requirements of scalability, portability and robustness. Genomics is a big data

field: we no longer talk about sequencing individual organisms, but every baby being born

(*500 per day per state in the US) and every patient who comes in for a checkup (a million

per year in a major hospital), not to mention the massive contemporary crop and livestock

genotyping efforts. The workflows managing data analysis at that scale must take full advan-

tage of parallelism on modern hardware, be portable among multiple HPC systems and the

cloud, be robust against data corruption and hardware failure, and provide full logging and

reporting to the analyst for monitoring and reproducibility.

Recently there has been an incredible upsurge in developing scientific workflow manage-

ment systems, enough to have resulted in calls for standardization and quality assurance [62].

In this manuscript we reviewed our experience with one such system, Swift/T, touching on

workflow management, performance and scalability issues; security was deemed out of scope.

Pros and cons of Swift/T for bioinformatics workflows

Swift/T is a powerful and versatile language that offers many advantages for production large-

scale bioinformatics workflows. It allowed us to fulfill most of the requirements outlined in the

Requirements section, for variant calling workflow as a use case. Below is our summary of pros

and cons based on that experience.

Portability may well be the greatest strength of Swift/T: a workflow written in Swift/T can

be executed on a wide variety of compute infrastructures without changing the code, and the

user does not need to know about the underlying scheduling environment on the cluster. The

language abstracts away the low level concerns such as load balancing, inter-process communi-

cation and synchronization of tasks automatically through its compiler (stc) and runtime

engine (Turbine), allowing the programmer to focus on the workflow design [63]. Signifi-

cantly, Swift/T was designed for use in HPC and distributed cluster environments, where the

use of containerization is still largely limited due to performance and security concerns. It

does not natively support containerization, which would have made porting bioinformatics

workflows even more more convenient, as it would have eliminated the need to install all of

the (numerous) dependencies. Unfortunately, this is not possible with Swift/T at the moment.

Modularity is another excellent advantage of Swift/T. The language glues together com-

mand line tools: either directly by wrapping them in Swift/T app functions if they solely oper-

ate on files; or indirectly as tcl packages with corresponding Swift/T app function declarations

if they produce numerical or string outputs. Under the hood, Swift/T code is actually compiled

into Tcl syntax before Turbine gets to manage the distribution and execution of tasks to com-

pute resources. This further means that wrapping any C, C++ or Fortran application is also

easy due to Tcl. This leaf-function modularization, and the ease of integrating code written in

other languages into Swift/T environment, is the reason why we preferred this to its predeces-

sor Swift/K [16], which had superior provenance and checkpointing capabilities [64].

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 10 / 20

https://doi.org/10.1371/journal.pone.0211608

Implicit data parallelism and scalability of Swift/T is a powerful way of enabling big data

analyses by increasing the amount of simultaneous computation. The language particularly

lends itself to use cases that require asynchronous rapid-fire of small, quick parallel jobs [65].

That is one of the many kinds of bioinformatics workloads, but not the most typical one for

primary analysis of genomic data. In this field we frequently require a simple wrapper to run a

single, time-consuming step on a large number of samples or other units of data level paralleli-

zation: i.e. conversion of several thousand BAMs back to FASTQs for reanalysis with the most

recent reference genome. However, the data flow task parallelism framework has a substantial

learning curve, despite offering familiar control flow statements and expressions in C-like syn-

tax [66]. Coding and debugging can require a more substantial effort than say, Nextflow [67],

and that can be a barrier for biologists. An additional inconvenience is that Swift/T does not

support piping between applications, which is extensively used in bioinformatics analyses, as

they are still overwhelmingly file-based pipelines.

Robustness against failures in Swift/T is supported via leaf function retries, attempting to

rerun the task on one of the available ranks. This confers resilience against nondeterministic

failures, such as filesystem or cluster interconnect hiccups as well as hardware failures—an

important advantage for big data genomics.

Real time logging is provided via runtime Turbine logs, with user-controlled verbosity.

These can be quite detailed but challenging to use for debugging when the analyst must under-

stand whether a failure occurred due to data, a bioinformatics application or the Swift/T code

bug. The greatest difficulty stems from asynchronous log records, caused by asynchronous

execution of tasks. Thus an error printout rarely corresponds to the execution message that

immediately precedes it in the log, and finding the failed tasks from the log alone is nearly

impossible. We had to manually implement the per-task and per-executable logs in our code,

to counteract this inconvenience.

In summary, Swift/T language lends itself to creating highly portable, modular and

implicitly parallel workflows. It is very powerful, especially when a workflow consists

of raw code pieces written in C, C++, Fortran, etc. However, it may be overkill for those

bioinformatics workflows that consist of pre-compiled executables glued together. The

lack of support for piping between applications is a major drawback for big-data bioinfor-

matics, resulting in proliferation of intermediary files. Portability, the main advantage

of Swift/T, could perhaps be accomplished in simpler ways. In the following sections we

review other workflow management systems, to put Swift/T into the broader context of life

sciences.

Comparison with GATK reference pipelines

Officially, the GATK provides a set of 2 independent reference pipeline implementations, one

for per-sample calling, and the other for joint genotyping across a cohort of samples. These

pipelines are written in WDL (https://github.com/gatk-workflows/), which is runnable via

Cromwell and Toil (alpha support pre-dates Draft-3 of the language). These reference imple-

mentations have been very useful for a large community of bioinformaticians, so we compare

them to our Swift/T implementation to highlight the differences among them.

GATK version: Due to early start, our Swift/T pipeline was written with GATK<4 invoca-

tions, whereas the GATK reference WDL pipelines leverage GATK4+. However, as discussed

above, Swift/T language makes the workflow trrivially extensible, such that the switch to

GATK4 or addition of further steps can be easily accomplished without the loss of maintain-

ability or ease of deployment.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 11 / 20

https://github.com/gatk-workflows/
https://doi.org/10.1371/journal.pone.0211608

Analysis stages: user of the Broad’s GATK pipeline can either analyze a single sample from

the alignment stage up to producing a gvcf file from the HaplotypeCaller, or jointly analyze the

gvcfs of many samples together. The user of our Swift/T pipeline may run complete variant

calling for a cohort of samples from alignment to joint calling, or may run a specific stage

desired independently by defining the desired analysis stages in a run file. We have not imple-

mented the joint calling, but the repository is open for contributions.

Analysis tools: The reference GATK pipelines assume specific tools for carrying the analy-

sis. The Swift/T implementation was designed to give the user more freedom for specifying

tools at each stage. Our implementation makes it easy for the end user to comply with func-

tional equivalence guidelines if desired (or not, depending on the specifics of a given study

design).

Language & semantics: The flexibility in choosing tools and analysis stages in our Swift/T

pipeline stems from the expressiveness of the Swift/T language itself and the coherence

between the language and its execution engine. The two execution engines for running WDL

code, Cromwell and Toil, lack support for nested scatter blocks and nested conditionals within

scatter blocks, respectively. In other words, parallelization and conditionals are not flexibly

supported by Cromwell and Toil.

HPC deployment: For WDL pipelines, Cromwell does work in cluster environments,

but has limited scalability in run mode (analysis confined to single node). Supporting the

server mode is not attractive to some HPC system administrators for security reasons. In

contrast, Swift/T is a language and engine for running analysis on HPC environments, and

readily supports a wide range of HPC job schedulers.

Cloud deployment: A motive for WDL and its engines is running analysis jobs in the cloud.

In fact, the GATK pipelines implemented by the Broad team are highly cost-optimized for run-

ning in both Google Cloud Platform (via FireCloud) and AWS (via AWS batch). On the other

hand, Swift/T has less support for usage in cloud environments.

Containerization: Since a main driver for Swift/T development is scalable analysis in HPC

environments, it does not readily support containerization technology, nor does our pipeline.

WDL on the other hand was developed with an aim to run analysis pipelines in the cloud, and

hence containerization is supported via both its engines, Cromwell and Toil.

Challenges in building the “right” workflow manager for computational

biology

The implementation of workflow management systems (WMS) for computational biology,

bioinformatics and genomics is strongly influenced by culture and prevailing expertise in the

multidisciplinary fields. One has to contend with two populations of scientists: those with

strong biology background, driven to solve research problems, to whom programming is an

unavoidable yet joyless burden; and those able to produce complex and capable code that is

not perhaps very user-friendly. This creates a real problem with adoption of any software,

including a WMS: the harder it is for a scientist to use a software package compared to an ad-

hoc hack, the lower its widespread acceptance in the community [62]. Perhaps that’s why sim-

ple glue solutions via Bash, Perl, Python, Make, CMake and similar, have persisted for so long.

Their shallow learning curve permits quick production of short-term analytic solutions, which

get used over and over despite poor scaling with growing dataset size, and despite requiring a

lot of work to port among compute systems.

Scientific Workflow Systems are the next step up from scripting. Those that provide a

graphical user interface, such as Taverna [68], Galaxy [69] and Kepler [70] (Table 3), have

good accessibility for scientists with less programming experience but require quite a bit of

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0211608

effort to be set up and maintained, and have limited set of features. In contrast, lower level

systems with a command-line interface (CLI), such as Snakemake [71], Luigi [72], BcBio

[73], Bpipe [74], are easier to maintain and share, provide good documentation and repro-

ducibility, fault tolerance, and task automation; however, they require a lot more program-

ming expertise.

The cultural gap in capabilities between developers and end users can be closed via

implementation of visual programming (GUI-like interface with CLI-like capabilities), thus

allowing for customization of analytic tools and technologies with little to no programming

background. But, ultimately the right approach to providing scalability and interoperability

is probably via implementation of generic low level bioinformatics specific libraries to be

used universally across different sets of tools [87].

In the meantime, great strides are being made by the community in trying out different

approaches to scientific workflow management and automation, aiming to satisfy the complex

requirements [12]:

• seamlessly managing both serial and parallel steps without creating data waits and computa-

tional bottlenecks;

• managing complex task dependencies via explicit configuration (e.g. a user-produced XML

file in Pegasus [88]), language-specific syntax (BigDataScript [89]), automatic construction

of workflow graphs (Swift [16], WDL [14], Nextflow [67]), rule-based approaches (Ruffus

Table 3. Popular workflow management systems.

Comparison aspect Swift/T [15] NextFlow [67] Galaxy [69] Kepler [70]

Nature WL† and execution

engine

WL and execution engine Web interface WL and execution engine

Support community standard

WL?

No No CWL No

User interface CLI CLI,

REPL [75],

IDE [76]

GUI GUI,

CLI,

Jupyter notebooks

Programming paradigm [77] Dataflow Dataflow Sequential [78] Sequential,

dataflow,

process network or continuous time

[79]

Containerization support None Docker,

Singularity

Docker,

Singularity

Docker

Scalability [80] Extreme scale [81] Yes Complicated ‡ [69] Yes

Checkpointing and caching No Yes Yes Yes

Portability ¶ Cray aprun, LSF LSF, NQSII,

HTCondor,

Kubernetes,

Ignite,

DNAnexus

LSF, HTCondor,

Galaxy Pulsar [82]

XSEDE Jetstream [83]

Open stack,

Google cloud,

Apache Mesos

Distributed execution MPI-based Apache Ignite/ MPI Spark [84], Hadoop [85] Spark, Hadoop

Supported compute architecture Homogeneous Homogeneous or

heterogeneous

Not clear Homogeneous or heterogeneous

Compute resource allocation Reserved a priori Reserved a priori Multiple deployment strategies

[86]

Allocated dynamically

† WL = workflow language; REPL = Read-Eval-Print-Loop console; CLI = Command Line Interface; GUI = graphical user interface.
‡ Recent optimizations of Galaxy for User interface scalability and Server scalability enable analysis of large datasets for many users.
¶ All these workflow management systems can run on a single server, on clusters managed by PBS, Grid Engine, Slurm, and on AWS.

https://doi.org/10.1371/journal.pone.0211608.t003

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0211608.t003
https://doi.org/10.1371/journal.pone.0211608

[90] and bpipe [74]) or implicit conventions, while abstracting away from HPC cluster man-

agement concerns (Job Management System [91]);

• flexibility to work with varied software being run by the workflow (i.e. via containerization),

and widely variegated parameter values and configurations (i.e. through workflow autoge-

neration [92]);

• ability to handle both fixed and user-defined parameters.

The field seems to have converged on a set of relatively widely used workflow languages

(WL) to describe the actual flow of computation, and execution engines (EE) that provide

automation and portability on HPC environments. Some solutions are by their nature an inte-

grated package of WL+EE (Table 3). However, there has been a widespread recognition of the

need to standardize WLs, for the sake of reproducibility—particularly important for clinical

applications. Thus separating out an execution engine that could operate on workflows written

in a variety of WLs is very attractive. A few clear leaders have recently emerged: CWL [13] and

WDL [14] for workflow definition languages, and Toil [93, 94], Rabix [95] and Cromwell [14]

for execution engines (Table 4). CWL enjoys very wide adoption, either being supported, or

upcoming support announced among Taverna [68], Galaxy [69], Toil [93], Arvados [96],

Rabix [95], Cromwell [14]. To some extent such data-driven workflow languages as CWL

and WDL can be viewed as a more advanced step in evolution of a formal scientific workflow.

Indeed, when a scientist is only experimenting with the new analysis, it is useful to program

it in a powerful lower-level language like Swift, which allows a lot of experimentation with

the structure and content of the workflow. Once this has been developed and validated,

Table 4. Popular workflow management systems.

Comparison aspect Toil ✠ [93] Rabix [95] Cromwell [14]

Nature Execution engine Execution engine Execution engine

Support community standard WL? CWL, WDL CWL WDL # [97]

User interface CLI GUI ?, CLI CLI

Programming paradigm [77] Sequential † [13, 94] Dataflow [13] Dataflow

Containerization support Docker Docker Docker

Scalability [80] Petascale Yes Yes

Checkpointing and caching Yes Yes Yes

Portability ¶ LSF, Parasol,

Apache Mesos,

Open stack,

MS Azure,

Google Cloud & Compute Engine

Open stack,

Google Cloud §
LSF,

HTCondor,

Google JES §

Distributed execution Spark - Spark

Supported compute architecture Homogeneous or heterogeneous Homogeneous § Homogeneous §

Compute resource allocation Allocated dynamically Reserved apriori § Reserved a priori

✠ Toil uniquely has notions of object store and data encryption, which can assure compliance with strict data security requirements.
Work is ongoing to incorporate support for CWL into Cromwell.
? Rabix composer (http://docs.rabix.io/rabix-composer-home) is a stand-alone GUI editor for CWL workflows.
† In Toil child jobs are executed after their parents have completed (in parallel), and follow-on jobs are run after the successors and their child jobs have finished

execution (also in parallel). This creates a Directed Acyclic Graph of jobs to be run, similarly to dataflow. But, unlike in dataflow model, the order of execution depends

on whether the parent job has finished and its relation to other jobs, as opposed to whether the data are ready.
¶ All these workflow management systems can run on a single server, on clusters managed by PBS, Grid Engine, Slurm, and also on AWS.
§ Work is ongoing to also provide support for the GA4GH TES job management system.

https://doi.org/10.1371/journal.pone.0211608.t004

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 14 / 20

http://docs.rabix.io/rabix-composer-home
https://doi.org/10.1371/journal.pone.0211608.t004
https://doi.org/10.1371/journal.pone.0211608

formalizing it in more rigid data-driven framework (CWL, WDL) for reproducibility and later

use by non-programmers has a lot of value.

Further efforts toward wider adoption recognize the need to execute biomedical workflows

on big data platforms, such as Hadoop and Spark (e.g. Luigi), and the cloud (e.g. Toil, DNA-

nexus, SevenBridges, Illumina’s BaseSpace, Curoverse’s Arvados and iPlant Collaborative’s

Agave).

Conclusion

Our experience implementing a genomic variant calling workflow in Swift/T suggests that it is

a very powerful system for workflow management in supercomputing environments. The lan-

guage is rich with features that give developers control over their workflow structure and execu-

tion while providing familiar syntax. The execution engine also has intelligent mechanisms for

task placement and regulation, permitting efficient use of compute resources. This unfortunately

comes at the cost of a relatively steep learning curve—a common trade-off for programming lan-

guages in general. Thus Swift/T can be an extremely useful—and possibly the best—tool for cer-

tain genomics analyses, though its complexity may pose an adoption barrier for biologists.

Acknowledgments

We are grateful for the support of the Blue Waters team, NCSA Industry, and the Argonne/U.

Chicago Swift/T developer team during the implementation, testing, and scalability efforts in

this project.

This work used Biocluster, the High Performance Computing (HPC) resource for the Carl

R Woese Institute for Genomic Biology (IGB) at the University of Illinois at Urbana-Cham-

paign (UIUC). We are grateful for the support by the Computer Network Resource Group

(CNRG) while testing the pipeline.

Author Contributions

Conceptualization: Azza E. Ahmed, Jacob Heldenbrand, Liudmila S. Mainzer.

Data curation: Azza E. Ahmed, Jacob Heldenbrand, Yingxue Ren.

Formal analysis: Azza E. Ahmed, Jacob Heldenbrand, Liudmila S. Mainzer.

Funding acquisition: Liudmila S. Mainzer.

Investigation: Azza E. Ahmed, Jacob Heldenbrand, Matthew C. Kendzior, Matthew R. Weber.

Methodology: Liudmila S. Mainzer.

Project administration: Liudmila S. Mainzer.

Resources: Yan Asmann, Justin M. Wozniak, Liudmila S. Mainzer.

Software: Azza E. Ahmed, Jacob Heldenbrand, Matthew C. Kendzior, Elliott Rodriguez, Justin

M. Wozniak.

Supervision: Faisal M. Fadlelmola, Daniel S. Katz, Liudmila S. Mainzer.

Validation: Matthew C. Kendzior, Matthew R. Weber, Liudmila S. Mainzer.

Visualization: Azza E. Ahmed, Jacob Heldenbrand.

Writing – original draft: Azza E. Ahmed, Jacob Heldenbrand, Tiffany Li, Jennie Zermeno.

Writing – review & editing: Daniel S. Katz, Katherine Kendig, Liudmila S. Mainzer.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 15 / 20

https://doi.org/10.1371/journal.pone.0211608

References
1. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010; 11(1):31–46.

https://doi.org/10.1038/nrg2626 PMID: 19997069

2. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing

technologies. Nat Rev Genet. 2016; 17(6):333–351. https://doi.org/10.1038/nrg.2016.49 PMID:

27184599

3. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum

Genet. 2014; 59(1):5–15. https://doi.org/10.1038/jhg.2013.114 PMID: 24196381

4. Allard MW. The Future of Whole-Genome Sequencing for Public Health and the Clinic. J Clin Microbiol.

2016; 54(8):1946–1948. https://doi.org/10.1128/JCM.01082-16 PMID: 27307454

5. Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, et al. Review of current methods, applications,

and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform.

2014; 13(Suppl 2):67–82. https://doi.org/10.4137/CIN.S13779 PMID: 25288881

6. Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of

whole-genome and -exome sequencing. BMC Genet. 2017; 18(1):14. https://doi.org/10.1186/s12863-

017-0479-5 PMID: 28193154

7. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data: astronomical or geno-

mical? PLoS Biol. 2015; 13(7):e1002195. https://doi.org/10.1371/journal.pbio.1002195 PMID:

26151137

8. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al. Isaac: ultra-fast whole-

genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013; 29(16):2041–

2043. https://doi.org/10.1093/bioinformatics/btt314 PMID: 23736529

9. Genalice. NGS Analysis| Genalice Map; 2017. Available from: http://www.genalice.com/product/

genalice-map/.

10. Goyal A, Kwon HJ, Lee K, Garg R, Yun SY, Kim YH, et al. Ultra-Fast Next Generation Human Genome

Sequencing Data Processing Using DRAGENTM Bio-IT Processor for Precision Medicine. Open Jour-

nal of Genetics. 2017; 7(1):9–19. https://doi.org/10.4236/ojgen.2017.71002

11. Monat C, Tranchant-Dubreuil C, Kougbeadjo A, Farcy C, Ortega-Abboud E, Amanzougarene S, et al.

TOGGLE: toolbox for generic NGS analyses. BMC Bioinformatics. 2015; 16(1):374. https://doi.org/10.

1186/s12859-015-0795-6 PMID: 26552596

12. Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinformatics. 2017; 18(3):530–536.

https://doi.org/10.1093/bib/bbw020 PMID: 27013646

13. Peter Amstutz, Michael R Crusoe, Nebojša Tijanić. Common Workflow Language (CWL) Workflow

Description, v1.0.2; 2017. Available from: http://www.commonwl.org/v1.0/Workflow.html#Workflow.

14. Voss K, Gentry J, der Auwera GV, Voss K, Gentry J, Van der Auwera G. Full-stack genomics pipelining

with GATK4 + WDL + Cromwell. F1000Research. 2017; 6.

15. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. Swift/T: Large-Scale Application

Composition via Distributed-Memory Dataflow Processing. In: 2013 13th IEEE/ACM International Sym-

posium on Cluster, Cloud, and Grid Computing. IEEE; 2013. p. 95–102. Available from: http://

ieeexplore.ieee.org/document/6546066/.

16. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I. Swift: A language for distributed parallel

scripting. Parallel Computing. 2011; 37(9):633–652. https://doi.org/10.1016/j.parco.2011.05.005

17. Wozniak JM, Armstrong TG, Maheshwari K, Lusk EL, Katz DS, Wilde M, et al. Turbine: A distributed-

memory dataflow engine for extreme-scale many-task applications. In: Proceedings of the 1st ACM

SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies. ACM; 2012. p. 5.

18. Ozik J, Collier NT, Wozniak JM, Spagnuolo C. From Desktop to Large-Scale Model Exploration with

Swift/T. In: 2016 Winter Simulation Conference (WSC). IEEE; 2016. p. 206–220. Available from: http://

ieeexplore.ieee.org/document/7822090/.

19. Wozniak JM. Highlights of X-Stack ExM Deliverable Swift/T. Argonne National Lab.(ANL), Argonne, IL

(United States); 2016.

20. Katz D. Expressing workflows as code vs. data.; 2018. Available from: https://danielskatzblog.

wordpress.com/2018/01/08/expressing-workflows-as-code-vs-data/.

21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome

Research. 2010; 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199

22. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–498.

https://doi.org/10.1038/ng.806 PMID: 21478889

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 16 / 20

https://doi.org/10.1038/nrg2626
http://www.ncbi.nlm.nih.gov/pubmed/19997069
https://doi.org/10.1038/nrg.2016.49
http://www.ncbi.nlm.nih.gov/pubmed/27184599
https://doi.org/10.1038/jhg.2013.114
http://www.ncbi.nlm.nih.gov/pubmed/24196381
https://doi.org/10.1128/JCM.01082-16
http://www.ncbi.nlm.nih.gov/pubmed/27307454
https://doi.org/10.4137/CIN.S13779
http://www.ncbi.nlm.nih.gov/pubmed/25288881
https://doi.org/10.1186/s12863-017-0479-5
https://doi.org/10.1186/s12863-017-0479-5
http://www.ncbi.nlm.nih.gov/pubmed/28193154
https://doi.org/10.1371/journal.pbio.1002195
http://www.ncbi.nlm.nih.gov/pubmed/26151137
https://doi.org/10.1093/bioinformatics/btt314
http://www.ncbi.nlm.nih.gov/pubmed/23736529
http://www.genalice.com/product/genalice-map/
http://www.genalice.com/product/genalice-map/
https://doi.org/10.4236/ojgen.2017.71002
https://doi.org/10.1186/s12859-015-0795-6
https://doi.org/10.1186/s12859-015-0795-6
http://www.ncbi.nlm.nih.gov/pubmed/26552596
https://doi.org/10.1093/bib/bbw020
http://www.ncbi.nlm.nih.gov/pubmed/27013646
http://www.commonwl.org/v1.0/Workflow.html#Workflow
http://ieeexplore.ieee.org/document/6546066/
http://ieeexplore.ieee.org/document/6546066/
https://doi.org/10.1016/j.parco.2011.05.005
http://ieeexplore.ieee.org/document/7822090/
http://ieeexplore.ieee.org/document/7822090/
https://danielskatzblog.wordpress.com/2018/01/08/expressing-workflows-as-code-vs-data/
https://danielskatzblog.wordpress.com/2018/01/08/expressing-workflows-as-code-vs-data/
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1371/journal.pone.0211608

23. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From

FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr

Protoc Bioinformatics. 2013; 11(1110):11.10.1–11.10.33.

24. US Government Publishing Office. type [; 2018]Available from: https://www.govinfo.gov/content/pkg/

PLAW-104publ191/html/PLAW-104publ191.htm.

25. eCFR —Code of Federal Regulations. type [; 2018]Available from: https://www.ecfr.gov/cgi-bin/text-

idx?SID=1248e3189da5e5f936e55315402bc38b&node=pt42.5.493&rgn=div5.

26. Mainzer L, Botha G, Meintjes A, Jongeneel V, Mulder N. Design of a custom genotyping chip for African

populations. In: Blue Waters Symposium Proceedings; 2016. Available from: https://bluewaters.ncsa.

illinois.edu/science-teams?page=detail&psn=jti.

27. Mainzer LS, Asmann Y, Hudson M. Identification of missing variants in Alzheimer’s disease, and the

new standards for genomic variant identification in large cohorts. In: Blue Waters Report; 2018. Avail-

able from: https://bluewaters.ncsa.illinois.edu/apps/bwst/api/file.php/file/

5ae7a1747688d7642613016e.

28. Mainzer LS, Fields C, Rendon G, Jongeneel V. Instrumenting Human Variant Calling Workflow on Blue

Waters. In: Blue Waters Symposium Proceedings; 2015. Available from: https://bluewaters.ncsa.

illinois.edu/liferay-content/document-library/2015%20symposium/Mainzer%20presentation.pdf.

29. Kawalia A, Motameny S, Wonczak S, Thiele H, Nieroda L, Jabbari K, et al. Leveraging the power of

high performance computing for next generation sequencing data analysis: tricks and twists from a high

throughput exome workflow. PLoS ONE. 2015; 10(5):e0126321. https://doi.org/10.1371/journal.pone.

0126321 PMID: 25942438

30. Jason Pitt KW. SwiftSeq: A High-Performance Workflow for Processing DNA Sequencing Data; 2014.

Available from: http://beagle.ci.uchicago.edu/wp-content/files/2014/05/may_newsletter_2014.pdf.

31. Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L, Golbus JR, Day SM, et al. Supercomput-

ing for the parallelization of whole genome analysis. Bioinformatics. 2014; 30(11):1508–1513. https://

doi.org/10.1093/bioinformatics/btu071 PMID: 24526712

32. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013. Available

from: http://arxiv.org/abs/1303.3997v2.

33. NOVOCRAFT TECHNOLOGIES SDN BHD. Novocraft; 2014. Available from: http://www.novocraft.

com/.

34. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012; 9:357–

359. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

36. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment for-

mats. Bioinformatics. 2015; 31(12):2032–2034. https://doi.org/10.1093/bioinformatics/btv098 PMID:

25697820

37. Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioin-

formatics. 2014; 30(17):2503–2505. https://doi.org/10.1093/bioinformatics/btu314 PMID: 24812344

38. The Broad Institute. Picard Tools; 2017. Available from: https://broadinstitute.github.io/picard/.

39. The Broad Institute. GATK |Best Practices; 2017. Available from: https://software.broadinstitute.org/

gatk/best-practices/.

40. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling

accurate genetic variant discovery to tens of thousands of samples. BioRxiv. 2017.

41. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Consortium W, et al. Integrating mapping-,

assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat

Genet. 2014; 46(8):912–918. https://doi.org/10.1038/ng.3036 PMID: 25017105

42. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, et al. Strelka2: fast and accurate call-

ing of germline and somatic variants. Nat Methods. 2018; 15(8):591–594. https://doi.org/10.1038/

s41592-018-0051-x PMID: 30013048

43. Babuji Y, Chard K, Foster I, Katz DS, Wilde M, Woodard A, et al. Parsl: Scalable Parallel Scripting in

Python. In: 10th International Workshop on Science Gateways (IWSG 2018); 2018.

44. Parsl- Parallel Scripting Library; 2018. Available from: http://parsl-project.org.

45. Lusk E, Pieper S, Butler R. More scalability, less pain: A simple programming model and its implemen-

tation for extreme computing. SciDAC Review. 2010; 17:30–37.

46. HPCBio. BW_VariantCalling; 2016. Available from: https://github.com/HPCBio/BW_VariantCalling.

47. NCSA. Scheduler; 2017. Available from: https://github.com/ncsa/Scheduler.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 17 / 20

https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.ecfr.gov/cgi-bin/text-idx?SID=1248e3189da5e5f936e55315402bc38b&node=pt42.5.493&rgn=div5
https://www.ecfr.gov/cgi-bin/text-idx?SID=1248e3189da5e5f936e55315402bc38b&node=pt42.5.493&rgn=div5
https://bluewaters.ncsa.illinois.edu/science-teams?page=detail&psn=jti
https://bluewaters.ncsa.illinois.edu/science-teams?page=detail&psn=jti
https://bluewaters.ncsa.illinois.edu/apps/bwst/api/file.php/file/5ae7a1747688d7642613016e
https://bluewaters.ncsa.illinois.edu/apps/bwst/api/file.php/file/5ae7a1747688d7642613016e
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/2015%20symposium/Mainzer%20presentation.pdf
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/2015%20symposium/Mainzer%20presentation.pdf
https://doi.org/10.1371/journal.pone.0126321
https://doi.org/10.1371/journal.pone.0126321
http://www.ncbi.nlm.nih.gov/pubmed/25942438
http://beagle.ci.uchicago.edu/wp-content/files/2014/05/may_newsletter_2014.pdf
https://doi.org/10.1093/bioinformatics/btu071
https://doi.org/10.1093/bioinformatics/btu071
http://www.ncbi.nlm.nih.gov/pubmed/24526712
http://arxiv.org/abs/1303.3997v2
http://www.novocraft.com/
http://www.novocraft.com/
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1093/bioinformatics/btv098
http://www.ncbi.nlm.nih.gov/pubmed/25697820
https://doi.org/10.1093/bioinformatics/btu314
http://www.ncbi.nlm.nih.gov/pubmed/24812344
https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://doi.org/10.1038/ng.3036
http://www.ncbi.nlm.nih.gov/pubmed/25017105
https://doi.org/10.1038/s41592-018-0051-x
https://doi.org/10.1038/s41592-018-0051-x
http://www.ncbi.nlm.nih.gov/pubmed/30013048
http://parsl-project.org
https://github.com/HPCBio/BW_VariantCalling
https://github.com/ncsa/Scheduler
https://doi.org/10.1371/journal.pone.0211608

48. Wozniak JM, Chan A, Armstrong TG, Wilde M, Lusk E, Foster IT. A model for tracing and debugging

large-scale task-parallel programs with MPE. Proc LASH-C at PPoPP. 2013.

49. Chang W, Cheng J, Allaire J, Xie Y, McPherson J. shiny: Web Application Framework for R; 2017. Avail-

able from: https://CRAN.R-project.org/package=shiny.

50. Carl R Woese Institute for Genomic Biology at the University of Illinois at Urbana-Champaign. Biocluster

(High Performance Computing resource); 2017. Available from: https://help.igb.illinois.edu/Biocluster.

51. Wozniak JM. Swift/T Sites Guide; 2017. Available from: http://swift-lang.github.io/swift-t/sites.html.

52. NCSA. Swift-T-Variant-Calling/README.md; 2017. Available from: https://github.com/ncsa/Swift-T-

Variant-Calling/blob/master/README.md#cray-system-like-blue-waters-at-uiuc.

53. NCSA. Swift-T-Variant-Calling/test/TestCases.txt; 2017. Available from: https://github.com/ncsa/Swift-

T-Variant-Calling/blob/master/test/TestCases.txt.

54. Stephens ZD, Hudson ME, Mainzer LS, Taschuk M, Weber MR, Iyer RK. Simulating Next-Generation

Sequencing Datasets from Empirical Mutation and Sequencing Models. PLOS ONE. 2016; 11(11):1–

18. https://doi.org/10.1371/journal.pone.0167047

55. The University of Illinois at Urbana-Champaign—National Center for Supercomputing Applications.

iForge Cluster; 2017. Available from: http://www.ncsa.illinois.edu/industry/iforge.

56. USDA. SoyBase and Soybean Breeder’s Toolbox—Nested Association Mapping; 2015. Available from:

https://www.soybase.org/SoyNAM/soynamdetails.php.

57. The University of Texas at Austin’s Texas Advanced Computing Center. Stampede2 supercomputer;

2017. Available from: https://www.tacc.utexas.edu/systems/stampede2.

58. giab_data_indexes: This repository contains data indexes from NIST’s Genome in a Bottle project;

2017. Available from: https://github.com/genome-in-a-bottle/giab_data_indexes.

59. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome

assembly from RNA-Seq data without a reference genome. Nature biotechnology. 2011; 29(7):644.

https://doi.org/10.1038/nbt.1883 PMID: 21572440

60. Campbell MS, Holt C, Moore B, Yandell M. Genome annotation and curation using MAKER and

MAKER-P. Current Protocols in Bioinformatics. 2014; 48(1):4–11. https://doi.org/10.1002/0471250953.

bi0411s48 PMID: 25501943

61. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, et al. A guided tour of the Trans-

Proteomic Pipeline. Proteomics. 2010; 10(6):1150–1159. https://doi.org/10.1002/pmic.200900375

PMID: 20101611

62. Spjuth O, Bongcam-Rudloff E, Hernández GC, Forer L, Giovacchini M, Guimera RV, et al. Experiences

with workflows for automating data-intensive bioinformatics. Biology Direct. 2015; 10(1):43. https://doi.

org/10.1186/s13062-015-0071-8 PMID: 26282399

63. Armstrong TG, Wozniak JM, Wilde M, Foster IT. Compiler techniques for massively scalable implicit

task parallelism. In: SC14: International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE; 2014. p. 299–310. Available from: http://ieeexplore.ieee.org/document/

7013012/.

64. Gadelha LMR Jr, Clifford B, Mattoso M, Wilde M, Foster I. Provenance management in Swift. Future

Generation Computer Systems. 2011; 27(6):775–780. https://doi.org/10.1016/j.future.2010.05.003

65. Wilde M, Wozniak JM, Armstrong TG, Katz DS, Foster IT. Productive composition of extreme-scale

applications using implicitly parallel dataflow. In: DOE Workshop on Software Productivity for eXtreme

scale Science (SWP4XS); 2014.

66. Wozniak JM, Wilde M, Foster IT. Language Features for Scalable Distributed-Memory Dataflow Com-

puting. In: Data-flow Execution Models for Extreme-scale Computing; 2014.

67. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables repro-

ducible computational workflows. Nat Biotech. 2017; 35(4):316–319. https://doi.org/10.1038/nbt.3820

68. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The Taverna workflow suite:

designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids

Res. 2013; 41(Web Server issue):W557–61. https://doi.org/10.1093/nar/gkt328 PMID: 23640334

69. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, et al. The Galaxy platform for accessi-

ble, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018; 46

(W1):W537–W544. https://doi.org/10.1093/nar/gky379 PMID: 29790989

70. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an extensible system for design

and execution of scientific workflows. In: Scientific and Statistical Database Management, 2004. Pro-

ceedings. 16th International Conference on. IEEE; 2004. p. 423–424.

71. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;

28(19):2520–2522. https://doi.org/10.1093/bioinformatics/bts480 PMID: 22908215

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 18 / 20

https://CRAN.R-project.org/package=shiny
https://help.igb.illinois.edu/Biocluster
http://swift-lang.github.io/swift-t/sites.html
https://github.com/ncsa/Swift-T-Variant-Calling/blob/master/README.md#cray-system-like-blue-waters-at-uiuc
https://github.com/ncsa/Swift-T-Variant-Calling/blob/master/README.md#cray-system-like-blue-waters-at-uiuc
https://github.com/ncsa/Swift-T-Variant-Calling/blob/master/test/TestCases.txt
https://github.com/ncsa/Swift-T-Variant-Calling/blob/master/test/TestCases.txt
https://doi.org/10.1371/journal.pone.0167047
http://www.ncsa.illinois.edu/industry/iforge
https://www.soybase.org/SoyNAM/soynamdetails.php
https://www.tacc.utexas.edu/systems/stampede2
https://github.com/genome-in-a-bottle/giab_data_indexes
https://doi.org/10.1038/nbt.1883
http://www.ncbi.nlm.nih.gov/pubmed/21572440
https://doi.org/10.1002/0471250953.bi0411s48
https://doi.org/10.1002/0471250953.bi0411s48
http://www.ncbi.nlm.nih.gov/pubmed/25501943
https://doi.org/10.1002/pmic.200900375
http://www.ncbi.nlm.nih.gov/pubmed/20101611
https://doi.org/10.1186/s13062-015-0071-8
https://doi.org/10.1186/s13062-015-0071-8
http://www.ncbi.nlm.nih.gov/pubmed/26282399
http://ieeexplore.ieee.org/document/7013012/
http://ieeexplore.ieee.org/document/7013012/
https://doi.org/10.1016/j.future.2010.05.003
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/nar/gkt328
http://www.ncbi.nlm.nih.gov/pubmed/23640334
https://doi.org/10.1093/nar/gky379
http://www.ncbi.nlm.nih.gov/pubmed/29790989
https://doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1371/journal.pone.0211608

72. GitHub—spotify/luigi; 2018. Available from: https://github.com/spotify/luigi.

73. Guimera RV. bcbio-nextgen: Automated, distributed next-gen sequencing pipeline. EMBnet j. 2012; 17

(B):30. https://doi.org/10.14806/ej.17.B.286

74. Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing bioinformatics pipelines. Bioin-

formatics. 2012; 28(11):1525–1526. https://doi.org/10.1093/bioinformatics/bts167 PMID: 22500002

75. Tommaso PD. Nextflow—Introducing Nextflow REPL Console; 2015. Available from: https://www.

nextflow.io/blog/2015/introducing-nextflow-console.html.

76. Kurs JP, Simi M, Campagne F. NextflowWorkbench: Reproducible and Reusable Workflows for Begin-

ners and Experts. bioRxiv. 2016; p. 041236.

77. Roosta SH. Data Flow and Functional Programming. In: Parallel Processing and Parallel Algorithms.

New York, NY: Springer New York; 2000. p. 411–437. Available from: http://link.springer.com/10.1007/

978-1-4612-1220-1_9.

78. Abouelhoda M, Issa S, Ghanem M. Tavaxy: Integrating Taverna and Galaxy workflows with cloud com-

puting support. BMC Bioinformatics. 2012; 13(1):77. https://doi.org/10.1186/1471-2105-13-77 PMID:

22559942

79. Goderis A, Brooks C, Altintas I, Lee EA, Goble C. Composing Different Models of Computation in Kepler

and Ptolemy II 1 The Need for Composing Models of Computation in E-Science. LNCS. 2007;

4489:182–190.

80. Ferreira da Silva R, Filgueira R, Pietri I, Jiang M, Sakellariou R, Deelman E. A characterization of work-

flow management systems for extreme-scale applications. Future Generation Computer Systems.

2017; 75:228–238. https://doi.org/10.1016/j.future.2017.02.026

81. Wilde M, Wozniak JM, Armstrong TG, Katz DS, Foster IT. Productive composition of extreme-scale

applications using implicitly parallel dataflow. In: ASCR Workshop on Software Productivity for

Extreme-Scale Science; 2014.

82. Chilton J, Moskalenko O, Frey J, Chorny I. Running Galaxy Tools on a Cluster; 2018. Available from:

https://docs.galaxyproject.org/en/latest/admin/cluster.html.

83. Afgan E, Baker D, Beek MVD, Blankenberg D, Bouvier D, Chilton J, et al. The Galaxy platform for

accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research.

2016; 44(W1):3–10. https://doi.org/10.1093/nar/gkw343

84. Riazi S. SparkGalaxy: Workflow-based Big Data Processing; 2016.

85. Pireddu L, Leo S, Soranzo N, Zanetti G. A Hadoop-Galaxy adapter for user-friendly and scalable data-

intensive bioinformatics in Galaxy. In: Proceedings of the 5th ACM Conference on Bioinformatics,

Computational Biology, and Health Informatics—BCB’14. New York, New York, USA: ACM Press;

2014. p. 184–191. Available from: http://dl.acm.org/citation.cfm?doid=2649387.2649429.

86. Galaxy: Scaling and Load balancing; 2018. Available from: https://docs.galaxyproject.org/en/latest/

admin/scaling.html.

87. Milicchio F, Rose R, Bian J, Min J, Prosperi M. Visual programming for next-generation sequencing

data analytics. BioData Mining. 2016; 9(1):16. https://doi.org/10.1186/s13040-016-0095-3 PMID:

27127540

88. Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, et al. Pegasus: a Workflow Manage-

ment System for Science Automation. Future Generation Computer Systems. 2015; 46:17–35. https://

doi.org/10.1016/j.future.2014.10.008

89. Cingolani P, Sladek R, Blanchette M. BigDataScript: a scripting language for data pipelines. Bioinfor-

matics. 2014; 31(1):10–16. https://doi.org/10.1093/bioinformatics/btu595 PMID: 25189778

90. Goodstadt L. Ruffus: a lightweight Python library for computational pipelines. Bioinformatics. 2010; 26

(21):2778–2779. https://doi.org/10.1093/bioinformatics/btq524 PMID: 20847218

91. Brown DK, Penkler DL, Musyoka TM, Bishop OT. JMS: An Open Source Workflow Management Sys-

tem and Web-Based Cluster Front-End for High Performance Computing. PLOS ONE. 2015; 10(8):1–

25. https://doi.org/10.1371/journal.pone.0134273

92. Garcia Castro A, Thoraval S, Garcia LJ, Ragan MA. Workflows in bioinformatics: meta-analysis and

prototype implementation of a workflow generator. BMC Bioinformatics. 2005; 6(1):87. https://doi.org/

10.1186/1471-2105-6-87 PMID: 15813976

93. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open

source, big biomedical data analyses. Nature Biotechnology. 2017; 35(4):314–316. https://doi.org/10.

1038/nbt.3772 PMID: 28398314

94. UCSC Computational Genomics Lab. Developing a Workflow—Toil 3.12.0 documentation; 2017. Avail-

able from: http://toil.readthedocs.io/en/3.12.0/developingWorkflows/developing.html#workflows-with-

multiple-jobs.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 19 / 20

https://github.com/spotify/luigi
https://doi.org/10.14806/ej.17.B.286
https://doi.org/10.1093/bioinformatics/bts167
http://www.ncbi.nlm.nih.gov/pubmed/22500002
https://www.nextflow.io/blog/2015/introducing-nextflow-console.html
https://www.nextflow.io/blog/2015/introducing-nextflow-console.html
http://link.springer.com/10.1007/978-1-4612-1220-1_9
http://link.springer.com/10.1007/978-1-4612-1220-1_9
https://doi.org/10.1186/1471-2105-13-77
http://www.ncbi.nlm.nih.gov/pubmed/22559942
https://doi.org/10.1016/j.future.2017.02.026
https://docs.galaxyproject.org/en/latest/admin/cluster.html
https://doi.org/10.1093/nar/gkw343
http://dl.acm.org/citation.cfm?doid=2649387.2649429
https://docs.galaxyproject.org/en/latest/admin/scaling.html
https://docs.galaxyproject.org/en/latest/admin/scaling.html
https://doi.org/10.1186/s13040-016-0095-3
http://www.ncbi.nlm.nih.gov/pubmed/27127540
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1093/bioinformatics/btu595
http://www.ncbi.nlm.nih.gov/pubmed/25189778
https://doi.org/10.1093/bioinformatics/btq524
http://www.ncbi.nlm.nih.gov/pubmed/20847218
https://doi.org/10.1371/journal.pone.0134273
https://doi.org/10.1186/1471-2105-6-87
https://doi.org/10.1186/1471-2105-6-87
http://www.ncbi.nlm.nih.gov/pubmed/15813976
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
http://www.ncbi.nlm.nih.gov/pubmed/28398314
http://toil.readthedocs.io/en/3.12.0/developingWorkflows/developing.html#workflows-with-multiple-jobs
http://toil.readthedocs.io/en/3.12.0/developingWorkflows/developing.html#workflows-with-multiple-jobs
https://doi.org/10.1371/journal.pone.0211608

95. Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D. Rabix: an Open-Source

Workflow Executor Supporting Recomputability and Interoperability of Workflow Descriptions. Pacific

Symposium on Biocomputing Pacific Symposium on Biocomputing. 2016; 22:154–165.

96. Arvados| Open Source Big Data Processing and Bioinformatics;. Available from: https://arvados.org/.

97. Gentry J. Multiple workflow languages coming to Cromwell, starting with CWL; 2018. Available from:

https://gatkforums.broadinstitute.org/wdl/discussion/11109/.

Genomic workflow management with Swift/T

PLOS ONE | https://doi.org/10.1371/journal.pone.0211608 July 9, 2019 20 / 20

https://arvados.org/
https://gatkforums.broadinstitute.org/wdl/discussion/11109/
https://doi.org/10.1371/journal.pone.0211608

