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Abstract

As a dedicated countermeasure for heterogeneous multi-view data, multi-view clustering is 

currently a hot topic in machine learning. However, many existing methods either neglect the 

effective collaborations among views during clustering or do not distinguish the respective 

importance of attributes in views, instead treating them equivalently. Motivated by such 

challenges, based on maximum entropy clustering (MEC), two specialized criteria—inter-view 

collaborative learning (IEVCL) and intra-view-weighted attributes (IAVWA)—are first devised as 

the bases. Then, by organically incorporating IEVCL and IAVWA into the formulation of classic 

MEC, a novel, collaborative multi-view clustering model and the matching algorithm referred to as 

the view-collaborative, attribute-weighted MEC (VC-AW-MEC) are proposed. The significance of 

our efforts is three-fold: 1) both IEVCL and IAVWA are dedicatedly devised based on MEC so 

that the proposed VC-AW-MEC is qualified to effectively handle as many multi-view data scenes 

as possible; 2) IEVCL is competent in seeking the consensus across all involved views throughout 

clustering, whereas IAVWA is capable of adaptively discriminating the individual impact 

regarding the attributes within each view; and 3) benefiting from jointly leveraging IEVCL and 

IAVWA, compared with some existing state-of-the-art approaches, the proposed VC-AW-MEC 

algorithm generally exhibits preferable clustering effectiveness and stability on heterogeneous 

multi-view data. Our efforts have been verified in many synthetic or real-world multi-view data 

scenes.
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I. INTRODUCTION

Multi-view data originating from the same objects but acquired from inconsistent observing 

views are nearly omnipresent in reality [1]–[5]. The attributes as well as dimensionalities to 

describe the same objects usually vary in different views, which is referred to as the 

heterogeneity across views. For example, patient’s health status is commonly measured in 

terms of multiple physiological metrics, such as hemogram characters, urine tests, and 

medical images (e.g., X-ray or magnetic resonance images) [6]. Despite the diversity of 

specific items in these metrics, by combining them, doctors are able to more completely, 

objectively understand a patient’s health condition due to the fact that these physiological 

metrics are the manifestations of the same patient’s health condition but from inconsistent 

perspectives.

Clustering on heterogeneous multi-view data is a common challenge for conventional 

clustering models, such as k-means [7]–[9], fuzzy c-means (FCM) [10]–[14], and maximum 

entropy clustering (MEC) [13]–[19], as it still belongs to ongoing problems in the effective 

use of data affiliated to each view. There are two natural solutions to cope with such type of 

data scene with multiple views. One is the feature fusion strategy. As the features existing in 

every view are from multiply possible viewpoints, for completely delineating objects, it 

certainly makes sense to combine all of these features together and then perform clustering 

on such regenerated data. The other is the result fusion strategy. That is, data affiliated to 

each view are first independently clustered. Then, to seek the consensus among views, a 

certain method capable of combining the results of all views, such as clustering ensemble 

[12], [28]–[30] or kernel combination [12], [27], is used to obtain the eventual, overall 

clustering decision. These two strategies, however, are sometimes inefficient and even 

unfeasible, despite the acceptable outcomes in quite a few cases in practice. For instance, 

feature fusion is prone to feature presentations with very high data dimensionalities and to 

making any clustering technique intractable, whereas result fusion could suffer from 

unstable performance due to the separate clustering in individual view, particularly in the 

situation where either failed partitions occur in some views or distinct outcome diversities 

exist among views.

In contrast, as one of the most promising clustering techniques for heterogeneous multi-view 

data, collaborative multi-view clustering [7], [12], [31]–[33] has aroused a large quantity of 

research interest in recent years. Such a technique features three points: (1) Clustering is 

concurrently conducted from multiple views on the same target objects; (2) the attributes and 

data dimensionalities used to depict the same target objects are usually inconsistent in 

different view spaces; and (3) last and most importantly, the collaborations (namely, 

interactions) among views are pursued throughout the entire clustering procedure to mine 

the underlying, consentaneous clustering knowledge across these views, which facilitates the 

overall preferable decision. Because collaborative multi-view clustering not only more 

completely considers the characteristics of target objects from multiple views but also takes 

advantage of the agreement among all involved views during clustering, its final decision, 

obtained under the principle of seeking common ground while reserving difference, 

commonly appears to be more reliable than those of the other two strategies. To facilitate 

explanation, the three mentioned clustering strategies for heterogeneous multi-view data, 
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i.e., feature fusion, result fusion, and inter-view collaboration, are generally designated as 

multi-view clustering in our manuscript. So far, quite a bit of work regarding multi-view 

clustering has been conducted [7], [12], [20]–[22], [24]–[33], but most of the existing 

approaches focus on the strategies of feature or result fusion, and the literature associating 

multi-view learning with MEC is seldom met. As another type of regularization method for 

crisp k-means [13], [14], MEC is characterized by a more delicate mathematic formulation 

and a more interpretable connotation than FCM that has been commonly regarded as the 

most classic representative of soft partition clustering [13], [14], [34]–[36]. Specifically, by 

incorporating the Shannon-entropy-based diversity measure, MEC aims at the unbiased 

probability assignment throughout clustering [14], [15], in addition to pursuing the best 

intra-cluster homogeneity as well as inter-cluster separation. In addition, most existing 

methods do not differentiate the individual impact of attributes in each view, but regard them 

equally. This often weakens the realistic performance of algorithms. It is reasonable to 

increase the impact of attributes in one view that show high distinguishability, and vice 

versa. These challenges mentioned above motivate our research.

Our work in this paper proceeds in two steps. First, two specialized criteria, i.e., the criterion 

of inter-view collaborative learning (IEVCL) and the criterion of intra-view-weighted 

attributes (IAVWA), are presented. As indicated by their names, these two criteria take the 

responsibility for the inter-view interaction and the intra-view attribute-differentiation, 

respectively. Second, by delicately incorporating IEVCL and IAVWA into the framework of 

the classic MEC, we put forward the collaborative MEC-based multi-view clustering method 

named view-collaborative, attribute-weighted maximum entropy clustering (VC-AW-MEC). 
The core contributions of our efforts lie in the following three aspects:

1. Based on the working mechanism of MEC, we dedicatedly design both IEVCL 

and IAVWA. As such, we figure successfully out the effective strategies for the 

MEC model for coping with as many multi-view data scenes as possible.

2. IEVCL aims to find the agreement across all views during clustering, whereas 

IAVWA takes the responsibility for adaptively discriminating the individual 

impact of the attributes within one view.

3. By organically incorporating IEVCL and IAVWA, VC-AW-MEC features 

preferable clustering effectiveness and stability on heterogeneous multi-view 

data, compared with some existing state-of-the-art approaches.

The remainder of this paper is organized as follows. Some related work is reviewed in 

Section II. The criteria of IEVCL and IAVWA, and the whole framework and algorithm 

procedure with respect to VC-AW-MEC are introduced in Section III step by step. The 

experimental studies as well as significant analyses are conducted in Section IV. Also, some 

conclusions are given in the last section.

II. RELATED WORK

A. MULTI-VIEW CLUSTERING

As revealed in Introduction, there have been three strategies of multi-view clustering so far. 

That is,
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1. The feature-fusion strategy [20]–[24]. This is actually a mechanism of a priori 

fusion. Namely, by juxtaposing the features in all views, the original multiple 

views are concatenated into a single one before clustering. This could be the least 

sophisticated form of multi-view learning;

2. The result-fusion strategy [12], [25]–[30]. Such strategy belongs to the 

mechanism of a posterior fusion. That is, the data in all views are first processed 

separately, and then the tricks of result combination, e.g., clustering ensemble 

[28]–[30] or kernel combination [27], are enlisted to seek the clustering 

consensus among all views;

3. The collaborative multi-view clustering strategy [5], [7], [12], [31]–[33], [47]–

[49]. This strategy strives for interview collaboration during clustering by means 

of mining as well as exploiting the agreement across all views. For example, two 

efficient iterative algorithms designated as multi-view kernel k-means 

(MVKKM) and multi-view spectral clustering (MVSpec) [7], respectively, were 

proposed by optimizing the intra-cluster variance from different perspectives as 

well as minimizing inter-view disagreement. As an extension of fuzzy k-means 

(equivalently, fuzzy c-means [13], [14]), Co-FKM [12] was proposed by 

constituting a specific organization for each view in addition to introducing a 

penalty term to measure the disagreement of organizations in different views. A 

novel non-negative matrix factorization (NMF) based multi-view clustering 

method (MultiNMF) [49] was presented by searching for a factorization that 

gives compatible clustering solutions across multiple views.

Moreover, multi-view clustering is actually not isolated from other state-of-the-art clustering 

methodologies in machine learning, such as multi-task clustering [39], [40] and co-

clustering [38], [41]. Multi-task clustering is devoted to completing multiple, relevant 

clustering tasks concurrently via certain synergistic learning criteria. For instance, the 

learning shared subspace for multitask clustering (LSSMTC) [39] algorithm learns a 

subspace shared by all the tasks, through which the knowledge in one task can be transferred 

to each other. In the sense of concurrent clustering, multi-view clustering is similar to multi-

task clustering to a certain extent. However, all of the views in the former are regarded as 

coming from the same objects but from different perspectives, whereas different tasks in the 

latter are usually associated with different targets. As for co-clustering, it performs 

clustering on the target data set from the perspectives of row (i.e., example) and column (i.e., 

attribute) simultaneously [38], [41]. Differing from multi-view clustering, co-clustering 

strives for good results based on the duality between data examples and attributes/features in 

the only view space. For example, the dual regularized co-clustering (DRCC) algorithm [41] 

was developed in terms of both the data manifold and feature manifold, and the co-clustering 

was eventually formulated as the problem of semi-nonnegative matrix tri-factorization.

B. MAXIMUM ENTROPY CLUSTERING (MEC)

In a broad sense, MEC implies a series of clustering methods of which the objective 

functions are composed of certain forms of maximizing entropy [15]–[19], [42], although 

the specific frameworks may vary in different algorithms. As one of the well-known 
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representatives of this category of approaches, the work proposed in [15] is employed as the 

foundation of our study. It can be briefly reviewed as follows.

Let X = {xj | xj ∈ Rd, j = 1, 2, …, N} denote a given data set, where d and N denote the data 

dimension and data capacity, respectively. Suppose that this data set contains C (2 ≤ C < N) 

potential clusters. Then, the objective function of classic MEC can be represented as

min
U, V

∑
i = 1

C
∑
j = 1

N
μi j x j − vi

2 + γ ∑
i = 1

C
∑
j = 1

N
μi jlnμi j

s.t. 0 ≤ μi j ≤ 1 and  ∑
i = 1

C
μi j = 1

1 ≤ i ≤ C, 1 ≤ j ≤ N

(1)

where, ∥xj − vi∥2 is the distance measure between pattern xj and cluster centroid vi; U ∈ 
RC×N is the membership matrix consisting of μij (i = 1, …, C; j = 1, … N), and μij denotes 

the membership degree of object xj to cluster centroid vi; V ∈ Rd×C is the cluster centroid 

matrix composed of all cluster centroids v1, …, vC; and γ > 0 is the regularization parameter.

There are two terms in (1). The first measures the total deviation regarding all data instances 

to every estimated cluster centroid with membership values μij (i = 1, …, C; j = 1, N) being 

weight factors. The second term is exactly the Shannon entropy term derived from the 

Shannon diversity measurement in information theory [14], [15], [18], [37], [38], [53]–[57], 

i.e., DIS = − ∑i = 1
n pi ln pi. This term aims at unbiased probability assignments (i.e., the 

membership degrees in (1)) while agreeing with whatever information is given, according to 

the principle of maximum entropy inference (MEI) [14], [15].

Using the Lagrange optimization, the update equations of cluster prototype vi and 

membership μij in (1) can be derived as

vi =
∑ j = 1

N μi jx j

∑ j = 1
N μi j

, i = 1, 2, …, C; (2)

μi j =
exp −

x j − vi
2

γ

∑k = 1
C exp −

x j − vk
2

γ

, i = 1, 2, …, C; j = 1, 2, …, N . (3)
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As revealed in [13], like FCM, MEC is devised as another methodology to fuzzify crisp k-

means. Apparently, benefiting from MEI, compared with FCM, MEC has a nicer 

formulation and a more meaningful connotation [14].

C. MEC VERSUS HETEROGENEOUS MULTI-VIEW DATE

Feature fusion and result fusion are two available countermeasures for conventional MEC 

for handling heterogeneous multi-view data. For feature fusion, it is needed to concatenate 

different attributes in all views. Here some preprocessing with respect to some attributes 

could be necessary, e.g., normalizing each dimension [27], so that all involved attributes can 

be comparable to each other. As for result fusion, Fig. 1 illustrates one usual workflow, in 

which the clustering ensemble, as the last but the most important step of the entire 

procedure, is recruited. Specifically, MEC is first used to separately handle the data affiliated 

to each view and to attain the individual partition matrices (namely, membership matrices) 

— U1, U2, …, UN. Then, via a certain clustering ensemble strategy imposing upon these 

partition matrices, the overall decision U is eventually achieved.

Remarks: As is evident, traditional MEC fails to take into account two aspects of challenge 

in the scene of heterogeneous multi-view data. On the one hand, the lack of interactive 

learning among views, i.e., inter-view collaborations, during the entire clustering procedure 

is the most serious drawback. It only processes each view separately regardless of their 

potential correlations. Although the final clustering result is able to be comprehensively 

obtained in terms of the strategy of result fusion, the reliability of the overall decision is 

vulnerable to the underlying data distortion existing in certain views. On the other hand, all 

attributes are currently treated equally in any view, which brings probably about two issues. 

First, the attributes owning larger orders of magnitude could dominate the similarity 

measurement between two data instances. Second, the consistent weight assigned to every 

attribute could restrict the distinguishability of similarity measure, even if the orders of 

magnitude of all of the attributes are almost close. Motivated by these problems, we attempt 

to propose our own schema for handling heterogeneous multi-view data in the following 

section.

III. VIEW-COLLABORATIVE, ATTRIBUTE-WEIGHTED MAXIMUM ENTROPY 

CLUSTERING

Before introducing our novel framework regarding collaborative multi-view MEC, two 

dedicated criteria need to be first presented as the bases of our work.

A. TWO SPECIALIZED CRITERIA FOR COLLABORATIVE MULTI-VIEW MEC

1) THE CRITERION OF INTER-VIEW COLLABORATIVE LEARNING (IEVCL)—
For the purpose of collaborative learning among views, the clustering knowledge in one 

view is designed to learn from that in other views in our scheme. Specifically, let k (k ∈ [1, 

K]) denote the view index and K be the total view number, μij,k denote the membership 

degree of object j (j ∈ [1, N]) to cluster i (i ∈ [1, C]) in the kth view, and Σk′ ≠k μij,k′ signify 

the sum of the membership degrees with respect to object j (j ∈ [1, N]) to cluster i (i ∈ [1, 
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C]) in all of the other views excluding view k; then, the formula of our IEVCL criterion is 

devised as

μi j, kη = ημi j, k + 1 − η
K − 1 ∑

k′ ≠ k
k′ = 1

K
μi j, k′ (4)

where μi j, kη is the synthetic membership degree regarding object j (j ∈ [1, N]) to cluster i (i 

∈ [1, C]) in view k, and η ∈ (0, 1] is a trade-off factor.

As is evident, in any view k, membership degree μi j, kη is synthetically generated by 

incorporating the clustering knowledge in all of the other views into the current one, with 

parameter η balancing their individual impact. In order to fuse the knowledge outside the 

current view well, the average of {μij,k′ | k′ ≠ k}, i.e., Σk′ ≠k μij,k′ / (K − 1), is adopted in 

our study. In this way, the clustering knowledge obtained in every view is capable of being 

shared with each other, which is undoubtedly conducive to generating a desirable, insightful 

decision over all views.

2) THE CRITERION OF INTRA-VIEW-WEIGHTED ATTRIBUTES (IAVWA)—The 

IAVWA criterion aims to discriminate individual importance with respect to each attribute in 

any view. For this purpose, based on the original formulation of MEC in the form of (1), we 

derive IAVWA as

min
δi j, k = ∑

l = 1

dk
wl, k x jl, k − vil, k

2

+λ2 ∑
l = 1

dk
wl, klnwl, k

s.t.   ∑
l = 1

dk
wl, k = 1

(5)

in which dk represents the data dimensionality in view k; wl,k is the weight of the lth 

attribute in the kth view; x jl, k ∈ x j, k = x j1, k, x j2, k, …, x jdk, k
T
 signifies the lth attribute value 

of the jth object in the kth view; likewise, vil, k ∈ vi, k = vi1, k, vi2, k, …, vidk, k
T
 denotes the lth 

dimensional value of the ith cluster centroid in the kth view; and λ2 > 0 is a regularization 

coefficient.
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There are two terms in the formula of IAVWA. The first term, ∑l = 1
dk wl, k x jl, k − vil, k

2
, 

calculates the weighted distance sum regarding object j to cluster centroid i in view k with 

wl,k, l = 1, …, dk, acting as the weight factors. The second one, ∑l = 1
dk wl, klnwl, k, similar to Σi 

Σjμij ln μij in the formulation of MEC (see (1)), is the Shannon entropy term to achieve 

unbiased probability assignments during clustering according to the MEI principle.

B. THE NOVEL FRAMEWORK OF VC-AW-MEC

Now, by means of both IEVCL and IAVWA, we can present our VC-AW-MEC model for 

multi-view collaborative clustering. With the same notations as those in (1), (4), and (5), we 

formulate the framework of VC-AW-MEC as

min

JVC−AW − MEC U1,  V1,  w1,  …,  UK,  VK,  wK

= ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, kη ∑

l = 1

dk
wl, k x jl, k − vil, k

2

+λ1 ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, k ln μi j, k

+λ2 ∑
k = 1

K
∑
l = 1

dk
wl, k ln wl, k,

μi j, kη  =  ημi j, k  +   1 − η
K − 1  ∑

k′ = 1, k′ ≠ k

K
μi j, k′

s.t. μi j, k  ∈  [0,  1], wl, k  ∈  [0,  1],   ∑
i = 1

C
μi j, k  =  1,   ∑

l = 1

dk
wl, k  =  1,

1  ≤  i  ≤  C, 1  ≤   j  ≤  N,  1  ≤  k  ≤  K

(6)

where, xjl,k ∈ xj,k, vil,k ∈ vi,k, Uk = [μij,k]C×N, Vk = [v1, k, …, vC,k]T, wk = w1, k, …, wdk, k
T
, 

and λ1 > 0, λ2 > 0 are two regularization parameters.

In (6), ∑k = 1
K ∑i = 1

C ∑ j = 1
N μi j, kη∑l = 1

dk wl, k x jl, k − vil, k
2

 measures the total deviation 

regarding all objects to all cluster centroids in all views, and the remainder, i.e., 

λ1∑k = 1
K ∑i = 1

C ∑ j = 1
N μi j, klnμi j, k + λ2∑k = 1

K ∑l = 1
dk wl, klnwl, k, is composed of two maximum 

entropy terms used to pursue unbiased probability assignments throughout clustering. Here, 

both membership degree μij,k and weight factor wl,k are regarded as two types of probability. 

More exactly, in view k, the former indicates the probability that object j belongs to cluster i, 
whereas the latter designates the probability that attribute l dominates the similarity 

measurement between object j and cluster centroid i.
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Theorem 1: The necessary conditions to minimize the objective function JVC-AW-MEC in (6) 

yield the following updating equations regarding the cluster centroids, membership degrees, 

and weight factors:

vil, k =
∑ j = 1

N μi j, kηwl, kx jl, k

∑ j = 1
N μi j, kηwl, k

(7)

wl, k =

exp −
∑i = 1

C ∑ j = 1
N μi j, kη x jl, k − vil, k

2

λ2

∑q = 1
dk exp −

∑i = 1
C ∑ j = 1

N μi j, kη x jq, k − viq, k
2

λ2

(8)

μi j, k =

exp −
η∑l = 1

dk wl, k x jl, k − vil, k
2 + 1 − η

K1 ∑k′ = 1, k′ ≠ k
K ∑l = 1

dk wl, k′ x jl, k′ − vil, k′
2

λ1

∑r = 1
C exp

n∑l = 1
dk wl, k x jl, k − vrl, k

2 + 1 − η
K1 ∑k′ = 1, k′ ≠ k ∑l = 1

dk wl, k′ x jl, k′ − vrl, k′
2

λ1

(9)

where μi j, kη = ημi j, k + 1 − η
K − 1 ∑k′ = 1, k′ ≠ k

K μi j, k′.

The proof of Theorem 1 is given in Appendix A.

To generate the overall clustering decision U over all views, the geometric mean [12], [30], 

[43] of all membership degrees in all views, i.e., the Kth root of the product of U1, …, UK, is 

enlisted in our VC-AW-MEC model:

U = ∏
k = 1

K
Uk

K
(10)

As such, the overall tendencies/probabilities of all object to all cluster centroids are capable 

of being measured comprehensively [43].

The workflow of our proposed VC-AW-MEC model versus heterogeneous multi-view data 

is illustrated in Fig. 2.
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C. THE VC-AW-MEC ALGORITHM

Echoing Fig. 2, the algorithm procedure of VC-AW-MEC is detailed Algorithm 1.

The computational complexity of the proposed VC-AW-MEC algorithm is analyzed as 

follows. In each iteration, for calculating Uk, Vk, and wk, k = 1, …, K, the computing cost is 

O KNC + KC + ∑k = 1
K dk . Thus, the total computational complexity of VC-AW-MEC is 

O max_iter × KNC + KC + ∑k = 1
K dk .
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Based on the Zangwill’s convergence theorem [14], [50], the convergence of our proposed 

VC-AW-MEC algorithm can be proved. Please refer to Section Appendix B for the details.

IV. EXPERIMENTAL RESULTS

A. SETUP

We attempt to demonstrate the effectiveness of our proposed VC-AW-MEC algorithm on 

heterogeneous multi-view data in this section. For this purpose, five related, well-established 
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competitors, i.e., LSSMTC [39], DRCC [41], MVKKM [7], Co-FKM [12], and MultiNMF 

[49] were used to compare with each other. Among them, LSSMTC belongs to multi-task 

clustering, DRCC features co-clustering, and MVKKM, Co-FKM, and MultiNMF are the 

representatives of collaborative multi-view clustering. In addition, to validate the realistic 

performance of VC-AW-MEC with distinctive interview collaborations as well as intra-

view-weighted attributes in multi-view data scenes, the strategies of “MEC + feature fusion” 

(denoted as MEC-FF) and “MEC + result fusion” (denoted as MEC-RF, in which (10) was 

also recruited for generating the eventual decision matrix U) were employed in our 

experiments. As such, we got three MEC-based multi-view clustering approaches — MEC-

FF, VC-AW-MEC, and MEC-RF, and they belong to the modalities of priori fusion, inter-

view collaboration, and posterior fusion, respectively. Both the synthetic and real-world 

multi-view data scenes were used, which will be introduced in detail below.

For the purpose of fair comparison, three well-established validity metrics, Normalized 
Mutual Information (NMI) [14], [17], Rand Index (RI) [14], [44], and Davies-Bouldin 
Index(DBI) [14], [44], were used throughout our experiments. Both NMI and RI belong to 

external criteria dependent on given labels, whereas DBI is one internal criterion that 

appraises clustering effectiveness based purely on the inherent quantities or features in the 

data set, such as intra-cluster homogeneity as well as inter-cluster separation. Their 

definitions are briefly reviewed as follows.

1) NMI—

NMI =
∑i = 1

C ∑ j = 1
C Ni, jlogN ⋅ Ni, j/Ni ⋅ N j

∑i = 1
C NilogNi/N ⋅ ∑ j = 1

C N jlogN j/N
(11)

where Ni,j denotes the number of agreements between cluster i and class j, Ni is the number 

of data points in cluster i, Nj is the number of data points in class j, and N signifies the data 

size of the whole dataset.

2) RI—

RI =
f 00 + f 11

N(N − 1)/2 (12)

where f00 denotes the number of any two data points belonging to two different clusters, f11 

denotes the number of any two data points belonging to the same cluster, and N is the total 

number of data points.

3) DBI—
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DBI = 1
C ∑

k = 1

C
max
k′ ≠ k

δk + δk′
Δkk′

, (13-1)

where

δk = 1
nk

∑
x j
k ∈ Ck

x j
k − vk , Δkk′ = vk − vk′ , (13-2)

C denotes the cluster number in the dataset, x j
k denotes the data instance belonging to cluster 

Ck, and nk and vk separately signify the data size and the centroid of cluster Ck.

Both NMI and RI take values within the interval [0,1]. The higher the value of NMI or RI, 

the better clustering performance is indicated. Conversely, smaller values of DBI are 

preferred, which convey that both the inter-cluster separation and intra-cluster homogeneity 

are concurrently acceptable.

For parameter settings, the grid search strategy [14] was used to seek the optima of core 

parameters in all involved approaches. These parameters as well as their trial ranges are 

listed in Tables 1 and 2. Referring to the recommendations in [7], [12], [39], and [41], we 

determined the trial ranges of core parameters in the competitive approaches. Taking VC-

AW-MEC as an example, we explain how to determine the best parameter settings: The 

given range of each parameter was first evenly divided into several subintervals; after that, in 

the form of repeated implementations of the VC-AW-MEC algorithm, the multiply nested 

loops were executed with one parameter locating at one loop and the subintervals of this 

parameter being the steps of the matching loop. Meanwhile, the clustering effectiveness was 

recorded in terms of the recruited validity indices, i.e., NMI, RI, and DBI. After the eventual 

termination of these nested loops, the optimal parameter settings were achieved, i.e., the 

ones corresponding to the best clustering effectiveness within the given trial ranges.

All experiments were carried out on a PC with Intel i5–4590 3.3 GHz CPU and 4 GB RAM, 

Microsoft Windows 7 64 bit, and MATLAB 2011b. The best clustering performance of each 

approach is reported in terms of the means and standard deviations of NMI, RI, and DBI 

after 20 runs on each data set. It should be mentioned that, unlike NMI and RI, the 

calculation of DBI depends on the data itself. Therefore, due to the data inconsistency in 

different views, the geometric means [12], [30], [43] of DBI scores over all views, similar to 

(10), were adopted as the final DBI value for one method in one multi-view data scene.

B. IN SYNTHETIC MULTI-VIEW DATA SCENE

Here, we artificially generated a 3-D data scene, as shown in Fig. 3(a), in which 600 data 

points, owning the X, Y, and Z coordinate values simultaneously, are potentially affiliated 

with 3 clusters. This scene contains three views: X–Y (Fig. 3(b)), Y–Z (Fig. 3(c)), and X–Z 

(Fig. 3(d)). As indicated in Fig. 3, if observed from view X–Y, the 600 examples can be 
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easily, exactly divided into three clusters, whereas from the other views, both Y–Z and X–Z, 

due to the overlap among clusters, the three clusters are difficult to correctly separate.

We implemented LSSMTC, DRCC, MVKKM, Co-FKM, MultiNMF, MEC_FF, MEC_RF, 

and VC-AW-MEC in such an artificial multi-view data scene, respectively. Their individual 

clustering performance, measured in terms of the employed validity indices, is listed in 

Table 3 in which the top 3 scores of each index are marked with “①,” “②,” and “③,” 

respectively.

Based on Table 3, our analyses are as follows.

1. In such a synthetic multi-view scene, aside from MEC-RF, all of the other multi-

view clustering approaches, i.e., MVKKM, Co-FKM, MultiNMF, MEC-FF, and 

VC-AW-MEC, achieved satisfactory clustering performance. In addition, owing 

to the desirable inter-view collaboration, MVKKM, Co-FKM, MultiNMF, and 

VC-AW-MEC outperform the others.

2. Despite the overlap of clusters in some views (see Figs. 3(c) and (d)), by putting 

the features in all views together, MEC-FF, the feature fusion-based MEC 

method, also got comparatively high NMI and RI scores. Nonetheless, it should 

be clarified that the clustering performance of MEC-FF depends largely on the 

inherent quality itself of the combined features. If and only if the combination of 

features from all views is profitable, MEC-FF can exhibit superiority against the 

others.

3. MEC-RF belongs to the strategy of result-fusion. It is difficult for conventional 

MEC to handle the data distributions in views Y–Z and X–Z (i.e., Figs. 3(c) & 

3(d)), as some clusters are heavily mixed. Consequently, unsatisfactory 

clustering results of MEC in these two views weakened the entire performance of 

MEC-RF even if the trick of clustering ensemble was utilized.

4. As one representative of multi-task clustering, LSSMTC did not attain desirable 

results with each view acting as one task on such artificial, heterogeneous multi-

view data. In contrast, DRCC, one co-clustering approach, due to the duality 

utilization from the perspectives of record and attribute synchronously, obtained 

better NMI and RI scores.

5. Benefiting from jointly leveraging the interview collaborations and intra-view-

weighted attributes, VC-AW-MEC achieved the best NMI, RI, and DBI scores, 

even compared with some state-of-the-art approaches with the collaborations 

among views, such as MVKKM, MultiNMF, and Co-FKM.

C. IN REAL-WORLD MULTI-VIEW DATA SCENES

1) THE CONSTRUCTION OF MULTI-VIEW SCENES—To further validate the 

realistic effectiveness of our proposed VC-AW-MEC algorithm, several real-world multi-

view data scenes were also used for our experimental studies:
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(1) Multi-view data scenes from the UCI machine learning repository1: Four data sets 

from the UCI repository—Iris, Multiple Features (MF), Image Segmentation (IS), and Water 
Treatment Plant (WTP), were recruited to constitute the real-world multi-view data scenes 

for our experiments. As shown in Fig. 4, the data distributions of the four original attributes 

in Iris are inconsistent; the last two dimensions appear to be easily separated but not the 

others. Thus, via the pairwise combinations of attributes in Iris: 1&3 and 2&4, we generated 

the 2-view Iris data scene. MF contains 2,000 patterns of handwritten digits affiliated with 

10 categories (‘0’–’9’). Each pattern is characterized by 649 features that have been 

explicitly divided into 6 views. IS is an outdoor image data set composed of 2,310 instances. 

Each image is depicted by 19 features from the viewpoints of shape and color separately. 

WTP comes from the daily measures of sensors in an urban waste water treatment plant. It 

contains 527 instances depicted by 38 attributes from 4 different views.

The details regarding the four real-world multi-view scenes from the UCI repository are 

listed in Tables 4 and 5.

(2) Multi-view data scenes in image segmentation: Two multi-view scenes regarding 

image segmentation were also enlisted to validate the practicability of the proposed VC-AW-

MEC method. Specifically, seven types of textures from the Brodatz texture database2 and 

one animal, hand-labelled image from the Berkeley segmentation database3 were used. The 

7 categories of Brodatz textures are shown in Fig. 5 (a). Using these textures, we first 

constructed a texture image with 100 × 100 = 10, 000 resolution, and then the Gabor filter 

[45], [46] was adopted to extract the texture features from this image. With three different 

sets of parameter value for the Gabor filter, as shown in Table 6, we finally generated the 3-

view Brodatz texture-segmentation data scene. The test image (No. 296059) in the Berkeley 
repository (Berke-296059 for short) was used in our work. We resized it to the 100 × 66 

resolution and relabeled it by hand, as shown in Fig. 5(b). Extracting the color features of 

pixels in this image from the channels of R, G, and B, respectively, we achieved another 3-

view image-segmentation data scene. We detail these two multi-view real-image 

segmentation scenes in Table 6.

2) CLUSTERING RESULT ANALYSES—We ran the eight employed approaches in 

these six real-world multi-view data scenes, respectively, and their individual clustering 

scores measured in terms of NMI, RI, and DBI are listed in Table 7. In light of the 

prerequisite of LSSMTC that the data dimensions of all tasks must be consistent, LSSMTC 

cannot work in some of these multi-view scenes, such as MF, IS, WTP, and Brodatz texture 
segmentation, and its score in such case is marked with “−” in Table 7. In addition, one of 

the realistic segmentation outcomes of each adopted approach in each of the two image-

segmentation multi-view scenes is illustrated in Figs. 6 and 7.

Observing these experimental results, we can also draw some conclusions below.

1http://archive.ics.uci.edu/ml/datasets.html
2http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
3http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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1. In general, the conclusions we achieve in the synthetic multi-view data scene still 

hold here.

2. As was already revealed, MEC-FF no longer exhibited stable effectiveness in 

some of these real-world multi-view scenes. For example, in Iris, MF, and 

Berke-296059, the NMI scores of MEC-FF are obviously worse than those of our 

proposed VC-AW-MEC.

3. In both IS and WTP, the three MEC-based multi-view approaches—VC-AW-

MEC, MEC-RF, and MEC-FF, ranked top 3 in terms of the well-accepted NMI 

and RI indices. This reflects, to a certain extent, the superiority of MEC against 

other clustering techniques, e.g., the k-means-based MVKKM and the FCM-

based Co-FKM, due to the optimization of maximum entropy.

4. The NMI and RI scores of the proposed VC-AW-MEC always ranked top 2 in all 

of these involved multi-view data scenes. This confirms our efforts in this paper, 

i.e., IEVCL aims at finding the consensus among all views. Meanwhile, IAVWA 

strives for adaptively determining the appropriate weights of attributes in each 

view. By organically incorporating these two mechanisms, it does make sense 

that VC-AW-MEC achieves preferable clustering outcomes.

5. As is revealed, as an internal criterion, DBI has the underlying drawback that the 

smallest value does not necessarily indicate the best information retrieval [14]. 

For example, MEC-FF gets the smallest DBI score in Iris and Berke-29605, 

while its NMI scores are rather common.

D. PARAMETER ROBUSTNESS ANALYSES

Lastly, we evaluated the robustness of our VC-AW-MEC algorithm with respect to its three 

core parameters, i.e. the trade-off factors η and the two regularization parameter λ1, λ2, in 

all of the involved multi-view data scenes. In each data scene, we took turns fixing two of 

the three parameters and gradually varied the third one until VC-AW-MEC achieved the 

optima by grid search. Here we only recorded the values of the two external metrics, i.e., 

NMI and RI. Due to the limit of paper length, we only report our experimental results in 

three real-world multi-view data scenes: Iris with 2 views, WTP with 4 views, and Brodatz 
texture segmentation with 3 views.

In Iris with 2 views, VC-AW-MEC roughly reached the optima with λ1 = 1e−3, λ2 = 1 and η 
= 0.6; in WTP with 4 views, with λ1 = 1e−3, λ2 = 1e1 and η = 0.2; and in Brodatz texture 
segmentation with 3 views, with λ1 = 1e−3, λ2 = 1e3 and η = 0.01. The effectiveness curves 

of VC-AW-MEC in these three data scenes are illustrated in Fig. 8, where Fig. 8(a)–(c) show 

the cases in Iris, Fig. 8(d)–(f) are in WTP, and Fig. 8(g)–(i) are in Brodatz texture 
segmentation.

As revealed in Fig. 8, the clustering effectiveness of VC-AW-MEC is relatively stable when 

the three core parameters are within proper ranges, which demonstrates that VC-AW-MEC 

features the good robustness against parameter settings.
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V. CONCLUSIONS

To propose a MEC-based approach competent in coping with heterogeneous multi-view 

data, two dedicated criteria—IEVCL and IAVWA are first put forward. IEVCL focuses on 

mining the consensus among multiple views during clustering, while IAVWA strives for 

properly differentiating the due weights of all attributes within one view. Then, by delicately 

fusing conventional MEC, IEVCL, and IAVWA, the core VC-AW-MEC model is achieved. 

VC-AW-MEC proves its superiority against many existing, state-of-the-art approaches in 

both the artificial and real-world multi-view data scenes.

As for the follow-up work, the strategy of weighted view fusion is afoot. That is, the due 

weights of all views during collaborative learning are worthy of further investigation, which 

is one of the available pathways to further promote the performance of our MEC-based 

multi-view learning schema.
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APPENDIX

A. PROOF OF THEOREM 1

Proof: It is clear that (6) can be rewritten as

min

JVC−AW − MEC U1, V1, w1, …, UK, VK, wK = ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, kη ∑

l = 1

dk
wl, k x jl, k − vil, k

2 + λ1 ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, klnμi j, k + λ2 ∑

k = 1

K
∑
l = 1

dk
wl, klnwl, k,

⇔

JVC−AW − MEC U1, V1, w1, …, UK, VK, wK = ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, k η ∑

l = 1

dk
wl, k x jl, k − vil, k

2 + 1 − η
K − 1 ∑

k′ = 1, k′ ≠ k

K
∑
l = 1

dk
wl, k′ × x jl, k′ − vil, k′

2 + λ1 ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, klnμi j, k + λ2 ∑

k = 1

K
∑
l = 1

dk
wl, klnwl, k,

s.t.  μi j, k ∈ [0, 1], wl, k ∈ [0, 1], ∑
i = 1

C
μi j, k = v1, ∑

l = 1

dk
wl, k = 1,

1 ≤ i ≤ C, 1 ≤ j ≤ N, 1 ≤ k ≤ K

(A.1)

Using the Lagrange optimization, the minimization of JVC-AW-MEC can be transformed into 

the following unconstrained minimization problem:
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L = ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, kη ∑

l = 1

dk
wl, k x jl, k − vil, k

2 + λ1 ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, klnμi j, k

+ λ2 ∑
k = 1

K
∑
l = 1

dk
wl, klnwl, k + ∑

j = 1

N
α j 1 − ∑

i = 1

C
μi j, k + ∑

k = 1

K
βk 1 − ∑

l = 1

dk
wl, k

L = ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
× μi j, k η ∑

l = 1

dk
wl, k x jl, k − vil, k

2

+ 1 − η
K − 1 ∑

k′ = 1, k′ ≠ k

K
∑
l = 1

dk
wl, k′ x jl, k′ − vil, k′

2 + λ1 ∑
k = 1

K
∑
i = 1

C
∑
j = 1

N
μi j, klnμi j, k

+ λ2 ∑
k = 1

K
∑
l = 1

dk
wl, klnwl, k + ∑

j = 1

N
α j 1 − ∑

i = 1

C
μi j, k + ∑

k = 1

K
βk 1 − ∑

l = 1

dk
wl, k

(A.2)

where αj (j ∈ [1, N]) and βk (k ∈ [1, K]) are the Lagrange multipliers.

Next, let us set the derivatives to zero with respect to vil,k, μij,k, and wl,k:

∂L
∂vil . k

= − 2 ∑
j = 1

N
μi j, kηwl, k x jl, k − vil, k = 0 (A.3)

We subsequently obtain (7) by rearranging (A.3).
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∂L
∂μi j, k

= η ∑
l = 1

dk
wl, k x jl, k − vil, k

2 + 1 − η
K1 × ∑

k′ = 1, k′ ≠ k

K
∑
l = 1

dk
wl, k′ x jl, k′ − vil, k′

2

+ λ1 1 + lnμi j, k − α j = 0

lnμi j, k =
α j − λ1 − η∑l = 1

dk wl, k x jl, k − vil, k
2 − 1 − η

K1 ∑k′ = 1, k′ ≠ k
K ∑l = 1

dk wl, k′ x jl, k′ − vil, k′
2

λ1

μi j, k = exp
α j − λ1

λ1
× exp

−η∑l = 1
dk wl, k x jl, k − vil, k

2 − 1 − η
K1 ∑k′ = 1, k′ ≠ k

K ∑l = 1
dk wl, k′ x jl, k′ − vil, k′

2

λ1

(A.4)

∑r = 1
C μr j, k = 1, based on (A.4), we get
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exp
α j − λ1

λ1
∑

r = 1

C
× exp

−
η∑l = 1

dk wl, k x jl, k − vil, k
2 + 1 − η

K1 ∑k′ = 1, k′ ≠ k
K ∑l = 1

dk wl, k′ x jl, k′ − vrl, k′
2

λ1
= 1

exp
α j − λ1

λ1

= 1/ ∑
r = 1

C
exp −

η∑l = 1
dk wl, k x jl, k − vrl, k

2 + 1 − η
K1 ∑k′ = 1, k′ ≠ k

K ∑l = 1
dk wl, k′ × x jl, k′ − vrl, k′

2

λ1

(A.5)

By substituting (A.5) into (A.4), we can immediately attain (9).

Likewise,

∂L
∂wl, k

= ∑
i = 1

C
∑
j = 1

N
μi j, kη x jl, k − vil, k

2 + λ2 1 + lnwl, k − βk = 0

lnwl, k =
βk − λ2 − ∑i = 1

C ∑ j = 1
N μi j, kη x jl, k − vil, k

2

λ2

wl, k = exp
βk − λ2

λ2
× exp −

∑i = 1
C ∑ j = 1

N μi j, kη x jl, k − vil, k
2

λ2

(A.6)

Due to ∑q = 1
dk wq, k = 1 and via (A.6), we get
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exp
βk − λ2

λ2
∑

q = 1

dk
exp −

∑i = 1
C ∑ j = 1

N μi j, kη xiq, k − viq, k
2

λ2
= 1

exp
βk − λ2

λ2
= 1/ ∑

q = 1

dk
× exp −

∑i = 1
C ∑ j = 1

N μi j, kη x jq, k − viq, k
2

λ2

(A.7)

Substituting (A.7) into (A.6), (8) can be achieved. □

B. PROOF OF CONVERGENCE OF VC-AW-MEC

For the convergence of iterative optimization issues, the well-known Zangwill’s convergence 

theorem [50], [14] is extensively adopted as a standard pathway. Let us first review this 

theorem blow.

Lemma 1 (Zangwill’s Convergence Theorem): Let D denote the domain of a continuous 

function J, and S ⊂ D be its solution set. Let Ω signify a map over D that generates an 

iterative sequence {z(t+1) = Ω(t+1)(z(t)), t = 0, 1, …} with z(0) ∈ D. Suppose that

1. {z(t), t = 1, 2 …} is a compact subset of D.

2. The continuous function, J: D → R, satisfies that

a. if z ∉ S, then for any y ∈ Ω(z), J(y) < J(z);

b. if z ∈ S, then either the algorithm terminates or for any y ∈ Ω(z), J(y) ≤ 

J(z).

3. Ω is continuous on D - S.

Then either the algorithm stops at a solution or the limit of any convergent subsequence is a 

solution.

Likewise, we use this theorem to demonstrate the convergence of VC-AW-MEC as follows.

Definition 1: For the kth view, let MUk
 denote the set that

MUk
= Uk ∈ RCN

μi j, k ∈ [0, 1], 1 ≤ i ≤ C, 1 ≤ j ≤ N

∑i = 1
C μi j, k = 1, 1 ≤ j ≤ N .

(A.8)

Definition 2: For the kth view, let Mwk
 denote the set that

Mwk
= wk = w1, k, …, wdk, k

T
wl, k ∈ [0, 1], 1 ≤ l ≤ dk

∑l = 1
dk wl, k = 1 .

(A.9)
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Definition 3: For the kth view, the function G1, k: MUk
× Mwk

R
Cdk is defined as G1,k(Uk, 

wk) = Vk, in which vi, k = vi1, k, ⋯, vidk, k
T

∈ Vk, 1 ≤ i ≤ C is calculated by (7).

Definition 4: For the kth view, the function G2, k: R
Cdk × Mwk

MUk
 is defined G2,k(Vk, wk) 

= Uk, in which Uk ∈ MUk
 consisting of μij,k, 1 ≤ i ≤ C, 1 ≤ j ≤ N, is calculated by (9).

Definition 5: For the kth view, the function G3, k: MUk
× R

Cdk Mwk
 is defined as G3,k(Uk, 

Vk) = wk, in which wk = w1, k, …, wdk, k
T
 is calculated by (8).

Definition 6: For the kth view, the objective function JVC-AW-MEC, k(Uk, Vk, wk) is defined 

as

JVC‐AW‐MEC,k(Uk, Vk, wk) = ∑
i = 1

C
∑
N

j = 1
μi j, k η ∑

l = 1

dk
wl, k x jl, k − vil, k

2

+ 1 − η
K − 1 ∑

k′ = 1, k′ ≠ k

K
∑
l = 1

dk
wl, k′ × x jl, k′ − vil, k′

2 + + λ1 ∑
i = 1

C
∑
j = 1

N
μi j, klnμi j, k

+ λ2 ∑
l = 1

dk
wl, klnwl, k,

(A.10)

in which vil,k ∈ vi,k, Vk = [v1,k, …, vC,k]T, Uk = μi j, k C × N
, wk = w1, k, …, wdk, k

T
 and λ1 > 

0, λ2 > 0 are the two regularization parameters.

Please refer to (A.1) for the derivation of (A.10) from (6).

Definition 7: For the kth view, the map Tk: MUk
× R

Cdk × Mwk
MUk

× R
Cdk × Mwk

 is 

defined as Tk = A3,k∘A2,k∘A1,k for the iteration in VC-AW-MEC, where A1,k, A2,k, and A3,k 

are further defined as
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A1, k: MUk
× Mwk

R
Cdk, A1, k Uk

(t), wk
(t) = G1, k Uk

(t), wk
(t)

= Vk
(t + 1),

A2, k: R
Cdk × Mwk

MUk
× R

Cdk, A2, k Vk
(t + 1), wk

(t)

= G2, k Vk
(t + 1), wk

(t) , Vk
(t + 1)

= Uk
(t + 1), Vk

(t + 1) ,

and

A3, k: MUk
× R

Cdk MUk
× R

Cdk × Mwk
, A3, k(Uk

(t + 1), Vk
(t + 1))

= Uk
(t + 1), Vk

(t + 1), G3, k Uk
(t + 1), Vk

(t + 1) = = Uk
(t + 1), Vk

(t + 1), wk
(t + 1) ,  i.e., Tk

is a composition of three embedded maps: A1,k, A2,k, and A3,k, and

Tk Uk
(t), Vk

(t), wk
(t) = A3, k ∘ A2, k ∘ A1, k Uk

(t), Vk
(t), wk

(t)

= A3, k ∘ A2, k A1 Uk
(t), wk

(t) , wk
(t)

= A3, k ∘ A2, k Vk
(t + 1), wk

(t)

= A3, k Uk
(t + 1), Vk

(t + 1)

= Uk
(t + 1), Vk

(t + 1), wk
(t + 1) .

Theorem 2: In the kth view, suppose that the data Xk {x1,k, …, xN,k} contain at least C (C < 

N) distinct points and that Uk
(0), Vk

(0), wk
(0)  is the start of the iteration of Tk with 

Uk
(0) ∈ MUk

, wk
(0) ∈ Mwk

, and G1, k Uk
(0), wk

(0) = Vk
(0); then the iteration sequence 

Uk
(t), Vk

(t), wk
(t) , t = 1, 2, ⋯  is contained in a compact subset of MUk

× R
Cdk × Mwk

.

Proof: Suppose that Uk
(0) ∈ MUk

 and wk
(0) ∈ Mwk

 are randomly initialized, and that λ1 > 0, λ2 

> 0 are fixed; then, vk
(0) = G1, k Uk

(0), wk
(0)  can be calculated via (7) as

vil, k
(0) =

∑ j = 1
N μi j, kη

(0) wl, k
(0)x jl, k

∑ j = 1
N μi j, kη

(0) wl, k
(0) (A.11)

Let ρ j, k
(0) =

μi j, kη
(0) wl, k

(0)

∑ j = 1
N μi j, kη

(0) wl, k
(0) ; then, (A.11) is equivalent to
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vil, k
(0) = ∑

j = 1

N
ρ j, k

(0) x jl, k (A.12-1)

with

∑
j = 1

N
ρ j, k

(0) =
∑ j = 1

N μi j, kη
(0) wl, k

(0)

∑ j = 1
N μi j, kη

(0) wl, k
(0) = 1 (A.12-2)

Thus, vil, k
(0) ∈  conv  Xl, k = x1l, k, …, xNl, k  and vk

(0) ∈  conv  Xl, k
dk

C
=  conv  Xl, k

Cdk, 

where conv(Xl,k) and conv  Xl, k
Cdk denote the convex hull of Xl,k and the (C × dk)-fold 

Cartesian product of the convex hull of Xl,k, respectively.

Iteratively, Uk
(1) = G2, k Vk

(0), wk
(0)  is computed via (9) and Uk

(1) ∈ MUk
, and 

wk
(1) = G3, k Uk

(1), Vk
(0)  is computed via (8) and wk

(1) ∈ Mwk
. Also, similar to the analyses in 

(A.11) and (A.12), we know that Vk
(1) = G1, k Uk

(1), wk
(1)  also belongs to conv  Xl, k

Cdk. 

Therefore, as such, all iterations of Tk must belong to MUk
× conv  Xl, k

Cdk × Mwk
.

Because both MUk
 and Mwk

 in the forms of (A.8) and (A.9) are closed and bounded [50], 

[51], they are therefore compact. conv  Xl, k
Cdk is also compact [50]. Thus, 

MUk
× conv  Xl, k

Cdk × Mwk
 is consequently a compact subset of MUk

× R
Cdk × Mwk

. □

Proposition 1: In the kth view, if wk* ∈ Mwk
, Uk* ∈ MUk

, λ1 > 0, and λ2 > 0 are fixed, and the 

function Θk: R
Cdk R is defined as Θk(Vk) = JVC-AW-MEC, k Uk*, Vk, wk* , then Vk* is a global 

minimizer of Θk over R
Cdk if and only if Vk* = G1, k Uk*, wk* .

Proof: It is easy to prove that Θk(Vk) is a strictly convex function when wk* ∈ Mwk
, 

Uk* ∈ MUk
, λ1 > 0, and λ2 > 0 are fixed. This means Θk(Vk) at most has one minimizer over 

R
Cdk, and it is also a global minimizer. Furthermore, based on the Lagrange optimization, we 

know that Vk* = G1, k Uk*, wk*  is a global minimizer of Θk(Vk) over R
Cdk. □
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Proposition 2: In the kth view, if wk* ∈ Mwk
, Vk* ∈ R

Cdk, λ1 > 0, and λ2 > 0 are fixed, and the 

function ϒk: MUk
R is defined as ϒk(Uk) = JVC-AW-MEC, k Uk, Vk*, wk* , then Uk* is a global 

minimizer of ϒk over R
Cdk if and only if Uk* = G2, k Vk*, wk* .

Proof: It is easy to prove that ϒk(Uk) is a strictly convex function when wk* ∈ Mwk
, 

Vk* ∈ R
Cdk, λ1 > 0, and λ2 > 0 are fixed. This means ϒk(Uk) at most has one minimizer over 

MUk
, and it is also a global minimizer. Furthermore, based on the Lagrange optimization, we 

know that Uk* = G2, k Vk*, wk*  is a global minimizer of ϒk(Uk) over MUk
. □

Proposition 3: In the kth view, if Vk* ∈ R
Cdk, Uk* ∈ MUk

, λ1 > 0, and λ2 > 0 are fixed and the 

function Γk: Mwk
R is defined as Γk(wk) = JVC-AW-MEC, k Uk*, Vk*, wk , then wk* is a global 

minimizer of Γk over Mwk
 if and only if wk* = G3, k Uk*, Vk* .

Proof: It is easy to prove that Γk(wk) is a strictly convex function when Vk* ∈ R
Cdk, 

Uk* ∈ MUk
,λ1 > 0, and λ2 > 0 are fixed. This means Γk(wk) at most has one minimizer over 

Mwk
, and it is also a global minimizer. Furthermore, based on the Lagrange optimization, we 

know that wk* = G3, k Uk*, Vk*  is a global minimizer of Mwk
. □

Theorem 3: Let

Sk =
Uk*, Vk*, wk*

∈ MUk
× R

Cdk × Mwk

JVC−AW − MEC, k Uk*, Vk*, wk*
< JVC−AW − MEC, k Uk, Vk*, wk* ,
∀Uk ∈ MUk

 and Uk ≠ Uk*

and
JVC−AW − MEC, k Uk*, Vk*, wk*
< JVC−AW − MEC, k Uk*, Vk*, wk ,
∀wk ∈ Mwk

 and wk ≠ wk*

and
JVC−AW − MEC, k Uk*, Vk*, wk*
< JVC−AW − MEC, k Uk*, Vk, wk* ,

∀Vk ∈ R
Cdk and Vk ≠ Vk*

(A.13)
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denote the solution set of the optimization problem min JVC-AW-MEC, k (Uk, Vk, wk). Let λ1 

> 0 and λ2 > 0 take the specific values, suppose that Xk = {x1,k, …, xN,k} contains at least C 

(C < N) distinct points. For Uk, Vk, wk ∈ MUk
× R

Cdk × Mwk
, if 

U⌢k, V⌢k, w⌢k = Tk Uk, Vk, wk , then 

JVC−AW − MEC, k U⌢k, V⌢k, w⌢k ≤ JVC−AW − MEC, k Uk, Vk, wk  and the inequality is strict if 

Uk, Vk, wk ∉ Sk.

Proof: As U⌢k, V⌢k, w⌢k = Tk Uk, Vk, wk , we arrive immediately at V⌢k = G1, k Uk, wk , 

U⌢k = G2, k V⌢k, wk , and w⌢k = G3, k U⌢k, V⌢k , according to Definition 7, and we have 

JVC−AW − MEC, k Tk Uk, Vk, wk = JVC−AW − MEC, k U⌢k, V⌢k, w⌢k
= JVC−AW − MEC, k G2, k G1, k Uk, wk , wk , G1, k Uk, wk ,
G3, k G2, k G1, k Uk, wk , wk , G1, k Uk, wk

. It is obvious that, if 

Uk, Vk, wk ∈ Sk, the conditions Vk = G1, k Uk, wk , Uk = G2, k Vk, wk , and wk = G3, k Uk, Vk

must simultaneously hold; otherwise, at least one of them does not hold. Specifically,

1. For Uk, Vk, wk ∈ Sk, i.e., Vk = G1, k Uk, wk , Uk = G2, k Vk, wk , and 

wk = G3, k Uk, Vk  we have 

JVC−AW − MEC, k U⌢k, V⌢k, w⌢k = JVC−AW − MEC, k
G2, k G1, k Uk, wk , wk , G1, k Uk, wk , G3, k G2, k G1, k Uk, wk , wk , G1, k Uk, wk

= JVC−AW − MEC, k G2, k Vk, wk , Vk, G3, k G2, k Vk, wk , Vk
= JVC−AW − MEC, k Uk, Vk, G3, k Uk, Vk = JVC−AM − MEC, k Uk, Vk, wk

;

2. For Vk ≠ G1, k Uk, wk , according to Proposition 1, we attain 

JVC−AW − MEC, k Uk, Vk, wk > JVC−AW − MEC, k Uk, G1, k Uk, wk , wk
= JVC−AW − MEC, k Uk, V⌢k, wk

. Further, 

based on Propositions 2 and 3, we have 

JVC−AW − MEC, k Uk, V⌢k, wk ≥ JVC−AW − MEC, k G2, k V⌢k, wk , V⌢k, wk
= JVC−AW − MEC, k U⌢k, V⌢k, wk ≥ JVC−AW − MEC, k U⌢k, V⌢k, G3, k U⌢k, V⌢k
= JVC−AW − MEC, k U⌢k, V⌢k, w⌢k

. 

Thus, we arrive at JVC−AW − MEC, k U⌢k, V⌢k, w⌢k < JVC−AW − MEC, k Uk, Vk, wk ;

3. For V⌢k = vk = G1, k Uk, wk  but Uk ≠ G2, k Vk, wk = G2, k V⌢k, wk = U⌢kk, 

according to Proposition 1, we attain 

JVC−AW − MEC, k Uk, Vk, wk = JVC−AW − MEC, k Uk, G1, k Uk, wk , wk
= JVC−AW − MEC, k Uk, V⌢k, wk

. Further, 

based on Propositions 2 and 3, we know that 
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JVC−AW − MEC, k Uk, V⌢k, wk > JVC−AW − MEC, k G2, k V⌢k, wk , V⌢k, wk
= JVC−AW − MEC, k U⌢k, V⌢k, wk ≥ JVC−AW − MEC, k U⌢k, V⌢k, G3, k U⌢k, V⌢k
= JVC−AW − MEC, k U⌢k, V⌢k, w⌢k

 Thus, 

we arrive at JVC−AW − MEC, k U⌢k, V⌢k, w⌢k < JVC−AW − MEC, k Uk, Vk, wk ;

4. For V⌢k = Vk = G1, k Uk, wk , Uk = Uk = G2, k Vk, wk = G2, k V⌢k, wk , but 

w⌢k = G3, k U⌢k, V⌢k = G3, k Uk, Vk ≠ wk we arrive at 

JVC−AW − MEC, k Uk, Vk, wk = JVC−AW − MEC, k Uk, G1, k Uk, wk , wk
= JVC−AW − MEC, k Uk, V⌢k, wk = JVC−AW − MEC, k Uk, V⌢k, wk
= JVC−AW − MEC, k G2, k V⌢k, wk , V⌢k, wk = JVC−AM − MEC, k U⌢k, V⌢k, wk

. 

Further, according to Proposition 3, we know that 

JVC−AW − MEC, k U⌢k, V⌢k, wk > JVC−AW − MEC, k U⌢k, V⌢k, G3, k U⌢k, V⌢k
= JVC−AW − MEC, k U⌢k, V⌢k, wk

. Thus, 

we arrive at JVC−AM − MEC, k U⌢k, V⌢k, w⌢k < JVC−AW − MEC, k Uk, Vk, wk ;

Combining the cases (1)–(4), we know 

JVC−AM − MEC, k U⌢k, V⌢k, w⌢k ≤ JVC−AW − MEC, k Uk, Vk, wk  and the inequality is strict if 

Uk, Vk, wk ∉ Sk. □

Theorem 4: Let λ1 > 0 and λ2 > 0 take the specific values; suppose that Xk = x1,k, …, xN,k} 

contains at least C (C < N) distinct points; then, the map 

Tk: MUk
× R

Cdk × Mwk
MUk

× R
Cdk × Mwk

 is continuous on MUk
× R

Cdk × Mwk
.

Proof: As defined in Definition 7, the map Tk = A3,k ○ A2,k ○ A1,k is a composition of 

three embedded maps, i.e., A1,k, A2,k, and A3,k. Thus, if all of A1,k, A2,k, and A3,k are 

continuous, Tk = A3,k ○ A2,k ○ A1,k is consequently continuous. To prove A1,k(Uk, wk) = 

G1,k(Uk, wk) is continuous, it equals to showing that G1,k(Uk, wk) is continuous. As G1,k(Uk, 

wk) is computed by (7) and it is continuous, A1,k is reasonably continuous. To prove 

A2,k(Vk, wk) = (G2,k(Vk, wk), Vk) is continuous, it equals to demonstrating that G2,k(Vk, wk) 

is continuous. As G2,k(Vk, wk) is calculated via (9), and (9) is definitely continuous when λ1 

and η are fixed, G2,k(Vk, wk) is continuous. Thus, A2,k is continuous. Likewise, to prove 

A3,k(Uk, Vk) = (Uk, Vk, G3,k(Uk, Vk)) is continuous, it equals to showing that G3,k(Uk, Vk) 

is continuous. As G3,k(Uk, Vk) is computed by (8) and it is continuous, A3,k is consequently 

continuous.

Combining them, this theorem can be proven. □

Theorem 5: In any view k (k = 1, …, K), let Xk = {x1,k, …, xN,k}contain at least C (C < N) 

distinct points and JVC-AW-MEC, k(Uk, Vk, wk) be in the form of (A.10); suppose that 

Uk
(0), Vk

(0), wk
(0)  is the start of the iterations of Tk with Uk

(0) ∈ MUk
, wk

(0) ∈ Mwk
, and 

Vk
(0) = G1, k Uk

(0), wk
(0) ; then, the iteration sequence, 
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Uk
(t + 1), Vk

(t + 1), wk
(t + 1) = Tk Uk

(t), Vk
(t), wk

(t) , t = 0, 1, … , either terminates at a point 

Uk*, Vk*, wk*  in the solution set Sk of JVC-AW-MEC, k, or there is a subsequent converging to a 

point in Sk.

Based on the Zangwill’s convergence theorem, Theorem 5 immediately holds under the 

premises of Theorems 3, 4, and 5.

Theorem 6 (Convergence of VC-AW-MEC): According to Theorem 5, the entire iteration 

procedure of VC-AW-MEC is convergent.

Proof: Based on Theorem 5, we know that for any view k (k = 1, …, K), the optimization of 

min JVC-AW-MEC, k (Uk, Vk, wk) is resoluble and its iteration procedure is convergent. 

Furthermore, because min 

JVC−AW − MEC(U, V, w) = min ∑k = 1
K JVC−AM − MEC, k Uk, Vk, wk , the convergence of VC-

AW-MEC certainly holds. □
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FIGURE 1. 
The workflow of conventional MEC versus heterogeneous multi-view data with result 

fusion.
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FIGURE 2. 
The workflow of VC-AW-MEC versus heterogeneous multi-view data.
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FIGURE 3. 
Artificial 3-view data scene. (a) 3-D illustration of all data points. (b) View X–Y. (c) View 

Y–Z. (d) View X–Z.
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FIGURE 4. 
Data distributions of different attributes in Iris. (a) Distribution in attribute 1. (b) Distribution 

in attribute 2. (c) Distribution in attribute 3. (d) Distribution in attribute 4.
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FIGURE 5. 
Involved real-world images for multi-view clustering. (a) Texture image composed of 7 

Brodatz textures. (b) Berke-296059 from Berkeley segmentation repository.
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FIGURE 6. 
Segmentation results of involved approaches on Brodatz texture image. (a) VC-AW-MEC. 

(b) MEC-FF. (c) MEC-RF. (d) DRCC. (e) Co-FKM. (f) MVKKM. (g) MultiNMF.
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FIGURE 7. 
Segmentation results of involved approaches on Berke-29605. (a) LSSMTC. (b) MEC-FF. 

(c) MEC-RF. (d) MVKKM. (e) Co-FKM. (f) DRCC. (g) MultiNMF. (h) VC-AW-MEC.
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FIGURE 8. 
Effectiveness curves of VC-AW-MEC with respect to three core parameters λ1, λ2, and η in 

the multi-view data scenes of Iris, WTP, and Brodatz texture segmentation. (a) Iris – λ1. (b) 

Iris – λ2. (c) Iris – η. (d) WTP – λ1. (e) WTP – λ2. (f) WTP – η. (g) Brodatz texture 
segmentation-λ1. (h) Brodatz texture segmentation -λ2. (i) Brodatz texture segmentation -η.
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TABLE 1.

Parameter settings in multi-task clustering and co-clustering algorithms.

Algorithms Core parameters and settings

Multi-task clustering: LSSMTC
Task number T= 2
Parameter l ∈ {2,22,23,24}
Parameter λ ∈ {0.15, 0.25, 0.5, 0.75}

Co-clustering: DRCC Parameter λ ∈ {0.1, 1, 10, 100, 500, 1000}
Parameter μ ∈ {0.1, 1, 10, 100, 500, 1000}
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TABLE 2.

Parameter settings in multi-view clustering algorithms.

Algorithms Core parameters and settings

VC-AW-MEC
Trade-off factor η ∈ [0.01,0.05: 0.05: 1]
Regularization coefficient
λ1λ2 ∈ {1e−4,1e−3,1e−2,1e−1,1,1e1,1e2,1e3,1e4}

MEC-FF
Regularization coefficient
γ ∈ {1e−4,1e−3,1e−2,1e−1,1,1e1,1e2,1e3,1e4}

MEC-RF
Regularization coefficient
γ ∈ {1e−4,1e−3,1e−2,1e−1,1,1e1,1e2,1e3,1e4}

MVKKM
Exponent p ∈ {1, 1.3, 1.5, 2, 4, 6}
Gaussian kernel width
σ ∈ {τ / 64, τ / 32, τ / 16, τ / 8, τ / 4, τ / 2, τ, 2τ, 4τ, 8τ, 16τ, 32τ, 64τ} where τ is the mean pairwise norm of data set

MultiNMF λv, ∈ {0, 0.001, 0.01, 0.02}, v=1, …, K

Co-FKM
Fuzzifier m ∈ [1.05: 0.05: 2.5]

Parameter η ∈ 0:0.01: K − 1
K  where K is the total view number
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TABLE 3.

Performance comparisons of involved approaches in synthetic 3-view data scene.

Data scene Algorithm NMI-mean NMI-std RI-mean RI-std DBI-mean DBI-std

Artificial 3-view data scene

LSSMTC 0.6305 0.0134 0.8339 0.0073 1.6996 0.0415

DRCC 0.8988 0 0.9674 1.17E-16 1.2135 2.34E-16

MVKKM 0.9249 0 0.9762③ 2.34E-16 0.9869 0

Co-FKM 0.9314② 1.17E-16 0.9804② 1.17E-16 0.9895 1.17E-16

MultiNMF 0.9266③ 0.0106 0.9704 0.0055 0.9203② 0.0532

MEC-FF 0.9173 2.16E-16 0.9761 1.17E-16 0.9855③ 5.23E-17

MEC-RF 0.7610 0.1873 0.8865 0.1076 1.1787 0.3082

VC-AW-MEC 0.9547① 0 0.9984① 1.17E-16 0.9057① 2.34E-16

IEEE Access. Author manuscript; available in PMC 2019 July 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

QIAN et al. Page 45

TABLE 4.

UCI data sets to construct real-world multi-view data scenes.

Data set Description Data size Dimension Cluster number View number

Iris Classes of iris plants 150 4 3 2

Multiple Features (MF) Handwritten digits represented by multiple 
features 2,000 649 10 6

Image Segmentation (IS) Outdoor images 2,310 19 7 2

Water Treatment The dataset coming from 527 38 13 4

Plant (WTP) the daily measures of sensors in an urban waste 
water treatment plant
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TABLE 5.

Depictions of Iris, MF, IS, and WTP multi-view data scenes.

Data scene View Composition of Each View Dimension Size

Iris
View 1 Attributes 1&3 2

150
View 2 Attributes 2&4 2

MF

Mfeat-fou view 76 Fourier coefficients of the character shapes 76

2,000

Mfeat-fac view 216 profile correlations 216

Mfeat-kar view 64 Karhunen-Love coefficients 64

Mfeat-pix view 240 pixel averages in 2 × 3 windows 240

Mfeat-zer view 47 Zemike moments 47

Mfeat-mor view 6 morphological variables 6

IS
Shape view 9 features about the shape information of 7 images 9

2,310
RGB view 10 features about the RGB values of 7 images 10

WTP

Input view The first 22 features describing different input conditions. 22

527

Output view The 23th-29th features describing the output demands. 7

Performance input view The 30th-34th features describing the performance input demands. 5

Global performance input view The 35th-38th features describing the global performance input 
demands. 4

IEEE Access. Author manuscript; available in PMC 2019 July 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

QIAN et al. Page 47

TABLE 6.

Depictions of two multi-view real-image-segmentation scenes.

Data scene View View depiction Dimension Data size

Brodatz texture-image segmentation

View 1
A filter bank with 5 orientations and 2 frequencies starting from 
0.2 was created. Then, 10 dimensional features were extracted 
from each pixel in this image by applying the filter bank.

10

10,000View 2
A filter bank with 5 orientations and 3 frequencies starting from 
0.3 was created. Then, 15 dimensional features were extracted 
from each pixel of the image by applying the filter bank.

15

View 3
A filter bank with 6 orientations and 5 frequencies starting from 
0.4 was created. Then, 30 dimensional features were extracted 
from each pixel of the image by applying the filter bank.

30

Berke-296059 image segmentation

View R The features of R channel of all pixels in Berke-296059.

1 6,600View G The features of G channel of all pixels in Berke-296059.

View B The features of B channel of all pixels in Berke-296059.
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TABLE 7.

Performance comparisons of involved approaches on real-world multi-view data sets.

Data sets Algorithm NMI-mean NMI-std Rl-mean Rl-std DBI-mean DBI-std

Iris with 2 views

LSSMTC 0.5300 0.0272 0.7664 0.0071 7.0324 3.2386

DRCC 0.7419 1.17E-16 0.8737 1.17E-16 0.8260① 1.17E-16

MVKKM 0.8552② 1.17E-16 0.9402② 1.17E-16 0.8907 2.34E-16

Co-FKM 0.8308 1.17E-16 0.9341③ 0 0.8903 1.17E-16

MultiNMF 0.8520③ 0.0187 0.9095 0.0149 0.8847 0.0101

MEC-FF 0.7419 1.17E-16 0.8737 1.17E-16 0.8260① 1.17E-16

MEC-RF 0.6727 0.0762 0.8013 0.0558 1.1125 0.7402

VC-AW-MEC 0.8642① 1.17E-16 0.9495① 1.17E-16 0.8307③ 2.34E-16

MF with 6 views

LSSMTC — — — — — —

DRCC 0.7179 1.17E-16 0.9252 0 3.2781② 0

MVKKM 0.6766 0 0.9180 1.17E-16 3.7234 9.36E-16

Co-FKM 0.8521② 0.0433 0.9666② 0.0131 4.1374 0.6814

MultiNMF 0.7644 0.0478 0.7139 0.0918 4.1492 0.0402

MEC-FF 0.7856③ 0.0000 0.9555③ 1.17E-16 4.3052 4.19E-16

MEC-RF 0.6999 0.0393 0.9263 0.0121 3.2976③ 0.1569

VC-AW-MEC 0.8840① 0.0404 0.9717① 0.0175 3.1964① 0.3109

IS with 2 views

LSSMTC — — — — — —

DRCC 0.5320 0 0.8169 0 2.3537 0

MVKKM 0.5859 0 0.7942 0 3.6544 0

Co-FKM 0.5772 0.0007 0.8434 0.0055 2.1294 0.0610

MultiNMF 0.6142③ 0.0173 0.8669 0.0241 2.1144③ 0.0690

MEC-FF 0.6139 0.0060 0.8765② 0.0049 1.8354① 0.0655

MEC-RF 0.6143② 0.0125 0.8674③ 0.0068 2.1898 0.5000

VC-AW-MEC 0.6547① 0.0006 0.8793① 0.0008 1.9475② 0.1846

WTP with 4 views

LSSMTC — —

DRCC 0.2029 0.0103 0.7051 0.0061 4.1516 0.2427

MVKKM 0.2106 2.93E-17 0.4082 5.85E-17 0.7662① 1.17E-16

Co-FKM 0.2003 0.0070 0.7019 0.0048 3.2781② 0.0104

MultiNMF 0.2072 0.0060 0.7059 0.00777 4.2160 0.0642

MEC-FF 0.2304② 0.0081 0.6278② 0.0020 5.2373 0.1947

MEC-RF 0.2204③ 0.0141 0.6212③ 0.0040 6.8078 0.4719

VC-AW-MEC 0.2391① 0.0072 0.6281① 0.0020 4.1130③ 0.2593

Brodatz texture segmenta tion with 3 views

LSSMTC — — — — —

DRCC 0.6468 1.17E-16 0.8994 0 2.2064 0

MVKKM 0.4926 0.0575 0.8222 0.0371 2.8394 0.4484

Co-FKM 0.6740③ 0.0251 0.9132③ 0.0158 2.0681③ 0.0802
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Data sets Algorithm NMI-mean NMI-std Rl-mean Rl-std DBI-mean DBI-std

MultiNMF 0.6433 0.0501 0.8685 0.0650 2.1140 0.0960

MEC-FF 0.6897① 0.0188 0.9169② 0.0104 2.0350② 0.1500

MEC-RF 0.5345 0.0358 0.8437 0.0190 2.5442 0.2064

VC-AW-MEC 0.6826② 0.0002 0.9188① 3.01E-05 1.9678① 5.37E-05

Berke-29 6059 segmenta tion with 3 views

LSSMTC 0.4098 0.0015 0.7109 3.44E-04 0.8049③ 0.0033

DRCC 0.4561 5.85E-17 0.7067 0 0.7819② 1.17E-16

MVKKM 0.4721 0.0097 0.7417 0.0291 0.8431 0.0338

Co-FKM 0.5176③ 0 0.7541 1.17E-16 1.1414 2.34E-16

MultiNMF 0.4793 0.0182 0.7565 0.0117 0.8956 0.0189

MEC-FF 0.4819 4.90E-05 0.7664③ 5.62E-05 0.7231① 0.0578

MEC-RF 0.5559② 0.0711 0.7747② 0.0624 1.3270 0.5245

VC-AW-MEC 0.6061① 1.17E-16 0.8426① 0 0.8242 4.68E-16
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