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Structured Abstract

Purpose of the Review: This review examines the hormonal regulation of gastric emptying, a 

topic of increasing relevance, given the fact that medications that are analogs of some of these 

hormones or act as agonists at the hormonal receptors, are used in clinical practice for optimizing 

metabolic control in the treatment of type 2 diabetes and in obesity.

Findings: The major effects on gastric emptying result from actions of incretins, particularly 

GIP, GLP-1 and PYY, the duodenal and pancreatic hormones, motilin, glucagon and amylin, and 

the gastric orexigenic hormones, ghrelin and motilin. All of these hormones delay gastric 

emptying, except for ghrelin and motilin which accelerate gastric emptying. These effects on 

gastric emptying parallel the effects of the hormones on satiation (by those retarding emptying) 

and increase appetite by those that accelerate emptying. Indeed, in addition to the effects of these 

hormones on hypothalamic appetite centers and glycemic control, there is evidence that some of 

their biological effects are mediated through actions on the stomach, particularly with the GLP-1 

analogs or agonists used in treating obesity.

Summary: Effects of gastrointestinal hormones on gastric emptying are increasingly recognized 

as important mediators of satiation and postprandial glycemic control.
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Introduction

The stomach also plays an important role in regulating the amount and rate of calories that 

cross the pylorus into the duodenum. Therefore, gastric emptying is a significant 

determinant of the rate at which simple carbohydrates appear in the portal circulation and 

subsequently the systemic circulation, since most carbohydrate is absorbed in the first 70cm 

of the small intestine due to abundant expression of high affinity transporters [1]. It is not 

surprising, therefore, that a number of hormones act as regulatory mechanisms 

predominantly involved in the retardation of gastric emptying, and those mechanisms are 

collectively termed “brakes”. The hormones from the upper gastrointestinal tract also have 
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important effects on hypothalamic appetite centers and glycemic control, which are not 

considered here.

This review examines the hormonal regulation of gastric emptying, a topic of increasing 

relevance, given the fact that medications that are analogs of some of these hormones, or act 

as agonists at the hormonal receptors, are used in clinical practice for optimizing metabolic 

control in the treatment of type 2 diabetes and obesity. The major effects on gastric emptying 

result from actions of incretins, particularly GIP, GLP-1 and PYY, and the gastric orexigenic 

hormone, ghrelin. Comprehensive reviews of the hormones topic have been published 

elsewhere and the reader is referred to those articles for additional details [2**,3*]. In 

addition, many of these hormones are being tested in combination as potential new 

treatments of obesity, as reviewed elsewhere [4*].

Gastric Emptying

The solid and liquid two phases of a meal differ significantly in their distribution within the 

stomach soon after ingestion. Liquids tend to distribute throughout the stomach from the 

time of ingestion, whereas solids are retained within the proximal stomach, which acts as a 

food reservoir, during the early postprandial period. After some time, solid food is 

transferred to the distal stomach (the antrum), which triturates solid food down to 1–2mm 

size through the liquid shearing forces that are established by high amplitude body and 

antral contractions that propel the food against the closed pylorus. When the food is 

triturated, it can pass through the pylorus; the physical nature, particle size, fat and caloric 

content of food alter the emptying rate [5]. The rate of liquid emptying is much more rapid 

(time taken to empty 50%, T1/2 is ~20 minutes) compared to emptying of solids (T1/2 is 

~120 minutes) [6]. Non-nutrient liquids empty exponentially, but calorie-containing liquid 

meals empty more slowly, and homogenized or liquidized solids empty almost linearly from 

the stomach.

The time before solid food starts to empty from the stomach is called the lag phase and its 

duration depends on the physical nature and fat content of the meal; thereafter, emptying 

follows a linear emptying profile over a period of 3–4 hours [6], depending on the volume, 

consistency and fat content.

Increased caloric content (e.g., in experiments using different sucrose concentrations) delays 

emptying irrespective of the volume of test meal ingested [7]. The presence of fat, such as 

oleate, in the meal results in stimulation of cholecystokinin (CCK) secretion in the 

duodenum; in turn, this inhibits antral motility, stimulates pyloric tone and delays gastric 

emptying [8]. CCK is the first of a repertoire of hormones that regulate gastric emptying. 

The next section details the effects of several gastrointestinal and other hormones on gastric 

emptying.

Camilleri Page 2

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hormonal Control of Gastric Emptying

Gastrin

Gastrin is secreted by the G cells in the gastric antrum and by the parietal cells of the fundus 

and body. It is responsible for a significant proportion of postprandial acid release through 

direct activation of CCK2 receptors on parietal cells and through release of histamine from 

enterochromaffin-like cells [9]. It does not appear that gastrin has a significant effect on 

gastric emptying rate, but the induction of acid secretion and increase in intragastric volume 

may result in a slight prolongation of emptying of all gastric content. These studies were 

based on MR imaging and use of pentagastrin [10]. In patients with autoimmune gastritis 

that results in reduction in G cells that produce gastrin in the stomach, gastric emptying is 

delayed [11], and there is some evidence of an indirect relationship with serum gastrin [12]. 

Conversely, patients with Zollinger–Ellison syndrome (which is characterized by 

hypergastrinemia) have normal gastric emptying rates [13].

Gastrin-Releasing Peptide

Gastrin-releasing peptide (GRP), a 14 amino acid peptide, is not a circulating hormone and 

is released from nerves to stimulate gastric G cells to secrete gastrin. The closely related 

molecular entity, bombesin, which is derived from the skin of an amphibian, Bombina 
bombina, is a 14 amino acid peptide with identical 10 amino acid sequence in the N 

terminal, inhibited gastric emptying in humans with i.v. infusion [14]. On the other hand, 

blockade of bombesin receptors resulted in inhibition of gastric emptying [15]. Hence, the 

effects of endogenous GRP on gastric emptying are unclear.

Cholecystokinin

Cholescystokinin (CCK) is released from the intestinal I cells in response to dietary lipid 

and protein through mechanisms involving the G-protein-coupled receptors, GPR40 and 

calcium-sensing receptors. In particular, fatty acids of at least 12 carbon chain length are the 

most potent stimuli of CCK secretion. CCK has a multitude of effects inhibiting gastrin 

secretion, gastrointestinal motility and gastric acid secretion [16]; most of these effects are 

mediated through activation of the primary target of CCK, that is, vagal afferent fibers. CCK 

also controls the expression of receptors and peptide neurotransmitters by these neurons; 

these actions are potentiated by leptin and inhibited by ghrelin [17]. CCK causes relaxation 

of the proximal stomach (increasing its capacitance) [18] and inhibition of gastric emptying 

as demonstrated by the acceleration of gastric emptying with the CCK antagonist, 

loxiglumide [19]. This slowing of gastric emptying involves inhibition of antral contractility 

and stimulation of pyloric contractions, which have been demonstrated with infusions of 

CCK-octapeptide [20] or intraduodenal infusions of lauric (12-carbon) and oleic (18-carbon) 

fatty acids [21].

Gastric Inhibitory Polypeptide / Glucose-Dependent Insulinotropic Polypeptide

Gastric inhibitory polypeptide (GIP), also called glucose-dependent insulinotropic 

polypeptide, is a peptide hormone secreted by K cells in the duodenum and proximal 

jejunum. It signals through a specific receptor (GIPR) and, in the last two years, the 
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discovery of a competitive antagonist of GIP has facilitated understanding of the actions of 

GIP in humans, in addition to physiological effects inferred from transgenic mice lacking the 

receptor [22]. GIP levels rise with nutrient ingestion, inhibiting gastric acid secretion and 

emptying. In humans, these effects are observed with supraphysiological concentrations of 

GIP. GIP also stimulates insulin secretion in the setting of hyperglycemia; however, the 

secretory response to infused GIP is impaired in diabetes.

Alternating processing of the precursor protein, pro-GIP, results in endogenous production 

of GIP(1–30)NH2. With cleavage by DPP-4, the metabolite GIP(3–30)NH2, a high affinity 

antagonist of the human GIPR, effectively inhibits GIP-mediated insulin, glucagon, and 

somatostatin release [23], and antagonizes the physiological actions of GIP in glucose 

metabolism, subcutaneous abdominal adipose tissue blood flow, and lipid metabolism in 

humans [24*]. It has been proposed that, because of increased fasting and postprandial 

glucagon in patients with type 2 diabetes, which are aggravated by GIP, a GIPR antagonist 

could improve the fasting and postprandial glycemia [25]. However, experimental infusion 

studies in humans showed that this GIPR antagonist did not inhibit plasma glucagon levels 

[26**], and more research on glycemic effects and effects on gastric emptying and secretion 

are required. Such studies will provide more direct evidence of any role played by GIP in 

control of gastric functions such as emptying, accommodation and acid secretion.

Glucagon-Like Peptide-1

GLP-1 is secreted from L cells in the small intestine and colon through post-translational 

processing of proglucagon (which also gives rise to GLP-2 – a trophic factor for intestinal 

mucosa). GLP-1stimulates insulin secretion and inhibits glucagon secretion in a glucose-

dependent fashion. It has prominent effects on stomach functions such as retarding gastric 

emptying of solids and increasing fasting and postprandial gastric volumes [27]. These 

effects are dependent on vagal function; for example, the postprandial effect of GLP-1 is not 

observed in diabetics with evidence of vagal neuropathy [28]. Studies using the GLP-1 

receptor antagonist, exendin-(9–39), in humans suggest that gastric compliance and tone are 

modulated by physiologic concentrations of GLP-1 signaling through cholinergic circuits 

[29]. The effects of GLP-1 on gastric function are also supported by the observation that 

genetic variation in transcription factor 7-like 2 (TCF7L2), a regulator of proglucagon 

processing, was associated with reduced fasting gastric volume and accelerated gastric 

emptying of liquids [30].

The effects on gastric emptying are attributed to a decrease in gastrointestinal motility by 

GLP-1 [31], and this is mediated through stimulation of inhibitory nitrergic myenteric 

neurons [32] in addition to activation of vagal afferents [33], which inhibit reflex vagal 

motor pathways [34]. Interestingly, the sensitivity of the nitrergic myenteric neurons to 

GLP-1 was impaired in mice fed a high fat diet, and required the presence of gut microbiota 

[35**].

GLP-1 receptor blockade accelerated emptying [36] in otherwise healthy humans. The 

impact of GLP-1 on gastric emptying is also illustrated by the effects of treatment of obesity 

and metabolic syndrome in humans. Thus, exenatide, a GLP-1 receptor agonist, and 

liraglutide and semaglutide, GLP-1 analogs, significantly retard gastric emptying [37,38**,
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39], with evidence of some tachyphylaxis to the effects of liraglutide between 5 and 16 

weeks of daily administration [38**]. In addition, after Roux-en-Y gastric bypass (RYGB), 

there is evidence that the (high) postprandial concentrations of GLP-1 delay gastrointestinal 

transit of solids [40].

Glucagon-Like Peptide-2

GLP-2 is synthesized by alternating splicing of pre-proglucagon. Although its most 

prominent effects are related to its trophic effects on intestinal mucosa, there is also some 

evidence from studies that it retards gastric emptying of liquids [41,42] in healthy subjects, 

and the GLP-2 agonist, teduglutide, reduced overall gastric and small bowel emptying in 

patients with short bowel syndrome [43]. GLP-2 also inhibits gastric acid secretion [44]. A 

novel pharmacological entity, a GLP-1/GLP-2 co-agonist, GUB09–123, significantly 

improved glycemic control and showed persistent effects on gastric emptying in diabetic 

mice, and the effects were superior to monotherapy with the GLP-1 analog, liraglutide [45].

Ghrelin

Effects of ghrelin, an orexigenic hormone, are extensively reviewed elsewhere [46]. Ghrelin 

can accelerate gastric emptying of liquids and solids [47] at pharmacological doses, although 

a dose of synthetic human ghrelin used to stimulate physiological growth hormone secretion 

did not seem to alter gastric motor functions (emptying or postprandial accommodation) 

[48]. The potential for stimulating gastric motility and accelerating gastric emptying with 

ghrelin receptor agonists is best illustrated by the effects of the pentapeptide ghrelin receptor 

agonist, relamorelin [49,50,51,52,53*].

Leptin and Gastric Leptin

Leptin is a product in adipose tissue of the obese (ob) gene, which is located on chromosome 

7 in humans and acts through its receptor OB-R. The stomach is the major source of leptin 

in the gastrointestinal tract. Secretion of leptin occurs in various physiologic states, 

including fasting or refeeding after fasting, increasing in both the serum and gastric mucosa 

[54]. Leptin and the soluble isoform of its receptor are secreted by gastric chief (parietal) 

cells in the gastric mucosa, are stable in the gastric acidic environment, and reach the 

duodenum either protein-bound or free [55]. Leptin receptors are abundant in the 

gastrointestinal system, especially in the proximal part of the intestine. These receptors can 

be found on the luminal and basolateral borders of intestinal cells [56].

Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying. Leptin 

deficiency increases the rate of gastric emptying [57]. In obese, hyperglycemic, 

hyperinsulinemic female mice with mutation of the leptin receptor (Leprdb/db), gastric 

emptying was accelerated and gastric interstitial cells of Cajal (part of the pacemaker 

apparatus in the stomach) and phasic cholinergic responses were increased [58].

Leptin has been shown to decrease the expression and secretion of ghrelin from gastric 

mucosa. Leptin cells are adjacent to ghrelin cells in the gastric mucosa, surrounding ghrelin 

cells in the lower half of stomach, possibly providing a paracrine regulation of ghrelin 
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secretion. Leptin’s effect on gastrointestinal tract motility is also generally opposite that of 

ghrelin [59,60].

Glucagon

Glucagon is a 29AA peptide secreted from pancreatic α-cells. Its main function is to 

maintain blood glucose by activating gluconeogenesis and glycogenolysis. Its effects are 

transduced by a G-protein-coupled receptor. Binding sites for glucagon have been 

demonstrated in liver, intestinal smooth muscle, brain, fat, heart and pancreatic β cells. 

Glucagon is required during fetal development for the differentiation of pancreatic islet β 
cells [61]. Glucagon reduces food intake and body fat mass and alters body energy 

expenditure, in addition to decreasing meal size [62]. Glucagon retards gastric emptying of 

liquids and inhibits motility throughout the gastrointestinal tract [63].

Amylin

Amylin is a peptide hormone co-secreted with insulin by the β-cell. Consequently, amylin is 

deficient in type 1 diabetes, while plasma levels are increased in obesity, in impaired glucose 

tolerance, and in type 2 diabetes. A synthetic analog, pramlintide, delays gastric emptying 

through inhibition of vagal signaling in a dose-dependent fashion [64], and this retardation 

of gastric emptying is confirmed in patients with type 1 or 2 diabetes without neuropathy 

[65]. Delayed gastric emptying induced by pramlintide improved total insulin sensitivity; 

however, it decreased total β cell responsivity [66]. Pramlintide is approved for the treatment 

of postprandial hyperglycemia in patients using intensive insulin therapy. Again, despite its 

pharmacologic effects, the physiologic contribution of amylin to the regulation of glucose 

metabolism is uncertain.

Peptide YY

Peptide tyrosine-tyrosine (PYY) is a 36 amino acid linear peptide that is a member of the 

neuropeptide Y family of peptides and circulates in two main forms, PYY1–36 and PYY3–36. 

The PYY1–36 form is cleaved by dipeptidyl peptidase IV (DPP-IV) to produce PYY3–36. 

Sixty percent of circulating PYY is (1–36), and 40% is (3–36). PYY3–36, which crosses the 

blood brain barrier, has a high affinity for the Y2 receptors in the hypothalamus (e.g., 

arcuate nucleus). PYY is released from enteroendocrine L cells of the distal small intestine 

and colon on stimulation by intraluminal nutrients, glucose, bile salts, lipids, short-chain 

fatty acids, and amino acids. The release is also modulated by other gut peptides: vasoactive 

intestinal peptide (VIP), cholecystokinin (CCK), gastrin, and glucagon-like peptide-1 

(GLP-1) [67]. PYY is an important mediator of the “ileal brake” that slows gastric emptying 

and intestinal transit in response to nutrients in the distal small intestine. It shares this action 

with GLP-1, GLP-2, serotonin (5-HT, through 5-HT3 receptors), melatonin, oxyntomodulin, 

glicentin, neurotensin, and enteroglucagon.

Peripheral injection of PYY inhibits gastric emptying of liquids and gastric acid and 

pancreatic exocrine secretion [68–70]. Intranasal PYY3–36 administered preprandially 

induced nausea and vomiting, but the effect on gastric emptying was not measured [71]. 

Although there does not appear to be evidence that exogenous PYY retards gastric emptying 
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of solids, there is association between endogenous PYY levels in peripheral blood and 

gastric emptying of solids in response to ileal lipid stimulation of PYY secretion [72].

Oxyntomodulin

Oxyntomodulin (or glicentin 33–69) consists of the entire (pancreatic) glucagon sequence 

(1–29) plus an octapeptide extending from the C terminus; both are derived from 

proglucagon. It is secreted by the L cells of the ileum and colon in response to glucose and 

other nutrients. In humans, oxyntomodulin delays gastric emptying of liquids (measured by 

intubated technique or by acetaminophen absorption), in addition to its inhibition of gastric 

acid and pancreatic enzyme secretion [73,74].

Bariatric Surgery or Endoscopy, Incretins and Gastric Emptying

Sleeve gastrectomy and Roux-en-Y gastric bypass (RYGB) are the most common bariatric 

procedures performed in North America [75]. Anatomic differences between the two 

procedures result in different rates of emptying, resulting in differences in enteroendocrine 

secretory responses: postprandial GLP-1 concentrations are lower after sleeve gastrectomy 

compared to RYGB in the comparative studies undertaken in humans [76–80]; nevertheless, 

sleeve gastrectomy significantly upregulates the secretion of GLP-1 in association with rapid 

emptying of both solids and liquids from the stomach [81]. There are other major changes in 

incretins and gut hormones including changes in PYY, ghrelin and leptin, and all may 

impact glycemic control, gastric emptying and satiety. These effects are beyond the scope of 

the current article and are reviewed extensively elsewhere [2**,82,83**]. Clearly, alteration 

of the gastric anatomy prevents the important inhibition of gastric emptying by hormones 

such as GLP-1 and PYY in response to these restrictive bariatric procedures. This differs 

from the effect of endoscopic sleeve gastroplasty, which creates a proximal pouch with 

increased gastric retention and increased satiety [84]. Effects of sleeve gastroplasty on 

gastrointestinal hormones are the subject of ongoing investigation.

Conclusion

The upper gastrointestinal tract integrates intraluminal nutrients and neural, mechanical and 

hormonal mechanisms to modulate the response to caloric ingestion. In addition to the 

effects of the hormones from the upper gastrointestinal tract on hypothalamic appetite 

centers and glycemic control, there is evidence that some of their biological effects are 

mediated through actions on the stomach, particularly with the GLP-1 analogs or agonists 

that are used in treating obesity and postprandial glycemia. These hormones modulate 

integral functions that are critical for life and health, in part through their effects on gastric 

emptying. Although the therapeutic applications to date have been dominated by GLP-1 

receptor modulation, novel pharmacological agents targeting other hormones or their 

receptors are in development and include GIP antagonists, ghrelin agonists and 

“twincretins”, that is, single molecules that act as agonists of both GLP-1 and GIP receptors 

[85]. It is anticipated that interaction of these hormonal mechanisms with the gut microbiota 

will also provide further avenues of mechanistic understanding and therapeutic applications 

of the gastrointestinal hormones.
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Key Points

• Several upper gastrointestinal hormones alter gastric emptying; the most 

important are CCK, GIP, glucagon, GLP-1 and PYY which retard gastric 

emptying. These hormones also reduce appetite or induce satiation.

• The hormones, ghrelin and motilin, and their receptors are associated with 

acceleration of gastric emptying and are targets of novel therapy for 

gastroparesis, e.g., the pentapeptide ghrelin agonist, relamorelin, and the 

motilide, erythromycin.

• Many of the current or promising therapies for obesity act on these hormones 

or their receptors to reduce appetite and induce satiation.

• Prominent effects of bariatric surgery or endoscopic procedures alter gastric 

emptying and act on these hormonal mechanisms to reduce appetite and 

induce satiation.

Camilleri Page 13

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Camilleri Page 14

Ta
b

le
 1

.

Su
m

m
ar

y 
of

 p
ep

tid
es

 a
nd

 h
or

m
on

es
 in

vo
lv

ed
 in

 g
as

tr
ic

 e
m

pt
yi

ng
 (

or
ig

in
al

)

P
ep

ti
de

 / 
H

or
m

on
e

P
re

do
m

in
an

t 
Si

te
 o

f 
Sy

nt
he

si
s/

R
el

ea
se

M
ai

n 
F

un
ct

io
ns

E
ff

ec
ts

 o
n 

G
as

tr
ic

 E
m

pt
yi

ng
 a

nd
 O

th
er

 O
rg

an
s 

in
 

D
ig

es
ti

ve
 T

ra
ct

G
as

tr
in

17
-A

A
 p

ep
tid

e 
fr

om
 g

as
tr

ic
 m

uc
os

a
- 

B
lo

od
-b

or
ne

 r
eg

ul
at

or
 o

f 
ga

st
ri

c 
ac

id
 s

ec
re

tio
n,

 in
te

ra
ct

in
g 

w
ith

 s
om

at
os

ta
tin

 a
nd

 E
C

 c
el

ls
- 

R
eg

ul
at

es
 g

as
tr

ic
 e

pi
th

el
ia

l o
rg

an
iz

at
io

n,
 p

ro
lif

er
at

io
n,

 a
nd

 
fu

nc
tio

n

- 
N

o 
di

re
ct

 e
ff

ec
t o

n 
G

E
; i

nc
re

as
ed

 a
ci

d 
se

cr
et

io
n 

m
ay

 b
e 

as
so

ci
at

ed
 w

ith
 m

od
es

t i
nc

re
as

e 
in

 ti
m

e 
fo

r 
co

m
pl

et
e 

em
pt

yi
ng

C
C

K
I 

ce
lls

 in
 d

uo
de

na
l m

uc
os

a,
 p

ar
tic

ul
ar

ly
 

w
ith

 f
at

ty
 a

ci
ds

 >
12

 c
ar

bo
n 

ch
ai

n 
le

ng
th

; m
ul

tip
le

 m
ol

ec
ul

ar
 f

or
m

s

- 
A

ct
iv

at
es

 v
ag

al
 a

ff
er

en
ts

 d
ir

ec
tly

 a
nd

 m
od

if
ie

s 
th

e 
re

sp
on

se
 o

f 
va

ga
l m

ec
ha

no
se

ns
iti

ve
 f

ib
er

s 
to

 g
as

tr
ic

 a
nd

 d
uo

de
na

l n
ut

ri
en

ts
- 

R
el

ax
es

 th
e 

pr
ox

im
al

 s
to

m
ac

h 
to

 in
cr

ea
se

 it
s 

re
se

rv
oi

r 
ca

pa
ci

ty
- 

In
hi

bi
ts

 G
E

 a
nd

 a
ci

d 
se

cr
et

io
n

- 
In

du
ce

s 
ga

llb
la

dd
er

 c
on

tr
ac

tio
n 

an
d 

ex
oc

ri
ne

 p
an

cr
ea

tic
 

se
cr

et
io

n

G
hr

el
in

28
-A

A
 p

ep
tid

e 
ex

pr
es

se
d 

m
os

tly
 in

 
st

om
ac

h
- 

G
ro

w
th

 h
or

m
on

e 
se

cr
et

ag
og

ue
 th

at
 s

tim
ul

at
es

 p
itu

ita
ry

 r
el

ea
se

 
of

 g
ro

w
th

 h
or

m
on

e 
an

d 
st

im
ul

at
es

 h
yp

ot
ha

la
m

ic
 c

en
te

rs
 to

 
in

cr
ea

se
 a

pp
et

ite
- 

E
ff

ec
ts

 m
ed

ia
te

d 
th

ro
ug

h 
va

gu
s 

ne
rv

e

- 
St

im
ul

at
es

 g
as

tr
ic

 e
m

pt
yi

ng
 a

nd
 c

on
tr

ac
ts

 g
as

tr
ic

 f
un

du
s

- 
St

im
ul

at
es

 g
as

tr
ic

 a
ci

d 
se

cr
et

io
n

- 
O

th
er

 a
ct

io
ns

: v
as

od
ila

ta
tio

n,
 in

hi
bi

tio
n 

of
 in

su
lin

, a
nt

i-
pr

ol
if

er
at

iv
e

L
ep

tin
 a

nd
 G

as
tr

ic
 

L
ep

tin
L

ep
tin

 c
ir

cu
la

tin
g 

(1
67

 A
A

 p
ro

te
in

) 
se

cr
et

ed
 b

y 
ad

ip
os

e 
tis

su
e,

 p
la

ce
nt

a,
 

sk
el

et
al

 m
us

cl
e;

 g
as

tr
ic

 le
pt

in
 b

y 
fu

nd
ic

 g
la

nd
s,

 a
nd

 c
hi

ef
 c

el
ls

- 
H

yp
ot

ha
la

m
ic

 r
eg

ul
at

io
n 

of
 f

ee
di

ng
 b

eh
av

io
r, 

fo
od

 in
ta

ke
 a

nd
 

en
er

gy
 b

al
an

ce
- 

St
or

ag
e 

of
 f

at
 a

nd
 in

su
lin

 s
ig

na
lin

g

- 
G

as
tr

ic
 le

pt
in

 r
ed

uc
ed

 d
ur

in
g 

fa
st

in
g,

 r
ap

id
ly

 r
el

ea
se

d 
af

te
r 

fo
od

 in
ta

ke
 b

y 
va

ga
l c

ho
lin

er
gi

c 
st

im
ul

at
io

n,
 C

C
K

 a
nd

 
se

cr
et

in
, o

r 
in

 r
es

po
ns

e 
to

 s
at

ie
ty

 f
ac

to
rs

 (
e.

g.
, C

C
K

 a
nd

 
in

su
lin

)

A
m

yl
in

C
o-

se
cr

et
ed

 w
ith

 in
su

lin
 f

ro
m

 
pa

nc
re

at
ic

 β
-c

el
ls

- 
Su

pp
re

ss
es

 g
lu

ca
go

n 
re

le
as

e 
in

 r
es

po
ns

e 
to

 c
al

or
ic

 in
ta

ke
- 

St
im

ul
at

es
 b

ra
in

 s
at

ie
ty

 c
en

te
rs

 to
 li

m
it 

ca
lo

ri
c 

in
ta

ke
- 

R
et

ar
ds

 G
E

 o
f 

so
lid

s

G
lu

ca
go

n
29

A
A

 p
ep

tid
e 

se
cr

et
ed

 f
ro

m
 p

an
cr

ea
tic

 
α

-c
el

ls
- 

M
ai

nt
ai

ns
 b

lo
od

 g
lu

co
se

 b
y 

ac
tiv

at
in

g 
gl

uc
on

eo
ge

ne
si

s 
an

d 
gl

yc
og

en
ol

ys
is

- 
A

ff
ec

ts
 e

ne
rg

y 
ex

pe
nd

itu
re

, r
ed

uc
es

 m
ea

l s
iz

e

- 
R

et
ar

ds
 G

E
 o

f 
liq

ui
ds

- 
In

hi
bi

ts
 G

I 
m

ot
ili

ty

G
L

P-
1

C
o-

se
cr

et
ed

 w
ith

 P
Y

Y
 f

ro
m

 in
te

st
in

al
 

L
 c

el
ls

:
- 

Tw
o 

bi
ol

og
ic

al
ly

 a
ct

iv
e 

fo
rm

s:
 G

L
P-

1 7
–3

7 
an

d 
G

L
P-

1 7
–3

6 
am

id
e 

(t
he

 m
aj

or
 c

ir
cu

la
tin

g 
fo

rm
)

- 
In

cr
et

in
 h

or
m

on
e 

th
at

 e
nh

an
ce

s 
in

su
lin

 s
ec

re
tio

n 
st

im
ul

at
ed

 b
y 

or
al

 n
ut

ri
en

ts
- 

C
on

tr
ol

 o
f 

ap
pe

tit
e 

an
d 

en
er

gy
 in

ta
ke

 in
 h

um
an

s

- 
R

et
ar

ds
 G

E
 o

f 
so

lid
s 

an
d 

liq
ui

ds
 a

nd
 in

hi
bi

ts
 a

nt
ra

l m
ot

ili
ty

- 
In

cr
ea

se
s 

ga
st

ri
c 

re
se

rv
oi

r 
ca

pa
ci

ty
- 

R
ed

uc
es

 p
os

tp
ra

nd
ia

l g
ly

ce
m

ia
- 

In
cr

ea
se

s 
sa

tie
ty

 a
nd

 f
ul

ln
es

s

PY
Y

C
o-

se
cr

et
ed

 w
ith

 G
L

P-
1 

fr
om

 
ile

oc
ol

on
ic

 L
 c

el
ls

; a
ct

iv
e 

fo
rm

 
PY

Y
3–

36

- 
St

im
ul

at
es

 Y
2 

re
ce

pt
or

s 
in

 h
yp

ot
ha

la
m

ic
 A

R
C

 n
uc

le
us

 
ci

rc
ui

tr
y 

to
 r

eg
ul

at
e 

fo
od

 in
ta

ke
- 

A
ct

iv
at

es
 il

ea
l b

ra
ke

 a
nd

 o
th

er
 f

ee
db

ac
k 

co
nt

ro
l o

f 
re

gi
on

al
 

m
ot

or
 f

un
ct

io
n,

 a
nd

 d
el

ay
s 

G
E

 li
qu

id
s

- 
In

hi
bi

ts
 g

as
tr

ic
 a

ci
d,

 p
an

cr
ea

tic
 e

xo
cr

in
e 

an
d 

bi
le

 a
ci

d 
se

cr
et

io
n

O
X

M
37

-A
A

 p
ep

tid
e 

fr
om

 in
te

st
in

al
 L

 c
el

ls
- 

A
ct

s 
vi

a 
G

L
P-

1 
re

ce
pt

or
s 

to
 d

ec
re

as
e 

fo
od

 in
ta

ke
- 

In
hi

bi
ts

 g
as

tr
ic

 a
ci

d 
se

cr
et

io
n

- 
M

od
es

t d
el

ay
 in

 G
E

 li
qu

id
s

A
A

: a
m

in
o 

ac
id

; A
R

C
: a

rc
ua

te
 n

uc
le

i o
f 

th
e 

hy
po

th
al

am
us

; C
C

K
: c

ho
le

cy
st

ok
in

in
; E

C
: e

nt
er

oc
hr

om
af

fi
n 

ce
lls

; G
E

: g
as

tr
ic

 e
m

pt
yi

ng
; G

L
P-

1:
 g

lu
ca

go
n 

lik
e 

pe
pt

id
e-

1;
 O

X
M

: o
xy

nt
om

od
ul

in
; P

Y
Y

: p
ep

tid
e 

ty
ro

si
ne

-t
yr

os
in

e

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2020 February 01.


	Structured Abstract
	Introduction
	Gastric Emptying
	Hormonal Control of Gastric Emptying
	Gastrin
	Gastrin-Releasing Peptide
	Cholecystokinin
	Gastric Inhibitory Polypeptide / Glucose-Dependent Insulinotropic Polypeptide
	Glucagon-Like Peptide-1
	Glucagon-Like Peptide-2
	Ghrelin
	Leptin and Gastric Leptin
	Glucagon
	Amylin
	Peptide YY

	Oxyntomodulin
	Bariatric Surgery or Endoscopy, Incretins and Gastric Emptying
	Conclusion
	References
	Table 1.

