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Abstract

Background: Data errors, including sample swapping and mis-labeling, are inevitable in the process of large-scale omics
data generation. Data errors need to be identified and corrected before integrative data analyses where different types of
data are merged on the basis of the annotated labels. Data with labeling errors dampen true biological signals. More
importantly, data analysis with sample errors could lead to wrong scientific conclusions. We developed a robust probabilistic
multi-omics data matching procedure, proMODMatcher, to curate data and identify and correct data annotation and errors
in large databases. Results: Application to simulated datasets suggests that proMODMatcher achieved robust statistical
power even when the number of cis-associations was small and/or the number of samples was large. Application of our
proMODMatcher to multi-omics datasets in The Cancer Genome Atlas and International Cancer Genome Consortium
identified sample errors in multiple cancer datasets. Our procedure was not only able to identify sample-labeling errors but
also to unambiguously identify the source of the errors. Our results demonstrate that these errors should be identified and
corrected before integrative analysis. Conclusions: Our results indicate that sample-labeling errors were common in large
multi-omics datasets. These errors should be corrected before integrative analysis.
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Background

With advances in high-throughput technologies in the past 2
decades, diverse types of omics data at multiple layers of reg-
ulation have been generated to survey complex human dis-
eases [1–3], which arise from dysregulations of interplays among
these multiple layers of regulations including genetics, epi-
genetics, transcriptomics, metabolomics, glycomics, and pro-
teomics. Therefore, integration of multi-omics data at multiple
layers of regulation is essential to derive a holistic view of molec-

ular mechanisms underlying complex human disease. Previous
studies have shown that simultaneously considering diverse
types of biological data results in more complete understand-
ings of biological systems [4–6].

Recently, many large projects, such as The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC), have generated diverse types of omics data for public use.
However, data errors, including sample swapping, mis-labeling,
and improper data entry, are almost inevitable in the process
of large-scale data generation and management. Westra et al.
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[7] found ∼20% of mis-matched samples between genotype and
gene expression data. Yoo et al. [8] demonstrated that sample-
labeling errors occurred in almost every database examined.
Also, there are studies to identify cross-individual contamina-
tion in next-generation sequencing data from TCGA samples
[9,10].

Identifying and ultimately correcting these sample errors
are critical for statistical data analysis, especially for integra-
tive analysis. Data errors need to be identified and corrected
before extensive efforts are devoted to data analysis. Analyzing
data with sample errors is a waste of limited public resources.
More importantly, data analysis with sample errors could lead to
wrong scientific conclusions. Furthermore, sample errors have
more significant effects on integrative data analysis where dif-
ferent types of data are merged on the basis of the annotated
labels. Some types of sample errors can be detected during data
quality control on each individual type of data, whereas such
sample errors as sample swapping or mis-labeling are difficult
to detect by means of data quality control on that individual type
of data alone.

Previously, we developed a sample-mapping procedure
called MODMatcher (Multi-Omics Data matcher) [8], which is
not only able to identify mis-matched omics profile pairs but
also to properly map them to correct samples based on other
omics data. The main idea is first to identify “biological cis-
associations” between 2 types of omics data and then to use
these biological cis-associations as intrinsic barcodes to match
different types of omics data. The types of biological cis-
associations are different when different pairs of omics data are
mapped, but they all reflect general biological regulations. For
example, when mapping genotype and gene expression data,
the method is based on cis-genetic regulation of expression traits
(or expression quantitative trait loci—cis-eQTLs), where a ge-
netic polymorphism at a gene’s promoter or regulatory region
affects the binding of transcription factors or co-factors, which
in turn affects the abundance of the gene’s transcript [11]. Sim-
ilarly, when mapping methylation and gene expression data,
the method leverages on cis-methylation regulation of expres-
sion traits (or cis-methyls), where a high DNA methylation level
of CpGs at a gene’s promoter or regulatory region hinders the
binding of transcription factors or co-factors, which in turn re-
presses the gene’s transcription [12]. More details on biological
cis-associations are provided in the Methods section.

We demonstrated that the statistical power to identify bi-
ological signals increases after database cleaning by applying
the MODMatcher procedure to multiple large-scale public multi-
omics datasets from the Lung Genomic Research Consortium
and TCGA. The power of MODMatcher depends on the num-
ber of intrinsic biological cis-associations that can be identified.
The power of MODMatcher decreases when the number of cis-
associations between 2 omics profiles is small. However, in some
cases (a few examples are detailed in the Results), the number
of possible intrinsic biological cis-associations is small, and new
methods are needed for these types of applications.

In this study, we extended MODMatcher and developed a
robust probabilistic multi-omics data-matching procedure, pro-
MODMatcher, to curate data and identify and unambiguously
correct data annotation and metadata attribute errors in large
databases. First, we applied the proMODMatcher to simulated
datasets to assess the statistical power of our procedure. The
results suggest that proMODMatcher achieved robust statisti-
cal power even when the number of cis-associations was small
and/or the number of samples was large. Next, we applied
the proMODMatcher procedure to multiple large-scale publicly

available multi-omics datasets from TCGA and, in particular,
focused on the omics profiles that have small numbers of in-
trinsic cis-associations including microRNA (miRNA) expression
and reverse phase protein array (RPPA). Additionally, we applied
proMODMatcher to large-scale publicly available multi-omics
datasets in ICGC. Our results indicate that sample-labeling er-
rors were common in large multi-omics datasets. These errors
should be corrected before integrative analysis is performed.

Data Description
TCGA datasets

For the TCGA breast invasive carcinoma (BRCA) dataset, level 3
data of gene expression, DNA methylation, miRNA expression,
and copy number variation (CNV) was downloaded from the Ge-
nomic Data Commons data portal [13]. For gene expression pro-
files, the IlluminaHiSeq RNASeqV2 and AgilentG4502A platform
were used. Illumina HumanMethylation27 (HM27) and Human-
Methylation450 (HM450) Beadchip were used for DNA methyla-
tion bisulfide sequencing. The IlluminaHiSeq miRNASeq and Il-
luminaGA miRNASeq platforms were used to profile miRNA ex-
pression. Affymetrix Genome-Wide Human SNP Array 6.0 was
used for CNV. The protein expression levels were measured in
RPPA and downloaded. Each of the level 3 profiles was reformat-
ted into a matrix with genes (or probes) as rows and barcodes
of samples as columns. For methylation profiles and CNV, the
probes or segments were mapped to hg19 gene symbols. Differ-
ent profiles were initially matched according to their barcodes.
The mapping files of HM450, RPPA, and miRNA are available in
the source code.

For other types of cancers in TCGA, we downloaded gene ex-
pression, miRNA expression, CNV, DNA methylation, and RPPA
data from the Firehose database [14]. For RPPA data, we filtered
genes with >25% of samples with not-assigned measurements.

ICGC datasets

For the ICGC datasets, the pre-processed data were downloaded
from the ICGC data portal [15]. We selected datasets with >1
available types of omics data including mesenger RNA (mRNA)
expression profiles (i.e., RNA sequencing [RNAseq] and Array),
DNA methylation profiles based on Illumina HM450, miRNA ex-
pression profiles, and copy number somatic mutation profiles.
Each of the profiles was reformatted into a matrix with genes
(or probes) as rows and barcodes of samples as columns. The
gene and miRNA expression profiles were log2 transformed and
normalized by quantile normalization [16]. For copy number so-
matic mutation profiles, the segments were mapped to hg19
gene symbols. Some datasets contain very sparse segment in-
formation for copy number somatic mutation profiles such as
CLLE-ES. We excluded these copy number profiles from further
analysis. For methylation profiles, the probes were mapped to
hg19 gene symbols.

Simulation study

Simulated datasets for testing alignment between a pair of
omics profiles were generated. Given a set of N cis-associations,
each of correlation coefficient rn, we can simulate omics pro-
files ϒ based on omics profiles X for M samples as follows: Xi =
N(0, 1) is a standard normal distribution, and Yi = rn√

1−r2
n

Xi + ε,

where ε is a standard normal distribution, N(0, 1). For each N and
M combination, we simulated N significant sets with rn drawn
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from a truncated normal distribution with a cut-off value cor-
responding to correlation coefficients q-value < 0.05, as well as
2,000 sets of random rn drawn from a normal distribution. We
considered N significant cis-associations from 75 through 1000,
and M samples from 100 through 1,000. The simulated data with
label error were generated by permuting the labels of 1 type of
data. We considered 0, 2, ..., 10% label error rates. We measured
sensitivity (i.e., recall) = number of truly aligned pairs divided by
number of simulated pairs, specificity (i.e., precision) = number
of truly aligned pairs divided by number of aligned pairs, false-
positive rate (FPR) = 1 − specificity, and F measures (= 2 × [(preci-
sion × recall)/(precision + recall)]) for assessment. Additionally,
because a pair of omics profiles mostly has unbalanced samples,
we mimic this by adding 10% of M samples for Type A and Type
B omics profiles.

Analyses
Overview of proMODMatcher procedure

proMODMatcher followed the general framework of multi-omics
data matching of the previous study [8]. Two types of data (or
profiles) (i.e., Type A and Type B in Fig. 1) were matched based
on their cis-associations. Samples were initially matched based
on annotated sample ID and potential cis-associations (Fig. 1A).
The significant cis-associations from 2 different data types were
identified by the Spearman correlations (Fig. 1B). The data for
each cis-association were normal rank-transformed (Fig. 1B).
The profile similarity between the 2 types of data S(Ai , B j ) is de-
fined as the correlation between profile i of Type A and profile j
of Type B (Fig. 1C). The probability of a match between profile i of
Type A and profile j of Type B is estimated by evaluating a sim-
ilarity score in a bivariate normal distribution (Fig. 1D). Based
on probability of a match, proMODMatcher determines self- or
cross-alignments for each match. First, profile pairs matched by
annotated sample IDs were checked to determine whether their
similarity scores were high (Fig. 1D), in which case they would be
annotated as “self-aligned.” If not, additional steps were applied
to find any potential matches among other unmatched profiles
(Fig. 1E). The matched profile pairs were then used to update
significant cis-associations. We iteratively refined profile align-
ment, and rounds of alignments were repeated until there were
no further updates (Fig. 1F).

Simulation studies

Numbers of significant cis-associations and samples are 2 im-
portant deterministic factors of similarity scores, as well as the
accuracy of omics profile alignment results. To investigate the
effect of numbers of samples and cis-associations, we simu-
lated datasets with different numbers of samples and significant
cis-associations and applied MODMatcher and proMODMatcher
to the simulated datasets. For MODMatcher, when the number
of cis-associations was >200, almost all profile pairs could be
aligned at high accuracy (FPR vs sensitivity) (Fig. 2). The sim-
ilarity scores of matched pairs based on a low number of cis-
associations were more variable, resulting in lower accuracies
(Supplementary Fig. S1). This result indicates that the MOD-
Matcher can be applied to align omics profile pairs with >200 cis-
associations, such as methylation-mRNA profiles with >7,000
intrinsic cis-associations and mRNA-CNV profiles with >10,000
intrinsic cis-associations [8]. On the other hand, when the num-
ber of cis-associations was ∼200 or less, the accuracy of sam-
ple alignments decreased as the number of samples increased

(Fig. 2). When aligning gene expression profiles with miRNA or
RPPA profiles, the number of candidate intrinsic cis-associations
was small (detailed below). Thus, MODMatcher was not powered
to accurately align these types of profile pairs.

The proMODMatcher was applied to the same simulated
datasets and was able to achieve high sensitivities and low FPRs
across a wide range of numbers of cis-associations and samples
(Fig. 3A). When compared with MODMatcher’s results, proMOD-
Matcher resulted in better accuracies (F measure in Fig. 3B), sim-
ilar sensitivities (Fig. 3C), and better specificities (Fig. 3D).

We further investigated their performances when there were
labeling errors. Datasets with sample-labeling errors (i.e., 4% and
6%) were simulated by randomly assigning some samples’ la-
bels; then proMODMatcher and MODMatcher were applied to
identify aligned profile pairs. As expected, when a larger num-
ber of cis-associations was available, proMODMatcher achieved
a high sensitivity and low FPR (Fig. 3A). Across all tested combi-
nations of numbers of cis-associations and samples, proMOD-
Matcher resulted in >99% accuracy with 4–6% input labeling
error rates, consistently outperforming MODMatcher (Fig. 3B).
The top goal of MODMatcher and proMODMatcher is to identify
sample-labeling errors without introducing any errors. Thus, we
optimized the specificity of proMODMatcher over its sensitivity.
In terms of the contribution of sensitivity and specificity to F
scores, proMODMatcher achieved a similar sensitivity as MOD-
Matcher (Fig. 3C) but better specificities in all cases (Fig. 3D).
These simulation results suggest that proMODMatcher is appli-
cable for identifying and correcting labeling errors even when
the number of cis-associations is small such as pairing mRNA-
miRNA or mRNA-RPPA profiles.

Application to TCGA breast cancer dataset: mRNA and
miRNA profiles

Multiple omics data, including profiles of mRNA, miRNA, pro-
tein, DNA methylation, and CNV, were available in TCGA. The
proMODMatcher was applied to align methylation and/or CNV
profiles to mRNA profiles, similar to what we did previously
[8]. Here we focused on alignment of miRNA expression pro-
files to mRNA expression data because the number of candi-
date intrinsic cis-associations between miRNA and mRNA pro-
files was small. We used the TCGA breast cancer (BRCA) dataset
as an example to illustrate the profile alignment results in detail.
There were mRNA expression profiles based on 2 different plat-
forms, Agilent microarray and RNAseq technology. There were
519 tumor samples with both mRNA expression measured in
Agilent microarray and miRNA expression measured by small-
RNA sequencing method, and 1,041 tumor samples with both
mRNA expression measured in RNAseq and miRNA measured by
small-RNA sequencing method. A small portion of miRNAs are
embedded in gene regions (i.e., host genes) and frequently co-
transcribed with host genes [17, 18] (Fig. 4A); embedded miRNA-
host gene pairs were candidate intrinsic cis-associations. A total
of 1,222 miRNAs were profiled, and 227 and 271 of them were
mapped to host genes, for Agilent microarray and RNAseq data,
respectively. Among them, 138 of 227 and 175 of 271 miRNA-host
gene pairs were significantly associated with each other at q-
value < 0.05, for Agilent microarray and RNAseq data, respec-
tively. For example, in the case of miR-452 located in the gene
body of GABRE, its expression was highly associated with mRNA
expression of GABRE (Fig. 4B). On the basis of these intrinsic
cis-associations between expression levels of miRNAs and host
genes, we aligned the 2 types of omics data.
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Figure 1. Overview of proMODMatcher procedure. (A) Probes in 2 types of profiles (i.e., Type A and Type B) were matched by intrinsic biological relationships. (B) The
significant cis-associations from 2 different data types were identified by the Spearman correlation. The data for each cis relationship were normal rank-transformed.
(C) The sample similarity score between the 2 types of data S(Ai , B j ) is defined as the Spearman correlation between normal rank-transformed profiles. (D) The

proMODMatcher evaluated the similarity score of a match, S(Ai , B j ), by calculating the probability of a match estimated on the basis of a score distribution of
(S(Ai , Bn), S(An, B j )), where An and Bn represent Type A and Type B profile of the nth matched profile pairs. (E) In the determine self-aligned vs cross-aligned step,
profile pairs matched by sample IDs were checked to determine whether their similarity scores were high, in which case they would be annotated as “self-aligned.”

If not, additional steps were applied to find any potential matches among other unmatched profiles. The matched profile pairs were used to update significant cis-
associations.

Aligning gene expression profiles by RNAseq and miRNAseq data
The similarity scores of self-aligned gene expression–miRNA ex-
pression profiles were much higher than other possible pair-
ings in general (Fig. 4C): 898 of 1,041 (86.3%) similarity scores
for self-self RNAseq-miRNAseq profiles were ranked in the top
2%. For example, the similarity score for the self-aligned pro-
files of TCGA−D8−A1JH-01 was top ranked among other possi-
ble pairings (Fig. 4D). A total of 143 miRNA profiles that were
not matched to the corresponding mRNA profiles of the same
sample names based on MODMatcher (e.g., TCGA−B6−A0X7-
01 shown in Fig. 4E). Among profile pairs that were not self-
aligned, 5 RNAseq profiles were cross-aligned to other sam-
ples’ miRNA profiles (Supplementary Table S1). The rate of align-
ment was low compared to alignments of other types of profile
pairs. For example, >99% of the profile pairs of DNA methylation
and mRNA expression profiles were aligned for the TCGA BRCA
dataset.

When proMODMatcher was applied to TCGA BRCA RNAseq-
miRNAseq datasets, the probabilities of similarity scores (before
multiplying prior probability) for self-aligned RNAseq-miRNA
profiles were much higher than for other possible pairs in gen-
eral (Fig. 4F). An example of similarity scores of a self-aligned
RNAseq-miRNA profile pair and other possible pairs is shown
in Fig. 4G. There were multiple self-self pairs with low proba-
bilities for self-alignment (Fig. 4F and H), suggesting potential
labeling errors in RNAseq and/or miRNA profiles. Overall, 989
of 1,041 candidate matching pairs (95.0%) (Table 1) were self-
aligned compared to 86.3% for MODMatcher. Among profiles
that were not self-aligned, 1 profile pair (i.e., TCGA-BH-A0BZ-01
and TCGA-E2-A15K-01) was cross-aligned to each other (Table 1).

Comparing MODMatcher and proMODMatcher, the proMOD-
Matcher identified an additional 91 self-aligned profile pairs that
were missed by MODMatcher. For example, the similarity score
of self-alignment for TCGA-AO-A0JF-01 was among the highest
when the miRNA profile was compared to RNAseq profiles of
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Figure 2. Application of MODMatcher to simulated datasets. We simulated datasets with different numbers of samples and significant cis-associations. For variable
number of samples and significant cis-associations, sensitivity and false-positive rate (FPR, 1 − specificity) were measured and plotted.

other samples (y-axis in Fig. 5A). However, the RNAseq profile of
TCGA-AO-A0JF-01 was highly similar to multiple miRNA profiles
of other samples (x-axis in Fig. 5A). As a result, the rank-based
MODMatcher rejected the self-alignment, but proMODMatcher
identified self-alignment for TCGA-AO-A0JF-01 with P-value of
7.3 × 10−6.

One cross-aligned pair, RNAseq of TCGA-BH-A0BZ-01 and
miRNA of TCGA-E2-A15K-01, was identified by both proMOD-
Matcher and MODMatcher. The similarity score of the cross-
aligned pair is shown in Fig. 5B. The similarity scores of self-
self alignments were low (red dots in Fig. 5B); on the other
hand, the similarity score of the cross-aligned pair was signif-
icantly higher compared to other similarity scores (Fig. 5B), in-
dicating high confidence of cross-alignment. On the other hand,

the cross-aligned pairs detected only by MODMatcher showed
relatively marginal similarity scores even though the similar-
ity scores of cross-aligned pairs were the highest (Supplemen-
tary Fig. S2). Furthermore, we compared significance levels of
cis-associations based on profile pairs aligned by MODMatcher
and proMODMatcher. They were comparable in general, with a
few highly significant cis-associations that were more significant
based on proMODMatcher compared to MODMatcher (Fig. 5C).

Aligning gene expression profiles by Agilent microarray and miR-
NAseq data
MODMatcher and proMODMatcher were also applied to align
mRNA expression profiles based on Agilent microarray and
miRNA profiles. There were 138 cis-associations identified on the
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Figure 3. Application of proMODMatcher to simulated datasets. (A) For variable number of samples and significant cis-associations specificity and FPR were measured

on the basis of simulated datasets with 0%, 4%, and 6% sample-labeling error rate. (B, C) F measure, sensitivity, and specificity were compared with MODMatcher’s
results.
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Figure 4. Aligning gene expression profiles by RNAseq and miRNAseq data. (A) An example of miRNAs (e.g., miR-452) that are embedded in gene regions (e.g., GABRE).

(B) Expression level of miR-452 was highly associated with mRNA expression of GABRE. (C) The rank of the similarity scores of self-self RNAseq-miRNAseq profiles.
(D) An example of the similarity score of the self-aligned profiles, TCGA−D8−A1JH-01. The similarity score between the RNAseq profile of TCGA−D8−A1JH-01 and
the miRNA profiles of other samples are shown. The red asterisk indicates the similarity score of self-self RNAseq-miRNAseq profiles. (E) An example of non–self-
aligned RNAseq-miRNA profiles, TCGA-B6-A0X7-01. (F) The probabilities of similarity scores (before multiplying prior probability) for self-aligned RNAseq-miRNAseq

profiles. (G) An example of similarity scores of self-aligned RNAseq-miRNA profile pairs. The x-axis indicates the similarity scores between the RNAseq profile of
TCGA-OL-A6VO-01 and the miRNAseq profiles of all other samples, and the y-axis indicates similarity scores between the miRNAseq profile of TCGA-OL-A6VO-01 and
the RNAseq profiles of all other samples. The red dot indicates the similarity score for the self-self RNAseq-miRNAseq profile. (H) An example of similarity scores of
non–self-aligned RNAseq-miRNA profile pairs.

basis of Agilent microarray data and miRNAseq data. On the ba-
sis of these cis-associations, 87.1% of candidate profile pairs were
identified as self-aligned by MODMatcher (Supplementary Table
S1) while 89.8% of candidate profile pairs were self-aligned by
proMODMatcher (Table 1).

Among profiles that were not self-aligned, 9 cross-aligned
profile pairs were identified by proMODMatcher (Table 1, Sup-

plementary Fig. S3B), and 8 of the 9 pairs were also detected by
MODMatcher (Table 1). MODMatcher detected additional cross-
aligned pairs including several questionable cross-aligned pairs
(i.e., TCGA−E2−A153−01 and TCGA−E9−A1NG−01, TCGA-AR-
A1AL−01 and TCGA−AR−A1AN−01 in Supplementary Fig. S4).
The cross-aligned pairs identified by proMODMatcher included a
possible swap between TCGA-BH-A18K-01 and TCGA-BH-A18T-
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Table 1. Application of proMODMatcher to mRNA and miRNA profiles of TCGA BRCA data

Data type No.
samples1 No. cis pair2

No. (%)
self-aligned No. cross

Cross-aligned
pairs RNA-CNV3 Type

1
Self-aligned

Cross-aligned
pairsType 2

By
MODMatcher4Type 1 Type 2

RNAseq miRNAseq 1,041 175/215 989 (95.0) 1 TCGA-BH-A0BZ-01 Y TCGA-E2-A15K-01 Y
Agilent miRNAseq 519 138/178 466 (89.8) 9 TCGA-A8-A07U-01 Y TCGA-A2-A3XY-01 Y

TCGA-BH-A0H9-01 Y TCGA-EW-A423-01 No
TCGA-AO-A128-01 Y TCGA-BH-A18V-06 Y
TCGA-A1-A0SD-01 No: TCGA-BH-A0EI-01 TCGA-BH-A0EI-01 Y
TCGA-BH-A18K-01 No: TCGA-BH-A18T-01 TCGA-BH-A18T-01 Y
TCGA-BH-A18T-01 No: TCGA-BH-A18K-01 TCGA-BH-A18K-01 Y
TCGA-BH-A0BZ-01 Y TCGA-E2-A15K-01 Y
TCGA-BH-A0BS-01 No: TCGA-BH-A0BT-01 TCGA-BH-A0BT-01 Y
TCGA-AR-A0U0-01 Y TCGA-AR-A256-01 Y

Boldface indicates cross-alignments supported by other data, and underscore indicates sample swaps.
1The number of common samples with both Type 1 and Type 2 profiles.
2The number of significant cis-pairs at q-value < 0.05 at final iteration and the number of cis-pairs investigated.
3Indicates whether the RNA samples of cross-aligned pairs were self-aligned in alignment between RNA profile (Agilent array or RNAseq) and CNV profile. The aligned pairs were also
shown if there was a cross-aligned sample.
4Indicates whether the cross-aligned pairs were cross-aligned by MODMatcher.
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Figure 5. Comparison of MODMatcher and proMODMatcher for aligning expression profiles by RNAseq and miRNAseq data. (A) The similarity scores of a self-aligned
RNAseq-miRNA profile pair identified by proMODMatcher but not by MODMatcher. The x-axis indicates the similarity score between the RNAseq profile of TCGA-

AO-A0JF-01 and the miRNAseq profiles of all other samples, and the y-axis indicates the similarity score between the miRNAseq profile of TCGA-AO-A0JF-01 and the
RNAseq profiles of all other samples. The red dot indicates the similarity score for self-self RNAseq-miRNAseq profiles. (B) One cross-aligned pair, RNAseq of TCGA-
BH-A0BZ-01 and miRNA of TCGA-E2-A15K-01, identified by proMODMatcher. The similarity score of the cross-aligned pair is shown in blue, and the similarity scores
of self-self alignments are shown in red. (C) Significance levels of cis-associations based on profile pairs aligned by MODMatcher and proMODMatcher.

01 (Fig. 6A and Table 1). To determine the source of labeling
errors (due to mRNA Agilent profiles or miRNA profiles) other
omics profiles were compared with each other and the results
were summarized into a patient-centric view (Fig. 6B). For pa-
tient/sample TCGA-BH-A18K, the RNAseq and miRNAseq pro-
files were self-aligned and the RNAseq and CNV profiles were
self-aligned as well (Fig. 6B). Similarly, for patient/sample TCGA-
BH-A18T, the RNAseq profile was self-aligned to the miRNA,
CNV, and DNA methylation profiles as well as the RPPA pro-
file (detailed below) (Fig. 6B). The cross-alignments of TCGA-
BH-A18K-01 and TCGA-BH-A18T-01 mRNA Agilent profiles with
their miRNA profiles (Fig. 6B) indicate that sample swapping oc-
curred in the mRNA Agilent array profiles. After swapping the
corresponding mRNA Agilent array profiles, multiple-omics pro-
files of TCGA-BH-A18K and TCGA-BH-A18T were aligned to each
other consistently (Fig. 6C). Our previous study based on pair-
wise profile alignments of gene expression, DNA methylation,
and CNV also identified the sample swaps in the mRNA Agi-
lent array profiles of TCGA-BH-A18K-01 and TCGA-BH-A18T-01
[8] (Fig. 6B and C). In addition, proMODMatcher identified a cross-
alignment of the mRNA Agilent array profile of TCGA-A1-A0SD-
01 and the miRNA profile of TCGA-BH-A0EI-01 (Table 1, Fig. 6D),
consistent with potential sample swaps of mRNA Agilent array
profiles of TCGA-A1-A0SD-01 and TCGA-BH-A0EI-01 when align-
ments of other omics profiles were included. Similarly, the cross-

alignment between the Agilent array profile of TCGA-BH-A0BS-
01 and the miRNA profile of TCGA-BH-A0BT-01 was likely a re-
sult of a swap between the Agilent array profiles of the 2 samples
when all available omics data were added into the comparison
(Fig. 6E).

The proMODMatcher identified a cross-aligned pair between
the mRNA Agilent array profile of TCGA-BH-A0BZ-01 and the
miRNA profile of TCGA-E2-A15K-01 (See Table 1, Fig. 6F). The
miRNA profile of TCGA-E2-A15K-01 was also cross-aligned to the
mRNAseq profile of TCGA-BH-A0BZ-01 (Table 1, Fig. 5B). When
alignments of other omics profiles were included in a patient-
centric view (Fig. 6F), the result suggests that there was a label-
ing error of the miRNA profile of TCGA-E2-A15K-01.

These results together suggest that proMODMatcher with 138
cis-associations can accurately identify sample-labeling errors
and unambiguously correct labeling errors.

Application to TCGA breast cancer dataset: mRNA and
RPPA profiles

There were 424 tumor samples with both mRNA expression
measured in Agilent microarray and RPPA data, and 856 tu-
mor samples with both mRNA expression measured in RNAseq
and RPPA data. A total of 145 proteins were mapped to unique
mRNA transcripts, and 97 and 104 of the protein-mRNA pairs
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Figure 6. Aligning gene expression profiles by Agilent array and miRNAseq data. (A) An example of possible sample swaps. In the alignment of the Agilent array
and miRNAseq profiles, TCGA-BH-A18K-01 and TCGA-BH-A18T-01 were cross-aligned to each other. The similarity scores of each cross-alignment are shown. The

similarity score of the cross-aligned pair is shown in blue, and the similarity scores of self-self alignments are shown in red. (B) Other omics profiles of TCGA-BH-
A18K and TCGA-BH-A18T were compared with each other, and the results were summarized into a patient-centric view. Red line indicates self-aligned, and blue line
indicates cross-aligned. (C) After swapping the corresponding mRNA Agilent array profiles, multiple-omics profiles of TCGA-BH-A18K and TCGA-BH-A18T were aligned

to each other consistently. (D–F) The similarity scores of other cross-aligned pairs are shown, and their available omics profiles and alignment results are summarized
into a patient-centric view.
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whose protein abundance was significantly correlated (q < 0.05)
with the corresponding mRNA’s expression level were defined
as significant cis-associations based on Agilent microarray and
RNAseq data, respectively (Fig. 7A and Table 2). And 84.9% and
80.3% of candidate profile pairs were identified as self-aligned
by proMODMatcher (Table 2). Examples of similarity scores of
a self-aligned RNAseq-miRNA profile pair (Fig. 7B) and a cross-
alignment (Fig. 7C, Supplementary Fig. S5) comparing with other
possible pairs are shown. The cross-aligned pair of the mRNA
Agilent microarray profile TCGA-AR-A1AV-01 and the RPPA pro-
file of TCGA-AR-A1AW-01 data was identified (Fig. 7D), con-
sistent with labeling errors in the mRNA Agilent array data
(Fig. 7D). However, this pair was not identified by MODMatcher
(Table 2). The potential cross-alignment between the mRNA Ag-
ilent microarray profile TCGA-AR-A1AW-01 and the RPPA profile
of TCGA-AR-A1AV-01 data was not identified (Fig. 7D), suggest-
ing that proMODMatcher’s sensitivity is limited when the num-
ber of cis-associations is ∼100. A large number of non-random
missing data in RPPA data (Supplementary Fig. S6) may also con-
tribute to low sensitivity of the method.

Application to TCGA pan-cancer datasets

The proMODMatcher was also applied to pan-cancer datasets (a
total of 22 different types of cancers) in TCGA to align miRNA
(Table 3) and RPPA profiles (Table 4) with mRNA profiles. When
aligning RNAseq and miRNAseq profiles, >95% of candidate pro-
file pairs were identified as self-aligned for most cancer datasets
(Fig. 8A). The self-alignment rates for sarcoma (SARC), lymphoid
neoplasm diffuse large B-cell lymphoma (DLBC), and cervical
and endocervical cancers (CESC) were 100%, suggesting high
data quality for the datasets (Fig. 8A, Table 3). On the other
hand, miRNA expression profiles were aligned to mRNA expres-
sion profiles (i.e., Agilent, HG-U133, or RNAseq) at a low self-
alignment rate for the glioblastoma multiforme (GBM) dataset
(Fig. 8A), suggesting low quality of the TCGA GBM miRNA pro-
files.

For alignments between mRNA and RPPA profiles, the self-
alignment rates were lower than alignments between mRNA
and miRNA (Fig. 8B) for most datasets due to lower numbers
of cis-associations between mRNA and RPPA profiles. The self-
alignment rates for DLBC (97.0%) and SARC (97.8%) were higher
compared to other datasets (Fig. 8AB), again suggesting high
data qualities of the datasets. This observation indicates that
some datasets in TCGA showed consistently high confidence for
sample quality and low data labeling errors.

Even in datasets of high quality, sample-labeling errors were
detected. For example, the self-alignment rate for mRNA-miRNA
profiles of the TCGA UCEC dataset was 98.1%. Four cross-
alignments were identified (Table 3). Two of them were likely due
to a swap of miRNA profiles of TCGA-AX-A1C4-01 and TCGA-
AX-A1CI-01 after considering other types of omics data (Fig. 8C).
Similarly, the self-alignment rate for mRNA-miRNA profiles of
the TCGA OV dataset was 96.9%. Five cross-alignments were
identified (Table 3). Two of them were likely due to a swap
of miRNA profiles of TCGA-24-2261-01 and TCGA-31-1953-01
(Fig. 8D).

Application to ICGC datasets

We applied proMODMatcher to 8 cancer datasets that were gen-
erated by institutes in the USA, Spain, UK, Germany, Australia,
Canada, and France. Each dataset contains >1 types of omics
data including mRNA expression profiles (i.e., RNAseq and Ar-

ray), DNA methylation profiles based on Illumina HM450, miRNA
expression profiles, and copy number somatic mutation pro-
files. The ICGC datasets used and the associated alignment re-
sults are summarized in Table 5. In some of the datasets such
as PAEN-AU and PRAD-FR, all profiles were matched to other
corresponding profiles of the same sample names (Table 5). On
the other hand, several sample errors were identified in some
datasets. For example, mapping between gene expression Ar-
ray and CNV profiles in the NBL-US dataset resulted in 170 self-
self aligned sample pairs, 10 non–self-self aligned samples, and
12 cross-mapped pairs of profiles (examples shown in Fig. 9A).
Mapping gene expression profiles by RNAseq and Array in the
CLLE-ES dataset yielded 5 non–self-self aligned samples and 2
cross-mapped pairs of samples. The 2 cross-mapped pairs of
samples were likely due to a swap of either RNAseq profile or
Array profile (Fig. 9B). Similarly, proMODMatcher identified 3
cross-alignments between RNAseq and DNA methylation pro-
files in the PRAD-CA dataset, which were also involved in cross-
mappings when mapping Array and DNA methylation profiles:
2 of them were likely due to a swap of DNA methylation (HM450)
profiles of DO229525 and DO51109 (Fig. 9CD), and 1 of them was
likely due to sample-labeling errors in DNA methylation array
(HM450) (Fig. 9CD).

Discussion

We developed a sample alignment method, proMODMatcher,
for detecting and correcting sample-labeling errors by align-
ing omics profiles. The proMODMatcher extended our previ-
ous method MODMatcher by estimating probabilities of po-
tential matches rather than using ranks of similarity scores.
Applied to simulated datasets, proMODMatcher outperformed
MODMatcher when aligning the omics data profiles with a rel-
atively small number of cis-associations. We showed that the
number of candidate intrinsic cis-associations between mRNA-
miRNA profiles or mRNA-RPPA profiles was low. Application of
our proMODMatcher to alignment between mRNA-miRNA pro-
file pairings and mRNA-RPPA profile pairings from 22 different
cancer datasets in TCGA demonstrated that sample-labeling er-
rors occurred even in datasets of high quality and our procedure
was not only able to identify sample-labeling errors but also to
unambiguously identify the source of the errors.

Integrating multi-omics data into comprehensive network
models is essential to elucidate complex molecular mechanisms
of cancers. After correcting sample-labeling errors, associations
between different profiles were stronger. For example, mis-
labeled samples were outliers when comparing significant pairs
between mRNA and miRNA expression levels in the TCGA BRCA
dataset (Fig. 10A, red dots were mis-labeled samples). Spearman
correlations between expression levels of miRNAs and their host
genes were improved for most pairs of miRNA-host genes after
curating sample-labeling errors (Fig. 10B).

We showed that some potential cross-aligned profile pairs in
the TCGA BRCA dataset were missed by proMODMatcher. The
sensitivity and accuracy of multi-omics profile-matching meth-
ods need further improvement. Integrating >2 types of profiles
in probability estimation may yield more robust sensitivity and
specificity when the number of cis-associations is small.

The proMODMatcher depends on a set of biological cis-
associations, and the information content (Shannon entropy) of
each cis-association depends on the randomness of the geno-
type at each locus or gene expression of each gene. For exam-
ple, if there were 2 possible genotypes at a locus, then random-
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Figure 7. Aligning mRNA and RPPA profiles. (A) The Spearman correlations of protein abundance and the corresponding mRNA expression level are shown based on
RNAseq and Agilent array. The red line indicates correlation values corresponding to q-value 0.05. (B) Similarity scores of a self-aligned RNAseq-miRNA profile pair. (C)
Similarity scores of a cross-aligned RNAseq-miRNA profile pair. (D) Similarity scores of the cross-aligned pair between the mRNA Agilent microarray and RPPA profiles,
TCGA-AR-A1AV-01 and TCGA-AR-A1AW-01, and alignment results for other omics profiles of this pair into a patient-centric view.
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Table 2. Application of proMODMatcher to mRNA and RPPA profiles of TCGA BRCA data

Data type No.
samples1

No. cis
pair2

No. (%)
self-aligned

No. of
cross

Cross-aligned pairs
Type 1

Self-aligned
in RNA-CNV3

Cross-aligned pairs
Type 2

By
MODMatcher4Type 1 Type 2

RNAseq RPPA 856 104/151 687 (80.3) 1 TCGA-A7-A56D-01 Y TCGA-W8-A86G-01 Y
Agilent RPPA 424 97/145 360 (84.9) 11 TCGA-BH-A0DS-01 No: TCGA-BH-A0BA-01 TCGA-E2-A1IL-01 Y

TCGA-E2-A10C-01 Y TCGA-LL-A5YN-01 Y
TCGA-E2-A1B0-01 Y TCGA-D8-A1JK-01 Y
TCGA-AR-A1AV-01 No: TCGA-AR-A1AW-01 TCGA-AR-A1AW-01 No
TCGA-E2-A1B6-01 No: TCGA-E2-A1B5-01 TCGA-AR-A255-01 No
TCGA-A8-A07J-01 Y TCGA-D8-A1JU-01 No
TCGA-A8-A0AB-01 Y TCGA-EW-A1J3-01 No
TCGA-AN-A04C-01 Y TCGA-E9-A1N9-01 No
TCGA-E2-A105-01 Y TCGA-C8-A1HO-01 Y
TCGA-AN-A0XL-01 Y TCGA-D8-A1Y2-01 No
TCGA-AN-A0XV-01 Y TCGA-GM-A2DM-01 No

The boldface indicates cross-alignments supported by other data.
1The number of common sample with both Type 1 and Type 2 profiles.
2The number of significant cis-pairs at q-value < 0.05 at final iteration and the number of cis-pairs investigated.
3Indicates whether the RNA sample of cross-aligned pairs are self-aligned in alignment between RNA profile (Agilent array or RNAseq) and CNV profile. The aligned pairs are also
shown if there is a cross-aligned sample.
4Indicates that cross-aligned pairs are cross-aligned by MODMatcher.

Figure 8. Application to TCGA pan-cancer datasets. (A, B) The self-alignment rate of RNA-miRNA and RNA-RPPA alignment for each cancer type. (C, D) Two possible

sample swap cases of miRNA profiles in the TCGA UCEC and OV datasets. The similarity scores of each cross-alignment and alignment result for other available omics
profiles are shown.

ness or Shannon entropy is maximized when the probability of
each genotype is 50%. When the probabilities of the 2 genotypes
deviate from equal, the randomness or Shannon entropy at the
locus decreases. Thus, in our analyses, we excluded biological
cis-associations that are driven by extreme values (rare events).
For example, in eQTL analyses, we only included loci of minor

allele frequency >0.05. Missing values commonly occur in high-
throughput omics data. In our analyses, we do not explicitly im-
pute missing values. Instead, we filtered out probes or genes of
>25% missing value in the data pre-processing step.

The computational cost of applying proMODMatcher is
small. For example, mapping mRNA and miRNA expression pro-
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B.  CLLE-ES: Array and RNAseq  

A. NBL-US: Array and CNV

C. PRAD-CA: RNAseq and methylation (HM450)
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Figure 9. Application to ICGC datasets (A) An example of self-self aligned, non–self-self aligned, and cross-aligned pairs of samples based on alignment between
Array and CNV profiles in the NBL-US dataset. (B) An example of sample-labeling errors. In alignment of Array and DNA methylation profiles, DO7484 and DO7472

were cross-aligned to each other. The similarity scores of each cross-alignment are shown. The similarity score of the cross-aligned pair is shown in blue, and the
similarity scores of self-self alignments are shown in red. Omics profiles of DO7484 and DO7472 were compared with each other and results were summarized into
a patient-centric view. The red line indicates self-aligned, the and blue line indicates cross-aligned. (C) An example of possible sample swaps and sample-labeling
errors. DO229525 and DO51109 were cross-aligned to each other in alignment of RNAseq and DNA methylation profiles as well as Array and DNA methylation profiles.

Additionally, the RNAseq and Array profiles of DO51105 were cross-aligned to the DNA methylation profile of DO51091. (D) Other omics profiles of these pairs were
compared with each other and results were summarized into a patient-centric view. After swapping the corresponding DNA methylation profiles, multiple-omics
profiles of DO229525 and DO51109 were aligned to each other consistently.
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Table 3. Applicationof proMODMatcher to mRNA and miRNA profiles of TCGA cancer data excluding BRCA

Type of cancer
Data type No. common

samples No. cis pair
No. (%)

self-aligned
No. (%)

cross-aligned Cross-aligned pairs Type 1 Self in RNA-CNV
Cross-aligned pairs

Type 2Type 1 Type 2

BLCA RNAseq miRNAseq 405 187/231 402 (99.3) 0
CESC RNAseq miRNAseq 100 132/223 100 (100) 0
COAD RNAseq miRNAseq 248 122/191 242 (97.6) 8 (3.2) TCGA-CM-4744-01 Y TCGA-AA-3558-01

TCGA-QL-A97D-01 Y TCGA-AA-A00W-01
TCGA-A6-A567-01 Y TCGA-AA-3693-01
TCGA-5M-AATA-01 Y TCGA-AA-3529-01
TCGA-RU-A8FL-01 Y TCGA-AZ-4681-01
TCGA-QG-A5YV-01 Y TCGA-AA-A02H-01
TCGA-A6-A565-01 Y TCGA-AA-A02E-01
TCGA-5M-AATE-01 Y TCGA-AA-A01F-01

DLBC RNAseq miRNAseq 47 59/210 47 (100) 0
GBM Agilent miRNA array 525 73/107 307 (58.5) 14 (2.7) TCGA-02-0064-01 Y TCGA-08-0390-01

TCGA-02-0325-01 Y TCGA-08-0345-01
TCGA-02-0321-01 Y TCGA-19-0957-01
TCGA-08-0510-01 Y TCGA-26-5135-01
TCGA-02-0070-01 Y TCGA-28-5218-01
TCGA-12-0773-01 Y TCGA-06-0744-01
TCGA-12-0780-01 Y TCGA-08-0354-01
TCGA-12-0822-01 Y TCGA-16-1045-01
TCGA-16-1062-01 Y TCGA-28-5209-01
TCGA-14-1829-01 Y TCGA-14-1450-01
TCGA-19-1385-01 Y TCGA-08-0352-01
TCGA-32-4719-01 Y TCGA-06-0140-01
TCGA-19-5952-01 Y TCGA-02-0324-01
TCGA-06-0201-01 No TCGA-06-0141-01

HG-U133 miRNA array 520 56/100 315 (60.6) 5 (1.0) TCGA-02-0058-01 No:
TCGA-06-0190-01

TCGA-12-0778-01

TCGA-02-0115-01 Y TCGA-12-0656-01
TCGA-19-1789-01 Y TCGA-06-0413-01
TCGA-06-2561-01 Y TCGA-12-0691-01
TCGA-02-0338-01 Y TCGA-76-6283-01

RNAseq miRNA array 151 70/129 115 (76.2) 19 (12.6) TCGA-06-1804-01 Y TCGA-81-5911-01
TCGA-06-0178-01 No TCGA-16-1060-01
TCGA-14-1034-01 Y TCGA-02-0330-01
TCGA-15-0742-01 Y TCGA-02-0116-01
TCGA-06-5413-01 Y TCGA-14-0865-01
TCGA-19-2620-01 Y TCGA-76-6193-01
TCGA-06-0158-01 Y TCGA-06-0174-01
TCGA-06-0211-01 Y TCGA-12-3648-01
TCGA-06-2564-01 Y TCGA-12-0688-01
TCGA-06-0141-01 Y TCGA-08-0246-01
TCGA-06-0238-01 Y TCGA-06-0177-01
TCGA-06-0744-01 Y TCGA-76-6664-01
TCGA-06-0125-01 Y TCGA-08-0358-01
TCGA-41-2572-01 Y TCGA-02-0021-01
TCGA-06-0190-02 Y TCGA-19-5955-01
TCGA-28-2499-01 No:

TCGA-02-0099-01
TCGA-12-1091-01

TCGA-06-0152-02 Y TCGA-26-1799-01
TCGA-19-1389-02 Y TCGA-14-0813-01
TCGA-14-1034-02 Y TCGA-15-1447-01

HNSC RNAseq miRNAseq 517 183/229 494 (95.6) 0
KIRC RNAseq miRNAseq 516 146/205 487 (94.4) 0
KIRP RNAseq miRNAseq 290 131/205 285 (98.3) 0
LAML RNAseq miRNAseq 173 93/166 168 (97.1) 0
LGG RNAseq miRNAseq 526 170/245 500 (95.1) 0
LIHC RNAseq miRNAseq 369 179/228 367 (99.5) 0
LUAD RNAseq miRNAseq 512 179/229 507 (99.0) 0

Agilent miRNAseq 32 32/180 17 (53.1) 3 (9.4) TCGA-44-2655-01 Y TCGA-44-6148-01
TCGA-05-4249-01 No TCGA-86-A4D0-01
TCGA-35-4123-01 No TCGA-55-6969-01

LUSC RNAseq miRNAseq 474 191/229 466 (98.3) 0
OV RNAseq miRNAseq 291 159/192 282 (96.9) 5 (1.7) TCGA-24-2261-01 Y TCGA-31-1953-01

TCGA-31-1953-01 Y TCGA-24-2261-01
TCGA-61-1728-01 Y TCGA-23-2072-01
TCGA-09-0369-01 Y TCGA-25-1877-01

TCGA-VG-A8LO-01 Y TCGA-04-1654-01
PRAD RNAseq miRNAseq 494 129/198 432 (87.4) 0
READ RNAseq miRNAseq 66 77/180 60 (90.9) 3 (4.5) TCGA-AG-A01J-01 Y TCGA-DY-A1DG-01

TCGA-AG-A014-01 Y TCGA-DC-6158-01
TCGA-AG-A023-01 Y TCGA-AG-4022-01

SARC RNAseq miRNAseq 261 169/220 261 (100) 0
SKCM RNAseq miRNAseq 449 203/251 446 (99.3) 0
STAD RNAseq miRNAseq 377 193/256 371 (98.4) 0
THCA RNAseq miRNAseq 508 139/217 483 (95.1) 0
UCEC RNAseq miRNAseq 361 169/240 354 (98.1) 4 (1.1) TCGA-A5-A0GP-01 Y TCGA-AJ-A2QO-01

TCGA-AX-A1C4-01 Y TCGA-AX-A1CI-01
TCGA-AX-A1CI-01 Y TCGA-AX-A1C4-01
TCGA-BG-A220-01 No TCGA-AJ-A3NE-01

Underscore indicates sample swaps.
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Table 4. Applicationof proMODMatcher to mRNA and RPPA profiles of TCGA cancer data excluding BRCA

Type of cancer

Data type No. common

samples Type 1 No. cis pair

No. (%)

self-aligned

No. (%)

cross-aligned

Cross-aligned pairs Type

1 Self in RNA-CNV

Cross-aligned pairs

Type 2Type 1 Type 2

BLCA RNAseq RPPA 340 121/193 297 (87.4) 3 (0.9) TCGA-XF-AAN8-01 Y TCGA-FD-A6TB-01

TCGA-FD-A5BR-01 Y TCGA-XF-AAMF-01

TCGA-E7-A6ME-01 Y TCGA-E7-A541-01

CESC RNAseq RPPA 172 101/184 152 (88.4) 1 (0.6) TCGA-EK-A3GJ-01 Y TCGA-C5-A8XI-01

COAD RNAseq RPPA 240 110/202 195 (81.3) 15 (6.3) TCGA-G4-6321-01 Y TCGA-AA-A01P-01

TCGA-AD-A5EJ-01 Y TCGA-AA-3672-01

TCGA-CA-5256-01 Y TCGA-AA-3815-01

TCGA-AZ-4682-01 Y TCGA-G4-6321-01

TCGA-G4-6303-01 Y TCGA-A6-2677-01

TCGA-A6-6137-01 Y TCGA-AA-A01S-01

TCGA-G4-6627-01 Y TCGA-G4-6298-01

TCGA-A6-6140-01 Y TCGA-AA-3519-01

TCGA-NH-A5IV-01 Y TCGA-AA-A00E-01

TCGA-G4-6320-01 Y TCGA-A6-2672-01

TCGA-DM-A28H-01 Y TCGA-AA-3811-01

TCGA-CK-5913-01 Y TCGA-AA-3664-01

TCGA-NH-A50U-01 Y TCGA-AA-3558-01

TCGA-AD-6901-01 Y TCGA-NH-A6GC-06

TCGA-A6-A565-01 Y TCGA-AA-3520-01

DLBC RNAseq RPPA 33 58/184 32 (97.0) 0

GBM Agilent RPPA 191 97/194 157 (82.2) 13 (6.8) TCGA-06-0139-01 No TCGA-06-A5U1-01

TCGA-06-0158-01 Y TCGA-19-5950-01

TCGA-06-0176-01 Y TCGA-19-2625-01

TCGA-06-0206-01 Y TCGA-06-0190-02

TCGA-12-0620-01 Y TCGA-RR-A6KC-01

TCGA-06-0881-01 Y TCGA-02-0003-01

TCGA-14-1454-01 Y TCGA-19-A6J5-01

TCGA-12-1091-01 Y TCGA-14-1034-02

TCGA-14-1037-01 No TCGA-19-A60I-01

TCGA-14-1795-01 Y TCGA-12-5301-01

TCGA-32-2616-01 Y TCGA-06-5858-01

TCGA-81-5911-01 Y TCGA-19-1389-02

TCGA-14-1450-01 Y TCGA-06-5418-01

HG-U133 RPPA 186 90/187 147 (79.0) 13 (7.0) TCGA-02-0068-01 Y TCGA-06-5413-01

TCGA-02-0033-01 No TCGA-32-4211-01

TCGA-14-0781-01 Y TCGA-74-6575-01

TCGA-12-1091-01 Y TCGA-14-1034-02

TCGA-28-2509-01 Y TCGA-19-A60I-01

TCGA-06-0141-01 Y TCGA-06-A5U1-01

TCGA-06-0160-01 Y TCGA-06-6700-01

TCGA-06-0394-01 Y TCGA-74-6578-01

TCGA-08-0518-01 Y TCGA-26-6173-01

TCGA-08-0512-01 Y TCGA-19-1389-02

TCGA-02-0330-01 Y TCGA-06-A6S1-01

TCGA-32-2491-01 Y TCGA-06-6698-01

TCGA-32-4719-01 Y TCGA-06-0876-01

HNSC RNAseq RPPA 212 82/156 175 (82.5) 3 (1.4) TCGA-CQ-6222-01 No TCGA-CV-5439-01

TCGA-D6-6824-01 Y TCGA-CV-5976-01

TCGA-MZ-A7D7-01 Y TCGA-CN-6011-01

KIRC RNAseq RPPA 475 125/209 396 (83.4) 4 (0.8) TCGA-CJ-5681-01 Y TCGA-B0-5709-01

TCGA-B0-5709-01 Y TCGA-CJ-6030-01

TCGA-CJ-4869-01 Y TCGA-BP-4771-01

TCGA-CJ-4888-01 Y TCGA-CJ-4875-01

KIRP RNAseq RPPA 215 93/184 178 (82.8) 3 (1.4) TCGA-KV-A74V-01 Y TCGA-MH-A55Z-01

TCGA-MH-A854-01 Y TCGA-UZ-A9PL-01

TCGA-MH-A561-01 Y TCGA-B1-A47N-01

LGG RNAseq RPPA 435 95/173 320 (73.6) 1 (0.2) TCGA-HT-7681-01 Y TCGA-P5-A737-01

LIHC RNAseq RPPA 181 105/214 158 (87.3) 4 (2.2) TCGA-ZS-A9CD-01 Y TCGA-G3-A5SK-01

TCGA-DD-AAC9-01 Y TCGA-DD-A4NG-01

TCGA-G3-AAV0-01 Y TCGA-GJ-A9DB-01

TCGA-G3-AAV5-01 Y TCGA-ED-A627-01

LUAD RNAseq RPPA 360 125/193 312 (86.7) 10 (2.8) TCGA-50-5045-01 No TCGA-44-7672-01

TCGA-44-7667-01 Y TCGA-44-3917-01

TCGA-MP-A4TI-01 Y TCGA-MP-A4TA-01

TCGA-MP-A4TJ-01 Y TCGA-50-5939-01

TCGA-50-5055-01 No TCGA-97-A4M2-01

TCGA-55-A48X-01 Y TCGA-64-5778-01

TCGA-64-5775-01 No TCGA-05-5715-01

TCGA-55-6987-01 Y TCGA-44-2664-01

TCGA-38-7271-01 Y TCGA-50-5068-01

TCGA-55-8208-01 Y TCGA-50-5066-01
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Table 4. Continued

Type of cancer

Data type No. common

samples Type 1 No. cis pair

No. (%)

self-aligned

No. (%)

cross-aligned

Cross-aligned pairs Type

1 Self in RNA-CNV

Cross-aligned pairs

Type 2Type 1 Type 2

Agilent RPPA 23 34/187 14 (60.9) 7 (30.4) TCGA-44-2661-01 No TCGA-05-4249-01

TCGA-05-4249-01 No TCGA-55-6978-01

TCGA-44-3398-01 No TCGA-86-A4JF-01

TCGA-44-4112-01 No TCGA-44-3919-01

TCGA-44-2662-01 Y TCGA-78-7145-01

TCGA-67-3774-01 Y TCGA-73-7498-01

TCGA-35-3621-01 No TCGA-44-2661-01

LUSC RNAseq RPPA 324 125/193 278 (85.8) 3 (0.9) TCGA-18-4086-01 Y TCGA-63-5131-01

TCGA-39-5039-01 Y TCGA-34-2604-01

TCGA-56-A4ZJ-01 Y TCGA-90-6837-01

OV RNAseq RPPA 241 134/202 232 (96.3) 9 (3.7) TCGA-61-2095-01 Y TCGA-42-2587-01

TCGA-09-0364-01 Y TCGA-29-1774-01

TCGA-09-2048-01 Y TCGA-13-0802-01

TCGA-13-0890-01 Y TCGA-42-2590-01

TCGA-24-2035-01 Y TCGA-30-1892-01

TCGA-25-1870-01 Y TCGA-36-2534-01

TCGA-31-1956-01 Y TCGA-29-1768-01

TCGA-57-1583-01 Y TCGA-61-1916-01

TCGA-59-2350-01 Y TCGA-61-1913-01

PRAD RNAseq RPPA 351 96/178 209 (59.5) 9 (2.6) TCGA-VN-A88I-01 Y TCGA-KC-A4BV-01

TCGA-KC-A7F3-01 Y TCGA-ZG-A8QX-01

TCGA-FC-A6HD-01 No TCGA-EJ-A8FN-01

TCGA-EJ-5499-01 Y TCGA-VN-A88L-01

TCGA-HC-7230-01 Y TCGA-HC-7748-01

TCGA-XJ-A83G-01 Y TCGA-G9-6338-01

TCGA-HC-A8CY-01 Y TCGA-V1-A9Z8-01

TCGA-HC-7821-01 Y TCGA-YL-A9WL-01

TCGA-VP-A87C-01 Y TCGA-EJ-8470-01

READ RNAseq RPPA 55 54/202 43 (78.2) 4 (7.3) TCGA-AG-A00H-01 Y TCGA-F5-6810-01

TCGA-AG-3584-01 Y TCGA-AG-4022-01

TCGA-AG-3883-01 Y TCGA-AG-4005-01

TCGA-AG-3575-01 Y TCGA-F5-6863-01

SARC RNAseq RPPA 224 110/184 219 (97.8) 0

SKCM RNAseq RPPA 352 128/193 314 (89.2) 2 (0.6) TCGA-EB-A44N-01 Y TCGA-EB-A5UM-01

TCGA-W3-A828-06 Y TCGA-EB-A551-01

STAD RNAseq RPPA 306 103/177 233 (76.1) 12 (3.9) TCGA-D7-6818-01 Y TCGA-EQ-8122-01

TCGA-HU-A4H3-01 Y TCGA-CG-4442-01

TCGA-SW-A7EB-01 Y TCGA-CG-4460-01

TCGA-VQ-A94P-01 Y TCGA-RD-A8NB-01

TCGA-ZA-A8F6-01 Y TCGA-CG-4476-01

TCGA-FP-8210-01 Y TCGA-D7-A4Z0-01

TCGA-HU-8244-01 Y TCGA-BR-4371-01

TCGA-HU-8604-01 Y TCGA-BR-A4QL-01

TCGA-HU-A4GJ-01 Y TCGA-CD-A4MI-01

TCGA-HU-A4H8-01 Y TCGA-CG-5720-01

TCGA-R5-A7ZI-01 Y TCGA-BR-6710-01

TCGA-VQ-A927-01 Y TCGA-F1-A72C-01

THCA RNAseq RPPA 222 55/167 142 (64.0) 3 (1.4) TCGA-EM-A3FJ-01 No TCGA-EM-A2CS-06

TCGA-DJ-A4UW-01 No TCGA-EL-A3CU-01

TCGA-ET-A3BQ-01 No TCGA-EL-A3GR-01

UCEC RNAseq RPPA 300 115/187 270 (90.0) 15 (5.0) TCGA-AX-A05Y-01 Y TCGA-AX-A060-01

TCGA-AX-A05Z-01 Y TCGA-EO-A3AV-01

TCGA-AX-A0IW-01 Y TCGA-KP-A3VZ-01

TCGA-D1-A163-01 Y TCGA-AJ-A3BH-01

TCGA-D1-A1NZ-01 Y TCGA-E6-A2P9-01

TCGA-EO-A22T-01 Y TCGA-B5-A1MW-01

TCGA-FI-A2F9-01 Y TCGA-A5-A1OH-01

TCGA-BG-A0MQ-01 Y TCGA-A5-A7WJ-01

TCGA-BG-A0MO-01 Y TCGA-BK-A13B-01

TCGA-D1-A17A-01 Y TCGA-A5-A0GB-01

TCGA-BS-A0TE-01 Y TCGA-AJ-A3EK-01

TCGA-BS-A0UL-01 Y TCGA-EO-A22T-01

TCGA-FI-A2CX-01 Y TCGA-E6-A2P8-01

TCGA-B5-A11M-01 No TCGA-EY-A1GW-01

TCGA-FI-A2D6-01 Y TCGA-DF-A2KY-01
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Table 5. Application of proMODMatcher to datasets with multiple types of omics datasets from the ICGC database

Dataset Cancer type Country
Data type No.

samples
No. cis
pair No. self

No.
non-self No. crossType 1 Type 2

CLLE-ES Chronic lymphocytic leukemia Spain Exp-Array Methylation 139 3,614 139 0 0
Exp-Array Exp-Seq 293 12,753 288 5 2
Exp-Seq Methylation 101 3,666 101 0 0

MALY-DE Malignant lymphoma Germany Exp-Seq miRNA 49 134 49 0 0
PAEN-AU Pancreatic cancer endocrine

neoplasms
Australia Exp-seq CNV 32 2,205 32 0 0

Exp-Array CNV 23 541 23 0 0
Exp-Array Exp-Seq 21 3,425 21 0 0
Exp-Seq Methylation 32 3,902 32 0 0

Exp-Array Methylation 31 3,845 31 0 0
NBL-US Neuroblastoma USA Exp-Array CNV 180 2,396 170 10 12
OV-AU Ovarian Australia Exp-Seq Methylation 80 1,045 80 0 0

Exp-Seq miRNA 82 56 79 3 0
PRAD-CA Prostate cancer adenocarcinoma Canada Exp-Array Exp-Seq 136 10,676 133 3 0

Exp-Array Methylation 210 3,114 196 14 4
Exp-Seq Methylation 142 4,263 132 10 3

PRAD-FR Prostate cancer adenocarcinoma France Exp-Array Exp-Seq 25 4249 25 0 0
PACA-AU Pancreatic cancer Australia Exp-Array Exp-Seq 72 7,548 72 0 0

Exp-Array CNV 121 1,041 118 3 0
Exp-Seq CNV 79 1,327 78 1 0
Exp-Seq Methylation 77 5,538 77 0 0

Exp-Array Methylation 174 2,514 169 5 1
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Figure 10. Correcting sample-labeling errors. (A) Mis-labeled samples were outliers when comparing significant pairs between mRNA and miRNA expression levels

in the TCGA BRCA dataset. Red dots were mis-labeled samples. (B) Spearman correlation between expression levels of miRNAs and their host genes before and after
curating sample-labeling errors.

files for 408 samples took 802 seconds of CPU time with maxi-
mum memory usage of 503 MB on a machine with CPU processor
of 3.50 GHz.

Potential implications

Our results demonstrated that sample-labeling errors were com-
mon in large multi-omics datasets. Our method has improved
statistical accuracy to identify and curate these errors over the
previous method and is generally applicable to other datasets.
Application of our general framework for automated curation of
public databases and properly merging omics data would be the
fundamental basis for the development of effective integrative
approaches.

Methods
A general framework of multi-omics data matching:
Pairwise alignments based on cis-associations

We followed the general framework of multi-omics data match-
ing of the previous study [8]. Two types of data (or profiles) (i.e.,
Type A and Type B in Fig. 1) were matched on the basis of their cis-

associations. Probes in different types of data were matched by
intrinsic biological relationships. For example, probes in methy-
lation, miRNA, and CNV profiles were mapped to a close tran-
script based on hg19 reference genome. Samples were initially
matched on the basis of annotated sample ID and potential cis-
associations (Fig. 1A). The significant cis-associations from 2 dif-
ferent data types were identified by the Spearman correlations
at Benjamini-Hochberg (BH) adjusted q-value < 0.05 (Fig. 1B). The
data for each cis-association was normal rank-transformed as
RT(An,i) and RT(Bn,i), where An,i and Bn,i represent the measure-
ments of sample i and nth cis-related probes for Type A and B
profiles, respectively (Fig. 1B). For simplicity, we omitted all nor-
mal rank transformation in the rest of the notations. The pro-
file similarity between the 2 types of data S(Ai , B j ) is defined as
(Fig. 1C):

S (Ai , B j ) = corr (Ai , B j )

=
∑N

n=1 An,i
∑N

n=1 Bn, j − N
∑N

n=1 An,i × Bn, j√
N

∑N
n=1 An,i

2 −
(∑N

n=1 An,i

)2
√

N
∑N

n=1 Bn, j
2 −

(∑N
n=1 Bn, j

)2
.
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First, profile pairs matched by annotated sample IDs were
checked to determine whether their similarity scores were high
(Fig. 1D), in which case they were annotated as “self-aligned.” If
not, additional steps were applied to find any potential matches
among other unmatched profiles (Fig. 1E). The matched profile
pairs were then used to update significant cis-associations. We
iteratively refined profile alignment, and rounds of alignments
were repeated until there were no further updates.

Biological cis-associations

“Biological cis-associations” reflect different biological regula-
tions when different pairs of omics data are mapped. (1) cis-
eQTLs for mapping genotype and gene expression data: a ge-
netic polymorphism at a gene’s promoter or regulatory region af-
fects binding of transcription factors or co-factors, which in turn
affects the abundance of the gene’s transcripts [11]. If the genetic
polymorphism occurs within 1 million bases from the gene’s
transcription start site and the association is significant at FDR
<0.05, the association is called a cis-eQTL. (2) cis-methylations
for mapping DNA methylation and gene expression data: in-
creased DNA methylation at CpG sites near a gene promoter re-
gion is associated with gene repression [12]. A methylation probe
is assigned to the transcript whose start site is closest to the ge-
nomic location of the methylation probe when it is potentially
mapped to multiple transcripts. If a DNA methylation probe lo-
cates within 1 million bases from the gene’s start site and the as-
sociation between the methylation level and the gene’s expres-
sion level is significant at FDR <0.05, the methylation probe is a
cis-methylation probe. (3) cis-CNVs for mapping DNA CNVs and
gene expression profiles: amplified or deleted genomic regions
can regulate the expression levels of genes within that genomic
region [19]. If a gene’s expression is associated with its CNV at
FDR <0.05, the CNV is a cis-CNV. (4) cis-miRNA-gene pairs for
mapping miRNA and gene expression profiles: a small portion of
miRNAs are embedded in gene regions (i.e., host genes) and fre-
quently co-transcribed with host genes [17, 18]. If the expression
levels of an miRNA and its host gene are associated at FDR <0.05,
the pair is a cis-miRNA-gene pair. (5) cis-mRNA-protein pairs for
mapping protein and gene expression profiles: the abundance of
a protein depends on the corresponding mRNA transcript level
and other factors [20]. If their association is significant at FDR
<0.05, the pair is a cis-mRNA-protein pair.

Multi-Omics Data matcher (MODMatcher)

In the “determine self-aligned vs cross-aligned” step (Fig. 1E),
the similarity scores of self-aligned profiles between Type A and
Type B, S(Ai , Bi ), were top 5% ranked among S(An, Bi ), n =
1 . . . NA as well as S(Ai , Bn), n = 1 . . . NB , to be annotated as self-
aligned, where NA and NB represent the number of samples of
Type A and Type B, respectively. If the sample sizes were >400,
top 20 was used as the threshold for self-alignment. Next, for
the profiles that were not self-aligned, reciprocal mapping was
applied to find any potential matches among other unmatched
profiles. If the similarity score of sample j of Type A and sample k
of Type B, S(Ai , Bk) , is first ranked among S(Aj , Bn), n = 1 . . . NB

as well as S(An, Bk), n = 1 . . . NA, then the pair is annotated as
cross-aligned.

A probabilistic Multi-Omics Data matcher
(proMODMatcher)

The characteristics (e.g., noises, biases, dynamic ranges) of 2
types of profiles may be different. The rank-based cut-off was
not able to reflect similarity score differences in a specific sim-
ilarity score distribution with a large or small variance (Sup-
plementary Fig. S7). In the “determine self- vs cross-aligned”
step, the proMODMatcher evaluated a similarity score in a bi-
variate normal distribution, X ∼ N2(μ, �), where μ is the mean
vector and � is the covariance matrix (Fig. 1D). The probability
of a match between profile i of Type A and profile j of Type B,
P (Ai , B j ) = P (S(Ai , B j ), S(Ai , B j )), is estimated on the basis of
a score distribution of (S(Ai , Bm), S(Am, B j )), where Am and Bm

represent the Type A and Type B profile of the mth matched pro-
file pairs, respectively. Given the bivariate normal distribution,
we calculated the distance of a point x = (S(Ai , Bm), S(Am, B j ))
to the center of the distribution, known as the Mahalanobis dis-

tance, as r =
[
(x − μ)T

�−1(x − μ)
]1/2

, and the cumulative func-

tion F (R ≤ r) = 1 − e−r2/2. To obtain a more robust estimation
of the covariance matrix � of the distribution, we added 1,000
profile pairs of randomly permuted profiles in addition to true
profile pairs.

Additionally, we introduced a prior probability of self-
alignment p0. Thus, given profiles Ai and Bj and their similarity
score S(Ai , B j ) as well as the estimated Mahalanobis distance
ri,j , we calculated the p-value of the 2 profiles matched by chance
as

p(Ai , B j ) =
{

p0 ∗ e−r2
i, j /2, if i = j

e−r2
i, j /2, if i �= j

.

In this study, the prior probability p0 was set as p0 = 1/Ns,
where Ns represents the number of samples. We also set global
similarity score cut-offs for self-alignment, Scut−off

self , as well as
cross-alignment, Scut−off

cross . The Scut−off
self value was set as the lower

bound of 99% of the self-self similarity scores estimated by mean
and standard deviations of S(Ai , Bi ), where i indicates the sam-
ples with both Type A and Type B profiles. And the Scut−off

cross was
set as the lower bound of 68% of the self-self similarity scores.

The similarity score S(Ai , B j ) and its corresponding p-value
p(Ai , B j ) were used to identify matched pairs between Type
A and Type B profiles (Fig. 1E). Each round of our proce-
dure consisted of 3 steps. First, the self-alignment similar-
ity score S(Ai , Bi ) and corresponding p-value p(Ai , Bi ) were
calculated. If S(Ai , Bi ) > Scut−off

self and (Ai , Bi ) < pi �= j (Ai , B j ),
then the profiles Ai and Bi were self-aligned. Second, for a
profile Ai that was not self-aligned to the profile Bi in the
first step, it was compared to all unmapped profile B j . If
the similarity score S(Ai , B j ) < Scut−off

cross and the correspond-
ing p-value p(Ai , B j ) ≤ arg min

n∈[1..., NB ]
(p(Ai , Bn))and p(Ai , B j ) ≤

arg min
n∈[1..., NA]

(p(An, B j )), then the profiles Ai and B j were cross-

aligned. Third, for profile pairs Ai and Bi that were not aligned
in the first 2 steps, if S(Ai , Bi ) > Scut−off

self and the p-value p(Ai , Bi )
was smaller than the fifth smallest among p(Ai , Bn), n = 1 . . . NB

as well as p(An, Bi ), n = 1 . . . NA, then the profiles Ai and Bi were
rescued as self-aligned. The rounds of alignments were repeated
until there was no further change.
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Correlation of cis-associated mRNA and miRNA before
and after correction of labeling errors

To assess improvement of signals after labeling error correction,
we calculated the Spearman correlation between miRNA expres-
sion and its host genes with initially matched pairs based on
sample ID and with aligned sample pairs. To avoid bias due to
different number of samples, we matched the number of sam-
ples of initially matched pairs to the number of aligned pairs.
We randomly selected the samples with the same number of
aligned pairs, and calculated the Spearman correlation. We per-
formed random selection 100 times and calculated the mean of
correlation.

Availability of source code and requirements

Project name: ProMODMatcher (passcode to decrypt the zipped
file is “password123”)
Project home page: Github site (https://github.com/integrative
networkbiology/proMODMatcher) and http://labs.icahn.mssm.
edu/zhulab/software/
Operating system: Platform independent
Programming language: R (R 3.5.1 or later)
Other requirements: R package mnormt
License: GNU General Public License
RRID: SCR 01 7219

Availability of supporting data and materials

Data supporting the results of this article are publicly available at
the Firehose database, TCGA data portal, and ICGC data portal
(see Data Description). Data further supporting this work and
snapshots of our code are available in the GigaScience repository,
GigaDB [21].

Additional files

Supplementary Figure S1. Similarity scores of matched pairs
based on simulated datasets.
Supplementary Figure S2. Similarity scores of cross-aligned
pairs detected by only MODMatcher based on aligning RNASeq
and miRNA profiles of BRCA data.
Supplementary Figure S3. Similarity scores of cross-aligned
pairs based on aligning RNA and miRNA profiles of BRCA data.
(A) Alignment of RNAseq and miRNAseq profiles. (B) Alignment
of Agilent array and miRNAseq profiles.
Supplementary Figure S4. Similarity scores of cross-aligned
pairs detected by only MODMatcher based on aligning Array and
miRNA profiles of BRCA data.
Supplementary Figure S5. Similarity scores of cross-aligned
pairs based on aligning RNA and RPPA profiles of BRCA data. (A)
Aligning of RNAseq and RPPA profiles. (B) Aligning of Agilent ar-
ray and RPPA profiles.
Supplementary Figure S6. The frequency of genes of which the
number of samples with non-assigned values are greater than
each percent of samples.
Supplementary Figure S7. Examples of distribution of similar-
ity scores. The red asterisk indicates the values of the highest
similarity score.
Supplementary Table S1. Sample alignment results by MOD-
Matcher for mRNA (Array and RNAseq) -miRNAseq profiles
based on BRCA data.

Supplementary Table S2. Sample alignment results by MOD-
Matcher for mRNA (Array and RNAseq) -RPPA profiles based on
BRCA data.
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