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Abstract

The use of neural networks to predict molecular properties calculated from high level quantum 

mechanical calculations has made significant advances in recent years, but most models need input 

geometries from DFT optimizations which limit their applicability in practice. In this work, we 

explored how machine learning can be used to predict molecular atomization energies and 

conformation stability using optimized geometries from Merck Molecular Force Field (MMFF). 

Based on the recently introduced deep tensor neural network (DTNN) approach, we first improved 

its training efficiency and performed an extensive search of its hyperparameters, and developed a 

DTNN_7ib model which has a test accuracy of 0.34 kcal/mol mean absolute error (MAE) on QM9 

dataset. Then using atomic vector representations in the DTNN_7ib model, we employed transfer 

learning (TL) strategy to train readout layers on the QM9M dataset, in which QM properties are 

the same as in QM9 [calculated at the B3LYP/6–31G(2df,p) level] while molecular geometries are 

corresponding local minima optimized with MMFF94 force field. The developed TL_QM9M 

model can achieve an MAE of 0.79 kcal/mol using MMFF optimized geometries. Furthermore, we 

demonstrated that the same transfer learning strategy with the same atomic vector representation 

can be used to develop a machine learning model that can achieve an MAE of 0.51 kcal/mol in 

molecular energy prediction using MMFF geometries for an eMol9_CM conformation dataset, 

which consists of 9959 molecules and 88,234 conformations with energies calculated at the 

B3LYP/6–31G* level. Our results indicate that DFT-level accuracy of molecular energy prediction 

can be achieved using force-field optimized geometries and atomic vector representations learned 

from deep tensor neural network, and integrated molecular modeling and machine learning would 

be a promising approach to develop more powerful computational tools for molecular 

conformation analysis.
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I. INTRODUCTION

Molecular conformation analysis is essential in elucidating molecular structure-property 

relationship and is often a prerequisite for structure based molecular design1–3. Reliable 

identification of low-energy conformers for simple small molecules can be achieved with 

high-level quantum mechanical calculations4, but would be computationally demanding for 

more complicated drug-like molecules3. Currently in structure based rational drug design, 

computational estimation of ligand conformation stability is mostly dependent on molecular 

mechanical force fields3, 5–7, which is computationally efficient but is limited by the 

accuracy of force fields.

In recent years, machine-learning based methods have made remarkable progresses in 

molecular energy predictions8–52. One significant advance is deep tensor neural network 

(DTNN)10, which employs atomic number and interatomic distance matrix as the input and 

utilizes a flexible graph neural network to predict molecular properties based on atomic 

vector representations. In DTNN, initial atomic vector ci
0  for an atom i is initialized based 

on its atomic number and then iteratively updated to final atomic vector ci
T  by using T 

interaction blocks (ib). Each ib is a tensor layer to model intermolecular interactions with 

other atoms in the molecule, and T = 2 or 3 has been utilized in DTNN. ci
T  is then fed into 

two fully connected readout layers to predict an atomic energy contribution Ei, and the sum 

of all atom-wise energies in a molecule is the total molecular energy E. With this relatively 

simple and flexible neural network, DTNN achieved a test accuracy of 0.84 kcal/mol MAE 

for the QM9 dataset53–55. Subsequently, several deeper neural network models with more 

sophisticated network architectures have been developed and the state of the art performance 

in predicting molecular energies is progressing rapidly. For example, SchNet56–57, which 

utilizes continuous-filter convolutions with filter-generating subnetworks to model the 

interaction terms and more atom-wise layers in interaction block, has achieved a much 
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smaller MAE on QM9 dataset. However, such impressive test accuracy has so far only 

achieved with DFT optimized geometries, which limits the efficiency of these neural 

network based models in practical applications, such as for identifying low-energy 

conformers in high-throughput screening. Thus, we are motivated to investigate whether and 

how machine learning can be used to accurately predict DFT calculated molecular 

atomization energies and conformation stability using optimized geometries with Merck 

Molecular Force Field (MMFF)5. In 2017, Raghunathan et al16. introduced Δ-machine 

learning method which linearly combines low-level quantum chemical properties and 

machine learning corrections to get highly accurate predictions. Different from their work, 

no baseline atomization energy of MMFF is needed in our current work, and transfer 

learning (TL) strategy58–59 together with atom representation learned from deep-learning 

model are utilized to directly evaluate DFT-level atomization energies based on MMFF 

optimized geometries.

Our overall workflow is illustrated in Figure 1. First, we demonstrated importance of 

training efficiency improvement, hyperparameter search and data augmentation in the 

optimization of machine learning models. Based on the same DTNN architecture, we 

developed a DTNN_7ib model which is a DTNN model with 7 interaction blocks and has a 

much-improved test accuracy of 0.34 kcal/mol MAE on the QM9 dataset. Then, we built 

two new data sets QM9M and eMol9_CM, in which geometries are optimized with the 

MMFF94 force field and molecular energies are calculated with a DFT method at the 

corresponding DFT-minimized geometry in same local minima, and explored transfer 

learning strategy using atomic vector representations from the DTNN_7ib model. The 

results from TL_QM9M and TL_eMol9_CM, which are two models developed with QM9M 

and eMol9_CM dataset respectively, indicate that our presented machine learning strategy 

can achieve DFT-level accuracy of molecular energy prediction using force-field optimized 

geometries. Finally, we generated another new data set Plati_CM beyond nine heavy atoms 

to test the generality and applicability of the developed TL_eMol9_CM model in molecular 

conformation analysis. All of our presented machine learning models, corresponding source 

codes as well as data sets are freely available on the web at: https://www.nyu.edu/projects/

yzhang/IMA.

II. DATASET

A critical component in developing machine learning models is dataset. In this work, besides 

employing the QM9 dataset, we have generated three new data sets: QM9M, eMol9_CM, and 

Plati_CM, as listed in Table 1 and described in detail below.

QM9, which includes ~134k structures with 9 or less heavy atoms (C, O, N, F) from GDB-9 

dataset, has become the most widely-used dataset for developing machine-learning models 

to predict quantum-chemical molecular energies. In the QM9 dataset, all molecular 

geometries are optimized at B3LYP/6–31G(2df,p) level and corresponding molecular 

properties are calculated at the same level53. We use this dataset for developing and 

benchmarking the DTNN_7ib model from DTNN model.
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QM9M dataset is built based on QM9 dataset, and the sole difference is in the molecular 

geometries. The molecular geometries in QM9M dataset were obtained from the 

optimization of the molecular geometries in QM9 dataset with MMFF94 force field using 

RDKit60. Molecular properties in QM9M dataset are kept the same as in QM9 dataset. The 

QM9M dataset is developed to explore whether DTNN_7ib model can be directly applied for 

energy prediction with force-field optimized geometries.

eMol9_CM dataset is a newly generated conformation dataset, and it is designed to develop 

models for energy prediction of low-energy conformers with force-field optimized 

geometries. This dataset is built based on eMolecules61 dataset, which contains SMILES 

(Simplified Molecular-Input Line-Entry System) of purchasable compounds, and QM9 

dataset. Firstly, the molecules are selected from the overlap set of the eMolecules and QM9. 

For each selected compound, we employed RDKit to generate up to 300 conformations from 

SMILES using ETKDG62 method. Similar conformations have been removed after Butina63 

clustering with 0.2 Å RMSD cutoff, and redundant mirror-image conformations have been 

cleaned after the RMSD calculation between each pair of conformations by ArbAlign64 with 

consideration of symmetry. Secondly, each conformation was minimized with MMFF94, 

and B3LYP/6–31G* minimization65 was conducted on MMFF optimized geometry to get 

corresponding DFT-level energy. Here, 6–31G* basis set has been applied since it speeds up 

the computation in comparison with the 6–31G(2df, p) basis set which was used for 

developing QM9 dataset. Since DFT energies in the eMol9_CM dataset are calculated by 

different basis set as in QM9 dataset, it would be a more stringent applicability test for 

transfer learning with atomic embedding obtained in the DTNN_7ib model. The eMol9_CM 

dataset includes 88,234 conformations from 9,959 molecules, and its distribution of RMSD 

between each pair of MMFF optimized geometry and DFT optimized geometry is shown in 

Figure S1.

Plati_CM dataset is created to evaluate the extrapolation performance of TL_eMol9_CM 

model and it includes 4076 conformations for 74 molecules with 10 to 12 number of heavy 

atoms from Platinum dataset66, which is a dataset of protein-bound ligand conformations 

whose high-quality X-ray structures have been determined and are available from the PDB 

database67. Conformation generation procedure for Plati_CM dataset is the same as the 

procedure used for eMol9_CM.

III. METHOD

A. Neural Network Model Architecture

As illustrated in Figure 2, DTNN_7ib has the same network architecture as DTNN. The 

difference between two models is hyperparameter setting, which has been shown in Table 2. 

Inputs of DTNN_7ib for a molecule with n atoms include an atomic number vector 

Z =     Z1…   Zn  and an interatomic distance matrix Dcomputed from their 3D coordinates. 

Each interatomic distance is described by a vector from the following Gaussian function:

di j = [exp(−
(Di j − kΔμ)2

2σ2 )]
0 ≤ k ≤ μmax/Δμ
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where μmax, Δμ and σ are the hyperparameters of a DTNN model. Here, we set σ has same 

value as Δμ, which can also be different.

For initial atomic vector ci
0  of atom i, it is initialized randomly based on its atomic number, 

and optimized during training. At t (1 ≤ t ≤ T) interaction block, an updated atomic vector 

ci
t  is obtained by aggregating its atomic environment term V i

t =  
j ≠ i

vi j
t  with ci

t − 1 :

ci
t =  ci

t − 1 +  
j ≠ i

vi j
t

The interaction vector vi j
t  between atom i and atom j is computed as flowing:

vi j
t = f act W f c

t Wc f
t c j

t − 1 + bc f
t ∘ Wd f di j + bd f

where c j
t − 1  is the current atom vector for neighboring atom j   j ≠ i ,d i j is the expanded 

distance vector between atom i and atom j, ∘ is the element-wise multiplication of two 

matrices, and f act is the activation function. After generating the final atomic vector ci
T , 2 

fully connected layers are added as readout layers to predict the atomic energy for atom i, 
and the sum of atomic energies of all atoms in the molecule is the molecular energy.

Using atomic vector representations in the DTNN_7ib model, we employed transfer learning 

strategy and retrained readout layers for QM9M and eMol9_CM datasets to develop two new 

machine learning models: TL_QM9M and TL_eMol9_CM, respectively, which use MMFF 

optimized geometries as inputs. For both TL models, the number of readout layers has been 

increased to 4 and activation function in readout layers has been changed into shifted 

softplus (ssp).

B. Neural Network Model Implementation, Training and Evaluation

All neural network models in this work were implemented with TensorFlow (version 

1.4.1)68. To improve data-input efficiency, all input data were saved in the tfrecord format 

and data import pipelines were built using tf.data API. Meanwhile, cyclic cosine annealing 

training schedule69 together with Adam optimizer was utilized to improve training 

efficiency, in which the learning rate at i iteration is as following:

α i =  
α0
2 cos

πmod(i − 1, I
M

I
M

+  1

where α0  is the initial learning rate, I is the number of total iterations, M is the number of 

total cycles. Here, α0= 0.001 and M = 8.
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To train the DTNN_7ib model, QM9 dataset have been split randomly into training (99k), 

validation(1k) and test set (33,885), and 400k iterations with batch size equals to 100 have 

been employed. In order to improve atomic vector representations, we have augmented the 

training data set with 1.5 k distant diatomic systems, in which two atoms have distance 

between 20 Å and 30 Å and their molecular energy is assumed to be the sum of their atomic 

reference energies. Thus, the total training set includes 100.5k molecules. MAE of validation 

set has been checked every 1k iterations and the model with the lowest MAE has been 

picked as our final model. The average performance of five models trained upon data split by 

different random seed have also been computed.

The training/validation/test split for developing transfer learning models are also shown in 

Table 1. To avoid any training-testing overlap bias, the split for developing TL_QM9M is the 

same as in optimizing DTNN_7ib, and eMol9_CM dataset has been divided by molecule 

types. Both models were trained using the same training schedule as DTNN_7ib. To evaluate 

model performance, besides normal absolute error (ErrorA), which is the error between 

predicted energy and target energy for each conformation, we also computed relative error 

(ErrorR) to consider model’s ability on conformation stability calculation. The relative error 

can be computes as

ErrorR =   i
n error_metric Ei

c − Ei
min

n

where error_metric can be MAE or RMSE, Ei
c  is the energy of conformation c for molecule 

i and Ei
min is the lowest energy of the molecule i, and n is the number of total molecules. 

This relative error also enables us to compare different methods without the limitation of 

different reference energy. Success rate for finding the right lowest conformation for all 

molecules in the test set has also been calculated.

IV. RESULT and DISCUSSION

A. DTNN_7ib

One significant advance in developing neural network models to predict DFT molecular 

energies is DTNN, which achieved a test accuracy of 0.84 kcal/mol MAE for the QM9 

dataset. Subsequently, several more recent works, including SchNet, have achieved much-

improved test accuracy with more sophisticated network architectures. Thus, one interesting 

question is whether DTNN itself can be significantly improved by hyperparameter 

searching, which is an important element of machine learning model development. However, 

one key challenge is its training efficiency since it took about a week to optimize the 

published DTNN model (162h for ib = 3 on an NVIDIA Tesla K40 GPU), while 

hyperparameter searching needs to train many models. Here we accelerated training data 

input efficiency by using tfrecord and tf.data API, and our reimplemented DTNN code can 

achieve a speed-up of more than ten times in comparison with using the original code 

downloaded from https://github.com/atomistic-machine-learning/dtnn. Meanwhile, we 

employed a cyclic cosine annealing training schedule (cyclic training schedule) instead of 
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commonly-used learning rate exponential decay training schedule. As shown in Figure S2, 

the model training efficiency and performance can be significantly improved by using cyclic 

training schedule.

With more efficient model training, we first examined the atomic vector size (number of 

basis functions) on model performance. As shown in Figure S3, in comparison with an 

atomic vector size of 30 used in the DTNN model, a better performance can be achieved by 

increasing the size to 256, which has more flexibility to encode atomic environment. With 

the atomic vector size of 256, we then explored hyperparameter space of interaction block 

by grid search, as shown in Table 2 and Figure S4. Hyperparameters we searched include: 

shared/distinct weights for different interaction blocks (ibs), μmax, Δμ, number of interaction 

blocks and activation functions. As shown in Figure S4 (A), using distinct weights for 

different interaction blocks would reduce the validation error. With the increasing number of 

interaction blocks, different μmax and Δμ have been tested. DTNN used 20 Å for μmax, which 

would limit model efficiency and scalability for large molecules. Smaller μmax would be 

preferred for the sake of potential computational efficiency but would be expected to 

sacrifice some accuracy. Thus, the result in Figure S4 (B) is quite surprising: a model with 7 

for ib and 3 Å for μmax has the lowest validation error among all combinations tested. 

Meanwhile, models trained with Δμ = 0.1 Å consistently perform better than corresponding 

ones with Δμ as 0.2 Å (Figure S4(C)). Activation function has been changed into shifted 

softplus (ssp x = ln 0.5ex + 0.5 ) to alleviate the vanishing-gradient problem, and it performs 

better than using tanh for deeper models, as shown in Figure S4 (D). Although with different 

architectures, the optimized hyperparameter set for DTNN_7ib becomes similar to the one in 

SchNet, including larger number of basis functions in atomic representations (64 in SchNet 

vs. 256 in DTNN_7ib), deeper interaction blocks (6 in SchNet vs. 7 in DTNN_7ib), distinct 

weights for different interaction blocks, and shifted softplus activation function.

Training data set has been augmented with 15k distant diatomic systems to further improve 

atomic vector representations. Comparing the atomization energy distribution for heavy 

atoms of two models trained with and without distant diatomic systems (Figure S5), we 

found that the energy ranges for N, O, F become much narrower after training data 

augmentation. Also, the peak position of C has been moved into lower energy region and 

can be easily distinguished from N and O. This indicates that model trained with distant 

diatomic systems can perform better in distinguishing different atom types.

By enhancing the training efficiency, searching hyperparameters and incorporating distant 

diatomic systems into our training set, as presented above, we have developed our improved 

model DTNN_7ib. Mean absolute errors (MAE) of QM9 dataset for DTNN_7ib trained with 

different training set sizes are summarized in Table 3 and compared with the performance of 

DTNN and SchNet. The learning curves have also been shown in Figure S6. As show in 

Table 3 and Figure S6(B), DTNN_7ib model can achieve consistently better performance 

than DTNN and equally good performance as SchNet. DTNN_7ib requires shorter training 

epochs to achieve 0.34 kcal/mol MAE (around 304 epochs) than original SchNet56 (750 – 

2400 epochs) and the training process can be finished in 13 hours on an NVIDIA Tesla P40 
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GPU. It should be noted that the training of SchNet has been sped up a lot (12h, NVIDIA 

Tesla P100 GPU) in SchNetPack57 by using a decay factor in learning rate reducing process 

if the validation loss doesn’t change in a given number of epochs. Thus, the training 

efficiency of our DTNN_7ib can be further improved by applying a better training schedule 

in the future.

To examine whether final atomic vector representation ci
T  learned by DTNN_7ib is 

chemically meaningful, we used pairwise cosine distance of atomic vector representations as 

the atomic similarity measure and divided atoms into different categories with hierarchical 

clustering for two molecules from QM9 dataset: 4-ethylphenol and 4-

(hydroxymethyl)imidazole, which mimic amino acid side chains of tyrosine and histidine 

respectively. Meanwhile, general AMBER force field (gaff)71 atom types have been assigned 

for each atom which accounts for its atomic number, hybridization and bonding 

environment. From Figure 3, we can see that using embedding from DTNN_7ib, atoms in 

both molecules can be hierarchically clustered into different categories consistent with 

chemical intuition: heavy atoms and hydrogens immediately divided into two different 

clusters; different types of heavy atoms have been discriminated by DTNN_7ib and the 

results are consistent with gaff atom type. It should be noted that this is not a trivial task: we 

have also trained a DTNN model by using original hyperparameters without distant diatomic 

molecules and a DTNN_7ib model without distant diatomic molecules. The results in Figure 

S7 and Figure S8 indicate that clustering from the resulted embedding of these two models 

is much less chemically meaningful, which confuses among atoms with different atom types 

and same atom type in different environments. These results demonstrated that improved 

DTNN_7ib model can yield more chemically meaningful atomic vector representation ci
T

which reflects both atom type and bonding environment.

B. Transfer Learning Models: TL_QM9M and TL_eMol9_CM

Using atomic vector representations in the DTNN_7ib model, we have employed transfer 

learning strategy and retrained readout layers for a new machine learning model TL_QM9M 

with the QM9M dataset, which has same molecular energies as in the QM9 dataset but with 

input geometries from the corresponding MMFF minima. The test results are shown in Table 

3, in which we also included performance on different training set sizes. It is not surprising 

that DTNN_7ib leads to a significantly large MAE of 4.55 kcal/mol on QM9M, which 

demonstrates the necessity to retrain a model using MMFF optimized geometries. However, 

for our transfer learning TL_QM9M, its MAE on QM9M dataset is 0.79 kcal/mol (100k 

training references), which is better than 1 kcal/mol (1 kcal/mol is typically considered as 

chemical accuracy11) and even better than the original model DTNN (0.84 kcal/mol with 

DFT geometry as input). These results indicate that transfer learning strategy with atomic 

vector representations in the DTNN_7ib model is a promising direction to develop machine 

learning models to accurately predict DFT calculated molecular atomization energies using 

optimized geometries with Merck Molecular Force Field (MMFF).

To identify low-energy conformers for small molecule efficiently is a prerequisite in 

structure based molecular design, and is typically carried out after the conformation 
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generation process. Accurately molecular energy prediction for diverse conformations of the 

same molecule is often more difficult since the difference between conformations could be 

very small. To examine whether machine learning can be used to build an accurate model for 

conformation analysis, we created the eMol9_CM dataset and developed TL_eMol9_CM 

model using same transfer learning strategy. It should be noted that target molecular energy 

in eMol9_CM has been calculated by a different basis set from QM9, which introduces 

additional difficulty.

Table 5 shows performances of our MMFF-based models on eMol9_CM dataset. In terms of 

absolute error, TL_eMol9_CM can achieve 0.51 kcal/mol MAE, which is close to the 

performance of our DFT-based model DTNN_7ib on QM9 dataset. On the other hand, MAE 

and RMSE of TL_QM9M are much worse than TL_eMol9_CM model because of the 

different basis set in energy calculation, which indicates the necessity to retrain the model to 

adapt to the change of energy calculation method. Meanwhile, in terms of relative error, we 

can compare the performance of MMFF94, TL_QM9M and TL_eMol9_CM together, and 

our results indicate that both TL_QM9M and TL_eMol9_CM can achieve much better 

performance than MMFF method on MAE, RMSE and success rate, which indicates that it 

is promising to apply MMFF-based machine learning models to search low-energy 

conformers and improve conformation stability prediction.

Additionally, to consider the impact of difference between MMFF optimized geometries and 

DFT optimized geometries on prediction accuracy, the performances on test sets with 

different RMSD cutoffs have been calculated. As shown in Figure 4 and Figure S9, the 

performance of TL_eMol9_CM is quite robust given different RMSD cutoffs while 

MMFF94 method’s performances deteriorate significantly when RMSD cutoff increases.

Besides good performance, to develop MMFF-based models based on transfer learning 

needs much less training time (TL_QM9M: 5h, TL_eMol9_CM: 6h).

In order to further investigate the applicability and limitation of the TL_eMol9_CM model, 

we have built a Plati_CM dataset, which includes molecules with more heavy atoms (10–12) 

than molecules in our training set (≤9). Our results show that the overall performance of 

TL_eMol9_CM become worse (relative MAE from 0.55 to 1.31 kcal/mol), but it still 

performs better than MMFF94 (Table 5). To analyze origin of significant performance 

decreasing of TL_eMol9_CM, we checked the average error of each molecule and grouped 

the results based on the number of heavy atoms. Error calculations with consideration of 

RMSD cutoff have also been conducted (Figure S11). Figure 5 shows the error distribution, 

and the peaks of two MAE distributions moves from small error region into large error 

region when the number of heavy atoms increases. It should be noted that there are two 

molecules with 10 heavy atoms having very large error (> 20 kcal/mol, Figure S10). After 

computing the cosine similarities between atomic vectors of these two molecules and atomic 

vectors from our training set, the nitrogen atoms in N(sp3)-N(sp3) group in these two 

molecules have been identified with lowest similarities. With the help of HasSubstructMatch 

command in RDKit, we checked the SMILES of whole QM9 dataset, and no similar N-N 

group has been found. Therefore, our results indicate that the main limitation of the 

TL_eMol9_CM model comes from its training data, which needs to be much larger and more 
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diverse for the development of more robust machine learning models in predicting molecular 

energies and conformation stabilities.

V. CONCLUSION

In this work, we demonstrated importance of training efficiency improvement, 

hyperparameter search and data augmentation in the optimization of machine learning 

models, and improved DTNN performance from 0.84 kcal/mol to 0.34 kcal/mol on MAE 

with no change of model architecture. Our newly developed model DTNN_7ib has deeper 

learning blocks and can generate chemical meaningfully atomic vectors which reflects both 

atom type and atomic environment. To address the application limitation caused by DFT 

optimized geometries, three datasets with both DFT calculated properties and MMFF 

optimized geometries have been created and two MMFF-based models have been developed 

by implementing transfer learning strategy on atomic vectors learned from DTNN_7ib. 

TL_QM9M can achieve better than chemical accuracy performance on QM9M dataset, and 

TL_eMol9_CM can achieve 0.51 kcal/mol MAE on eMol9_C M dataset. In addition, our 

work indicates that although the overall presented strategy looks promising, one key 

challenge is the data set, which needs significantly larger and diverse training set for the 

development of more robust machine learning models for molecular conformation analysis.
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Figure 1. 
Overall workflow of exploring how machine learning can be used to predict molecular 

atomization energies and conformation stability using force-field optimized geometries.
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Figure 2. 
Illustration of the model architecture.
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Figure 3. 
Atomic vector interpretation. (A) 4-ethylphenol and (B) 4-(hydroxymethyl)imidazole. Left 

are molecular graphs with SMILES. Right are hierarchical clustering results. The first row of 

x-axis is gaff atom type and the second row of x-axis is atom indexes numbers which are 

same as in molecular graph.
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Figure 4. 
(A) Absolute MAE and (B) relative MAE on test sets with different RMSD cutoffs. “None” 

means the performance is for total test set, “value” means the performance is for subset, 

which only includes conformations with RMSD less than “value”. Average and standard 

deviation of performances from five models trained with random split data have been shown. 

Performances of TL_eMol9_CM, MMFF94 are colored as black and blue, respectively.
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Figure 5. 
(A) Absolute MAE and (B) relative MAE distributions for molecules with different number 

of heavy atoms. Distribution for molecules with 10, 11, 12 heavy atoms is colored as blue, 

orange, and green, respectively.
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Table 1.

Datasets
a
 used for machine learning model development and evaluation.

Dataset Geometry Energy #Molecule
b

#Conformations
b #Heavy Atoms

QM9 B3LYP/6–31G(2df,p) B3LYP/6–31G(2df,p) 99,000/1,000/33,885 99,000/1,000/33,885 [1, 9]

QM9M MMFF94 B3LYP/6–31G(2df,p) 99,000/1,000/33885 99,000/1,000/33,885 [1, 9]

eMol9_CM MMFF94 B3LYP/6–31G* 8111/500/1,348 ~66,000/~6,000/~16,000
c [1, 9]

Plati_CM MMFF94 B3LYP/6–31G* 0/0/74 0/0/4,076 [10, 12]

a
QM9 dataset is generated by Ramakrishnan et al53. Other three datasets are prepared by ourselves.

b
Number of molecules and conformations in the training/validation/test sets are shown respectively.

c
eMol9_CM has been random split into train/validation/test sets using five different random seeds based on molecule types. Thus, the numbers of 

conformations for train/validation/test sets in different splits are different.
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Table 2.

Hyperparameters searched for interaction blocks during the model optimization.

Hyperparameters Test Values
a

μmax 3, 4, 5, 6, 8, 10, 20

Δμ 0.1, 0.2

number of interaction blocks 2, 3, 4, 5, 6, 7, 8

share/distinct weights shared, distinct

activation function tanh, shifted softplus

a
Hyperparameters used in DTNN_7ib are in bold, and hyperparameters used in the original DTNN model are underlined.
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Table 3.

QM9 performance (MAE in kcal/mol) for various models with different training set sizes.

# Training Data DTNN_7ib
a

TL_QM9M
b DTNN SchNet

25k 0.69 ± 0.02 1.49 ± 0.03 1.04 ± 0.02 -

50k 0.46 ± .02 1.01 ± 0.03 0.94 ± 0.02 0.59

100k 0.34 ± 0.01 0.79 ± 0.03 0.84 ± 0.01
0.34

c

a
MAE is the average of five models trained with data split by different random seed.

b
TL_QM9M performance is on QM9M dataset. The input coordinates are from MMFF optimized geometries.

c
SchNet performance is the one trained with 100k molecules70. In recently published paper56–57, SchNet performance on QM9 with 110k 

training set is 0.31 kcal/mol and 0.26 kcal/mol, respectively.
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Table 4.

Performance on eMol9_CM dataset
a

MMFF94 TL_QM9M TL_eMol9_CM

ErrorA
b MAE None 18.30 ± 0.08 0.51 ± 0.03

RMSE None 18.66 ± 0.10 1.27 ± 0.28

ErrorR
b MAE 1.60 ± 0.18 1.04 ± 0.18 0.55 ± 0.02

RMSE 2.70 ± 0.32 1.35 ± 0.18 0.72 ± 0.04

Success Rate 0.59 ± 0.01 0.62 ± 0.00 0.72 ± 0.01

a
Best performances are in bold.

b
Unit is kcal/mol.
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Table 5.

Performance on Plati_CM dataset
a

MMFF94
c TL_eMol9_CM

ErrorA
b MAE None 2.73 ± 0.35

RMSE None 4.74 ± 0.39

ErrorR
b MAE 2.65 1.31 ± 0.09

RMSE 4.40 1.59 ± 0.09

Success Rate 0.49 0.57 ± 0.05

a
Best performances are in bold.

b
Unit is kcal/mol.

c
There is no standard deviation in MMFF94 method since we used all conformations in Plati_CM as test set, but for TL_eMol9_CM we showed 

performances on five models.

J Chem Theory Comput. Author manuscript; available in PMC 2020 July 09.


	Abstract
	Graphical Abstract
	INTRODUCTION
	DATASET
	METHOD
	Neural Network Model Architecture
	Neural Network Model Implementation, Training and Evaluation

	RESULT and DISCUSSION
	DTNN_7ib

	Transfer Learning Models: TL_QM9M and TL_eMol9_CM
	CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

