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Abstract

Articular cartilage is a remarkable tissue whose sophisticated composition and architecture allow it 

to withstand complex stresses within the joint. Once injured, cartilage lacks the capacity to self-

repair, and injuries often progress to joint wide osteoarthritis (OA) resulting in debilitating pain 

and loss of mobility. Current palliative and surgical management provides short-term symptom 

relief, but almost always progresses to further deterioration in the long term. A number of 

bioactive factors, including drugs, corticosteroids, and growth factors, have been utilized in the 

clinic, in clinical trials, or in emerging research studies to stabilize the inflamed joint environment 

or to promote new cartilage tissue formation. However, these therapies remain limited in their 

duration and effectiveness. For this reason, current efforts are focused on improving the 

localization, retention, and activity of these bioactive factors. The purpose of this review is to 

highlight recent advances in drug delivery for the treatment of damaged or degenerated cartilage. 

First, we summarize material and modification techniques to improve the delivery of these factors 

to damaged tissue and enhance their retention and action within the joint environment. Second, we 

synthesize recent studies using novel methods to promote new cartilage formation via biofactor 

delivery, that have potential for improving future long-term clinical outcomes. Lastly, we review 

the emerging field of orthobiologics, using delivered and endogenous cells as drug-delivering 

“factories” to preserve and restore joint health. Enhancing drug delivery systems can improve both 

restorative and regenerative treatments for damaged cartilage.
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1. Introduction

Articular cartilage is a durable tissue that enables the load transmission and articulation of 

joints [1]. The dense extracellular matrix (ECM) of cartilage is composed of a zonally-

organized network of type II collagen fibers [1], allowing the tissue to resist complex 

loading patterns, including compression, tension, shear, and friction [2,3]. The ECM also 

contains a high concentration of proteoglycans (PG), forming negatively-charged aggregates 

that promote fluid pressurization upon loading [4–6]. Combined, these ECM components 

(Fig 1A) generate a unique viscoelastic material that is optimized to bear load over a lifetime 

of use [7]. However, articular cartilage is also frequently injured, both traumatically and with 

aging and disease. Due to the relative avascular nature of the tissue and the limited ability of 

cells to migrate to the tissue for repair, cartilage lacks an intrinsic healing capacity [8]; once 

injured, the tissue loses many of its load-bearing traits, making the adjacent cartilage more 

vulnerable to wear [9]. Furthermore, injury can elicit an inflammatory response throughout 

the joint, with increased levels of synovial cytokines that elicit further degradation and 

damage to the tissue. Ultimately, with these accompanying chemo-mechanical insults, 

injuries often progress and conclude in joint-wide osteoarthritis (OA; Fig 1B), a debilitating 

disease that affects nearly 50 million people in the United States alone [10].

Common surgical interventions to treat cartilage injuries include chondroplasty [11,12] 

(removal of torn tissue) and microfracture [13,14] (marrow stimulation), however both 

provide only short-term symptomatic relief and do not prevent OA progression. More 

recently, chondrocyte implantation techniques [15,16] have shown superiority to 

microfracture for up to 5 years [17], but their ability to produce hyaline cartilage and 

establish long-term functionality have not yet been verified [13,14]. Due to this eventual 

onset of degeneration, clinicians and scientists have sought to deliver bioactive factors, 

consisting of proteins, nucleic acids, carbohydrates, or molecules (synthetic or biologic) that 

elicit a response in host tissues or cells [18–20]. Clinically speaking, most drugs used to 

address cartilage injury are intended for palliative OA treatment, and can provide some 

measure of pain and symptom relief. Nonsteroidal anti-inflammatory drugs (NSAIDs), such 

as Ibuprofen and Diclofenac, have shown some benefits over placebo treatment [21–23], but 

both oral and topical administration results in inefficient delivery of the drug to the joint. 

The higher doses required to provide pain relief may also cause harmful consequences 

throughout the rest of the body (e.g. cardiovascular) [24,25]. Additional clinically-used 
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bioactive factor treatments include intra-articular corticosteroid and hyaluronan injections; 

the former provides both pain/inflammatory relief and anti-catabolic activity [26–28], while 

the latter can, to some extent, restore joint lubrication and provide some chondro-protective 

capacity [29,30]. However, retention of these bioactive factors within the joint is limited, as 

these agents are readily cleared due to their relatively small molecular size [31,32], and 

therefore only provide short-term benefits [28]. Management of cartilage injuries and 

osteoarthritis would be greatly improved with localized delivery and retention of these 

factors.

At the other end of the spectrum, tissue engineers are developing new strategies to replace 

the damaged cartilage, either in small defects or after joint-wide degeneration. 

Unfortunately, current “replacements” do not generally result in long-term hyaline cartilage; 

nevertheless, there is potential in utilizing bioactive factors to induce the formation of 

functional tissue. For example, in vitro culture of hydrogel constructs with chemically 

defined medium containing the growth factor TGF-β3 promotes the chondrogenesis of 

mesenchymal stem cells (MSCs) [33,34], indicated by increased type II collagen and PG 

deposition. Furthermore, a plethora of other growth factors (BMP-2, BMP-7, IGF-1, FGF-2 

[19,35]) have been used to promote neocartilage tissue formation. However, scaffolds that 

simply encapsulate these factors alone often release them within a matter of hours [36,37], 

and so cannot guide chondrogenesis and tissue formation (which occurs over the course of 

weeks to months). Additionally, while certainly chondrogenic, these factors can elicit 

negative responses, such as synovial fibrosis [38] or ossification [39], if introduced to off-

target cells and tissues within the joint. Therefore, prolonged delivery without continual 

supplementation and precise localization to the desired cells are paramount in engineering 

functional cartilage tissue following injury.

With this lack of effective long-term therapeutics and treatments, novel techniques have 

emerged to promote repair and regeneration, via the combination of materials, cells, and 

bioactive factors to replace, rejuvenate, or protect the native cartilage matrix (Fig 1C). One 

general approach involves reprogramming the joint environment and/or wound interface 

with bioactive factors (Fig 1D-left), typically to restore the behavior of chondrocytes, calm 

the inflammatory milieu, or simply relieve pain. Another involves incorporating 

chondrogenic factors into scaffolds, with the intention of guiding cells to produce new 

cartilaginous matrix to replace the damaged or missing tissue (Fig 1D-right). Regardless of 

the application, drugs and growth factors can have a significant impact on these processes.

In this review, we focus on advances in drug delivery systems for cartilage treatment 

applications. First, we discuss innovative approaches that specifically address the inflamed 

joint environment and the damaged tissue interface, to improve retention and localization of 

palliative therapeutics. Next, we describe novel scaffold fabrication techniques that better 

control the release and activity of these bioactive factors in order to enhance neocartilage 

formation for tissue replacement. Finally, this review examines the emerging field of 

orthobiologics, utilizing cells as “biological producers” of bioactive factors, and discusses 

the strengths and current limitations of these approaches.
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2. Enhanced Delivery and Retention of Bioactive Factors for Joint 

Preservation

2.1. Current Drug Usage for Joint Pain is Relatively Ineffective

Oral delivery of NSAIDs (Fig 2A) remains a common mode of treatment for both focally 

injured and degenerated cartilage, as these drugs inhibit cyclooxygenase enzymes, reducing 

the production of biological mediators involved in inflammation (e.g. prostaglandin E2). 

While pain and inflammation relief are provided to some extent, daily usage at higher doses 

[40] is required in order to provide a noticeable benefit. Moreover, these larger doses can 

lead to gastrointestinal [41–43] and cardiovascular [44,45] complications, and thus topical 

administration has better indications for OA management with NSAIDs [46,47]. Topical 

NSAIDS (Fig 2B) are applied via cream, gel, or patch 1–3 times daily, and have shown a 10- 

to 20-fold increase in NSAID concentration in synovial tissues over serum and plasma levels 

[48,49], indicating a more targeted delivery. However, the use of topical NSAIDs can be a 

burden on patients, resulting in skin irritations and withdrawal issues in patients [50,51]. 

Perhaps of greatest significance, for both oral and topical delivery, is that pharmacokinetic 

analyses have determined a drug half-life of 1–7 hours within the joint [52,53].

Intra-articular injections of bioactive factors (Fig 2C), as is typically done with 

corticosteroids (e.g. triamcinolone acetonide, dexamethasone) and hyaluronic acid (HA), can 

improve efficiency of delivery. For example, injected corticosteroids have shown slightly 

favorable outcomes to oral NSAIDs for up to 4 weeks with regards to patient-reported pain 

relief [54]. Similarly, HA injections show slightly improved results over NSAIDs, and 

significantly lower the incidence of adverse events and withdrawal [55]. However, residence 

time of these molecules is a concern, as corticosteroids and HA concentrations diminish 

rapidly post-injection [56,57], with a residence time of only 6–25 [58,59] and 22–56 days 

[56,60], respectively. For this reason, intra-articular delivery to maintain therapeutic levels 

consists of continuous monthly injections [55,61], creating a greater burden on patients with 

regards to comfort and finances. Moreover, even precise image-guided injection to the site of 

injury did not improve patient-reported pain outcomes [62], likely due to poor retention. 

This indicates that both localization and retention are required to improve the efficacy and 

longevity of bioactive corticosteroids. Lastly, while corticosteroids can provide pain and 

inflammatory relief for a few weeks, short-term high doses of these corticosteroids are 

detrimental to cartilage health (volumetric cartilage loss and tissue atrophy). The long-term 

release of lower concentrations of these factors could greatly improve their impact while 

preserving cartilage tissue structure and function. The following sections detail novel 

methods to improve the delivery, localization, retention, and release of these and other 

bioactive factors into the joint environment (Fig 2D) to provide patients with longer-term 

symptomatic relief.

2.2. Carriers for Enhanced Drug Delivery and Retention

The rapid clearance of NSAIDs and corticosteroids is related to their relatively low 

molecular weight (<1kDa), which allows the lymphatic vessels in the synovium and joint 

capsule to clear these small molecules. Even larger hyaluronic acid (6–100MDa) molecules 

are either enzymatically digested and/or cleared from the joint within weeks [60,63]. Other 
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small molecules, including monoclonal inflammatory antibodies (e.g., TNF inhibitors), 

receptor antagonists (e.g., IL-1Ra), and protease inhibitors (e.g., MMP inhibitors, 

cathepsins), can serve as disease-modifying osteoarthritis drugs (DMOADS) and are under 

development, but are similarly cleared from the joint soon after injection in the absence of a 

delivery system [64]. To address this event, a number of new materials (microcarriers, 

nanocarriers, liposomes, hydrogels) have been developed to encapsulate bioactive factors 

and control their release from larger particles that are not as easily cleared from the joint.

Many micro-carrier – drug combinations are currently under development for OA treatment 

[64]. Perhaps the most advanced among these combinations (already under testing in a Phase 

III trial) take advantage of poly-lactic-glycolic acid (PLGA) microcarriers (FX006, Flexion 

Therapeutics, 35–55 microns in diameter) [65–67]. This proposed treatment consists of 

carriers that contain crystals (<5 microns) of the corticosteroid triamcinolone acetonide. 

Encapsulation results in a triphasic pharmacokinetic release profile that provided patients 

with pain relief lasting 12 weeks longer than placebo treatment. This release and activity 

profile is consistent with prior degradation profiles of the PLGA polymer [68], and can be 

elongated by increasing the ratio of lactide (slower degradation) to glycolide (faster 

degradation) groups. However, the FX0006 carrier only provided slight improvement in OA 

pain outcomes over intra-articular administration of the drug itself [65], leaving lots of room 

for clinically-relevant improvement. Other materials have been utilized for both micro- and 

nano-carrier development (Fig 3A), including gelatin, chitosan, polycaprolactone (PCL), 

polyanhydrides, and polyester amides (PEA) [69,70]. When produced at a small length 

scale, nanoparticles provide a greater surface-to-mass ratio than microparticles, and can be 

more easily taken up by the desired cells through endocytotic mechanisms in order to control 

cell response and fate [71,72]. For example, Kang et al [73] determined that in vitro culture 

of MSCs with kartogenin-loaded nano-particles (150nm) resulted in improved 

chondrogenesis compared to micro-particles (1.8μm) loaded similarly. However, the smaller 

size of nano-particles also increases the likelihood of phagocytosis and degradation by 

macrophages [74], as well as clearance from the joint. This phenomenon likely explains the 

finding that in vivo retention of kartogenin was superior when delivered from micro-

particles. Many of these drug carriers can also carry multiple factors, with a differential 

release profile for each factor. For example, Kang et al [75] fabricated chitosan nanospheres 

containing diclofenac, allowing for immediate anti-inflammatory benefits, while covalently 

conjugating kartogenin to the particle, promoting longer-term chondrogenic enhancement 

[75]. This concept of polymer functionalization with bioactive factors, especially to carriers, 

may enhance retention and prolong release, as it creates covalent linkages via one of many 

chemistries (e.g. activated esters, thiol-ene processes, imine formation, Michael addition) 

[76,77]. Lastly, both micro- and nano-particles are typically fabricated as solid spheres with 

embedded bioactive factors. Alternatively, capsules can be fabricated with solid biomaterial 

outer shells and aqueous cores, with the release of bioactive factors regulated via permeation 

through the polymer shell (Fig 3A).

Drug delivery via liposomes is similar in many ways to delivery from polymeric capsules. 

Composed of a lipid bilayer, liposomes have high loading efficiencies for hydrophilic drugs 

within their cores, are well tolerated, and are tunable with respect to size (3–500nm; Fig 3A) 

[78,79]. Taking advantage of the fine control of flow rates afforded by microfluidic 
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assembly, reproducible and consistent liposomes can be fabricated. Likewise loading of 

hydrophobic factors within the bilayer system can permit the dual delivery of multiple 

biofactors [79,80]. Concerns over liposomal integrity do exist, especially in the high-stress 

joint environment, but these are mitigated by the development of fortified liposomal 

fabrication, primarily through PEGylation [81]. Furthermore, liposomes can be easily 

functionalized for enhanced retention and targeting [82,83]. These technologies have 

advanced considerably for cancer and tumor targeting applications, but examples of these 

modifications for the treatment of cartilage injuries and osteoarthritis are limited at present 

[84,85]. Other drug delivery systems similar to liposomes include micelles (lipid monolayer 

for hydrophobic molecule delivery) and dendrimers (branched polymer system) [86,87].

The final major category of drug delivery systems is hydrogel encapsulation. These 

hydrogels, including hyaluronic acid or chitosan, are modified polymers that can be 

crosslinked to encapsulate bioactive factors and then control their delivery within the joint. 

Taking advantage of thermo-sensitive crosslinking behavior [88], factors can be incorporated 

in an aqueous solution that then crosslinks into a hydrogel when at body temperature post-

injection [89,90]. Such hydrogels can encapsulate DMOADs without affecting factor 

bioactivity, a potential concern with synthetic carriers that require solvents or heat for 

fabrication. Other controlled drug release “depots” (Fig 3B) include elastin-like polypeptides 

(ELP), thermo-sensitive polymers that are aqueous below body temperature, but become 

insoluble at body temperature [91–93]. Application of this delivery system allowed for 

sustained release of the IL-1 receptor antagonist (IL-1Ra, anakinra), significantly reducing 

cartilage degeneration and synovitis in a mouse OA model [92].

Modifications can be made to natural and synthetic polymers in order to tune their 

responsiveness in the intended joint application, allowing bioactive factors to become 

available when needed. For example, enzyme cleavable particles and hydrogels are of 

significant interest [94], as enzyme activity is elevated in the degenerated or diseased setting. 

Under these conditions, bioactive factors would be released to quell inflammation and pain 

during periods of high cytokine activity. For instance, Joshi et al [95] developed a triglycerol 

monostearate hydrogel system that degrades in response to an “arthritis flare” in vivo; the 

incorporation of triamcinolone acetonide into these hydrogels allowed for release of the 

corticosteroid in the presence of elevated enzymes found in joint inflammation. Furthermore, 

recent studies have fabricated MMP-cleavable hydrogels that similarly degrade and release 

bioactive factors upon demand [96–98]. Other drug delivery systems are designed to be pH- 

or temperature-responsive [99–102]; a “flaring” inflamed joint is typically accompanied by a 

drop in pH [103] and increase in temperature [104]. Finally, an emerging arena of drug 

delivery relates to controlling release with external stimuli such as ultraviolet or infrared 

light, magnetic or electrical fields, or ultrasound [105–108]. Refining and expanding the 

chemical and biophysical cues that instigate biofactor delivery will increase the range of 

applications that can be addressed to slow or reverse joint degeneration.

2.3. Targeting the Damaged or Inflamed Cartilage Environment

Even when delivered to the joint environment using one of the carriers described above, 

bioactive factors are often not active at the desired site of injury or inflammation. For this 
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reason, bioactive factors are now being targeted (Fig 3C) to inflammatory cells or the 

damaged cartilage interface to either quell the inflamed environment, prevent further 

cartilage deterioration, or even promote regeneration at the site of injury. Targeting of 

damaged or degenerated cartilage can be achieved via modification of drug delivery agents 

with a type II collagen binding peptide (WYRGRL) [109]. The peptide can be covalently 

linked to a multitude of biological (hyaluronan, chondroitin sulfate) and synthetic (PEG, 

PLGA, DOTAM) polymers (Table 1) that carry bioactive factors. Cartilage defects and 

degeneration expose the underlying cartilage matrix, uncovering the type II collagen-rich 

ECM (Fig 1A) and promote attachment of peptide-conjugated carriers. Jiang et al utilized 

maleimide-PEG-PLGA nanoparticles to couple WYRGRL peptides that promoted 

nanoparticle binding to damaged cartilage [110]. Other groups have used the WYRGRL 

peptide to localize pepstatin-A [111] or hyaluronic acid [112] to damaged regions of 

cartilage in order to promote anti-inflammatory activity or improve lubrication. Additional 

binding motifs on the damaged cartilage have been explored, such as hyaluronan-binding 

peptides [113], heparin binding peptides [114,115], β-cyclodextrin [116], aldehyde amine 

interactions [117–119], and even type II collagen monoclonal antibodies [120]. All of these 

cartilage-targeting mechanisms can enhance the delivery and retention of bioactive factors to 

the damaged cartilage interface.

Technologies have also been developed to improve penetration of delivery agents into the 

tissue (Fig 3D). In order to easily penetrate through the small pores of cartilaginous matrix, 

drug delivery agents need to be less than 5nm. However, this size restriction greatly 

decreases the residence time of such delivery systems within the synovial joint. In order to 

better promote the movement of delivered factors into the cartilage matrix, large cationic 

particles have shown some utility [121,122]. For example, a study by Bajpayee and 

colleagues determined that the charged molecule avidin (~7nm) infiltrated into cartilage 

explants more than 10 times further than its neutral counterpart (neutravidin). This 

penetration was due to electrostatic interactions [123], and this enhanced capacity for 

penetration was recently confirmed in vivo in a rat model of OA [124,125], and was 

ultimately used to deliver dexamethasone [126]. Other groups have utilized positively-

charged particles in order to enhance bioactive factor delivery within the cartilage tissue 

[87,127,128]. For instance, Brown et al developed PLGA nanoparticles with quaternary 

ammonium cations that penetrated into cartilage ex vivo [129], allowing for improved 

delivery into the tissue prior to clearance from the joint. Improved penetration of bioactive 

factors can be achieved through other physical mechanisms; magnetic nanoparticles coupled 

with an external magnetic field can be “pushed” through the cartilage tissue at a nearly 50-

fold increase over static conditions [130].

Beyond targeting moieties in the tissue itself, cells themselves offer another opportunity for 

biofactor localization based on surface antigens expressed on a target cell type (Fig 3E). For 

instance, a number of studies have utilized a chondrocyte-affinity peptide (CAP, 

DWRVIIPPRPSA) [131,132]. One recent study noted reductions in inflammation following 

injection of CAP-bound anti-Hif-2α siRNA [133], with delivery of the anti-inflammatory 

siRNA directly to chondrocytes in cartilage. By providing close contact between the delivery 

vehicle and chondrocytes, such affinity peptides likely enable efficient endocytosis of factors 

through clathrin and caveolin-mediated pathways [132]. Chondrocytes are not the only cells 
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available for targeting, numerous groups have targeted both inflammatory cells and 

synoviocytes in the joint space. Chiesa et al [134] utilized a GE11 peptide that targets 

epidermal growth factor in synovial fibroblasts. This peptide was conjugated to PLGA 

nanocarriers containing dexamethasone, reducing expression of inflammatory markers in 

synovial fibroblasts. Similarly, Vanniasinghe et al [85] utilized liposomes conjugated with a 

Cys-HAP-1 peptide in order to target fibroblastic synoviocytes, delivering the steroid 

prednisolone. By specifically targeting inflammatory cells in the synovial environment, 

efficient drug delivery can reduce inflammatory cytokine levels and promote a return to 

tissue homeostasis.

A number of disease modifying OA drugs (DMOAD) under clinical investigation target 

TNF-α (infliximab, etanercept, adalimubab) or IL-1 (anakinra, canakinumab). While these 

agents can effectively abrogate signaling through these pathways, only limited short-term 

symptom relief has been observed in animal studies [135] and clinical trials [136,137]. To 

improve on these efforts, targeting of angiogenic markers, which are prevalent in arthritic 

regions of the joint, has been used to locally reduce inflammatory activity at these sites. 

Several groups have tested a fusion protein system (F8) that utilizes a human monoclonal 

antibody that recognizes the extra-domain A of fibronectin [138], an angiogenic marker. By 

conjugating recombinant IL-4 or IL-10 (anti-inflammatory cytokines) to the F8 antibody, 

targeted anti-inflammatory benefits were achieved [139,140]. Similar targeting antibodies 

for angiogenesis (L19 for extra-domain B of fibronectin [141], F16 for extra-domain A1 of 

tenascin C [142], and G11 for extra-domain C of tenascin C [143]) have been utilized for 

cancer therapeutics, and may find application for the delivery of anti-inflammatory cytokines 

in cartilage applications [141].

3. Scaffold Delivery Systems to Tune Growth Factor Release

Even with the improved delivery, retention, and targeting of NSAIDs, corticosteroids, 

hyaluronic acid, antibodies, antagonists, cytokines and siRNA, almost all outcomes have 

been measured relative to placebo controls. Moreover, these therapies simply act as a 

palliative treatment in patients, given that cartilage tissue is not replaced, but rather protected 

from further degenerative processes. For longer-term replacement of damaged tissue, current 

clinical techniques include microfracture and autologous chondrocyte implantation (ACI). 

Microfracture involves penetrating the subchondral bone to recruit marrow elements, most 

notably MSCs, in order to fill the defected tissue void space with a marrow-clot. While the 

short-term clinical outcomes of microfracture show moderate defect fill and pain relief 

[144,145], both biopsy and preclinical animal studies (Yucatan minipig) demonstrate inferior 

fibrocartilaginous tissue formation [146,147]. This failure in functional restoration 

engenders elevated stresses in the surrounding tissue, leading to long-term wear, defect 

expansion, and OA progression. To improve the quality of formed cartilage tissue, ACI and 

its subsequent iterations (matrix-induced autologous chondrocyte implantation; MACI) use 

chondrocytes without and with scaffold carriers to fill cartilage defects, and are governed by 

the principle that native cartilage cells may better reproduce cartilage matrix [148,149]. With 

these matrix-assisted and augmented procedures, long-term clinical pain scores show some 

improvement over microfracture. However, long-term quality of life measures and magnetic 

resonance imaging (MRI) evaluation of formed tissue showed little difference compared to 
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microfracture [150], calling into question the durability and cost effectiveness of these 

procedures [16,151]. Cartilage tissue engineering aims to improve on patient-reported 

outcomes by utilizing scaffolds to provide a template for functional neocartilage tissue 

formation. Indeed, the utilization of bioactive factors within these scaffolds may better direct 

cells, both marrow-derived MSCs and articular chondrocytes, to regenerate cartilage tissue.

3.1. Drug Delivery to Promote Chondrogenesis

For decades, cell-seeded hydrogel constructs have been cultured in chemically-defined 

media containing a variety of growth factors to promote cartilage tissue formation. While 

these cultured constructs have gained traction as cartilage replacements [152], and are being 

tested pre-clinically in animal models (e.g. rabbit, sheep) [153,154], the manufacturing 

variability and costs associated with their production may complicate translation and 

regulatory approvals. Furthermore, bioactive factors are not available in vivo at 

concentrations (5–100ng/mL) applied during in vitro culture, and cultured constructs often 

require weeks to months to mature. For this reason, numerous acellular cartilage scaffolds 

have incorporated bioactive factors during fabrication, with the aim of guiding endogenous 

cells to regenerate cartilage. A systematic literature search (Pubmed: “cartilage scaffold drug 

delivery”: September 2013-September 2018) determined that TGF-β1 and TGF-β3 are, by 

far, the most-widely used factors (18 of 44 studies), followed by BMPs (BMP-2, BMP-7), 

IGF-1, and FGF (Fig 4A). Other common factors, including drugs and biocompounds, 

include insulin [155], dexamethasone [36,156], and kartogenin [157]. When such factors are 

simply incorporated in a soluble form in hydrogels, the majority are released in the first 

week (Fig 4B – red lines), and do not substantially improve the in vivo formation of 

cartilage tissue that occurs over weeks to months [158]. Thus, prolonged release and activity 

of these factors from scaffolds is required for the long-term promotion of cartilage tissue 

formation.

Similar to drugs for the treatment of OA symptoms, micro- and nano-carriers can enable the 

prolonged release of bioactive factors from scaffolds to enhance chondrogenesis and tissue 

formation. For instance, Han et al [159] utilized PLGA microspheres to prolong the release 

of TGF-β1 in a chitosan-gelatin hydrogel, showing a 50% release of the growth factor by 14 

days, a significant improvement from direct incorporation of TGF-β1 into HA hydrogels 

[37], where >90% release occurred in the first 7 days. Similarly, Deepthi et al [160] 

fabricated polyelectrolyte (cross-linked chondroitin sulfate) nanoparticles containing TGF-β; 

these delivery agents increased MSC proliferation and proteoglycan deposition in culture. 

Furthermore, similar to carriers discussed earlier that respond to inflammatory cues, 

Mohanraj et al [161] developed mechanically-activated capsules that, under loading, rupture 

and release bioactive factors. This technology provides on-demand release of factors to 

enhance matrix formation and organization in order to combat these loads. An alternative 

approach for promoting sustained release is the incorporation of the bioactive factors into 

electrospun nanofibers [162,163] or 3D-printed microfibers [164]. Compared to hydrogels, 

from which growth factors can diffuse, encapsulation of factors into fibrous matrices can 

slow or stop release until fiber degradation has occurred. Given that a variety of polymers 

(collagen, PLLA, PLGA, PCL; Table 1) with distinct degradation profiles can be utilized, 

bioactive factor release can be achieved for >50 days [163]. Additionally, functionalizing 
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scaffolds with growth factors, similar to drug delivering carriers [76,77], can further enhance 

retention and activity throughout the scaffold. One such modality utilizes heparin binding 

domains to sequester growth factors, improving retention and prolonging release for over 28 

days [165,166]. These approaches (Fig 4B – green lines), where bioavailability of factors 

can be achieved over longer time windows, can support the long-term maturation of 

cartilage-like tissue. Finally, the controlled release of growth factors from these scaffolds has 

also been shown to augment microfracture procedures [167,168], directing hyaline cartilage 

formation over fibrocartilage formation.

3.2. Spatiotemporal Control for Complex Tissues (e.g. Osteochondral Unit)

Several tissues in the body exhibit spatially varying regions of cartilaginous tissue and 

interfaces [174], and so require spatial control of cell phenotype and behavior that may be 

achieved through localized and differential biofactor release. Most notably, cartilage is part 

of an osteochondral unit, consisting of a gradient interface between cartilage and the 

underlying subchondral bone (Fig 4C). Other examples of cartilage-containing tissues 

include the fibro-cartilaginous meniscus, intervertebral disc (IVD), and temporomandibular 

joint (TMJ) tissues, as well as tendon-to-bone interfaces. Often, techniques to promote 

chondrogenesis must be combined with techniques to regenerate other tissues, with spatial 

release of factors to induce the formation of each individual tissue. Biphasic scaffolds that 

reconstitute the osteochondral unit typically consist of a softer hydrogel or fibrous top layer 

with incorporated chondrogenic factors (e.g., TGF-β), and a stiffer bottom layer that 

contains osteogenic factors (e.g., BMP-2) [159,175–177]. While these biphasic scaffolds 

have promise, stress concentrations can occur at the interface between scaffold components, 

rendering the construct susceptible to delamination or rupture.

For this reason, gradient scaffolds have been developed and allow for a more gradual 

transition between layers (Fig 4C). Di Luca et al [178] fabricated a 3D-printed PCL scaffold 

with a gradient of PEG-functionalized TGF-β3 and BMP-2. Brush functionalization allowed 

for the TGF-β3 to have its highest concentration in the top layer and gradually decline with 

depth, whereas the BMP-2 was concentrated in the bottom bone layer and gradually 

decreased over the transition to the upper layer. Similarly, Dormer et al [179] achieved 

gradient spatial control with TGF-β1 and BMP-2 loaded PLGA microspheres using a 

programmable syringe pump system to partially mix two separate dispersions carrying each 

growth factor. Following sintering of the microspheres, gradient scaffolds enabled spatial 

tissue growth in a rabbit femoral condyle model, providing the essential architecture for an 

anatomic osteochondral unit. Since the subchondral bone provides load support to healthy 

articular cartilage, the discussed techniques may improve the probability of success for 

cartilage constructs by also regenerating the bone underneath, while simultaneously creating 

a smooth transition between the two units. Ultimately, these techniques would be critical for 

patients with full-thickness cartilage injuries, or those with compromised subchondral bone 

due to prior marrow recruitment procedures (e.g. microfracture).

3.3. Improving Cell Infiltration and Integration of Cartilage Scaffolds

One additional concern for cartilage and osteochondral scaffolds, especially those that do 

not allow for cell encapsulation, is a limited migration into the center of scaffold. For 
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example, electrospun nanofibrous scaffolds can be quite dense, and so cell infiltration is 

limited due to the small pore size [180]. Similarly, cartilage derived matrices containing 

chondroitin sulfate can present issues for both MSC (from bone marrow) and chondrocyte 

(from neighboring cartilage, possible in injury or mechanically perturbed scenarios) 

migration [181–183]. Aside from changing scaffold structure or porosity to better allow cell 

infiltration (which may compromise mechanics and other properties), the incorporation of 

chemotactic growth factors (e.g. PDGF [184,185], FGF [186,187], SDF-1α [188,189]) can 

enhance cellular recruitment and migration within scaffolds (Figure 4D). For example, 

Liebesny et al [184] utilized PDGF in a lysine-leucine-aspartic acid based hydrogel (AcN-

KLDLKLDLKLDL-CNH2; KLD) hydrogel to improve the migration of MSCs from bone 

marrow, thus augmenting the microfracture procedure. Furthermore, these cell-recruitment 

approaches could be combined with pro-chondrogenic factors (e.g. TGF-β) to promote neo-

cartilage formation by cells recruited during microfracture [168]. Similar techniques can be 

applied to induce chondrocyte migration from neighboring tissue [187], in the case of 

partial-thickness cartilage defects. Dual-delivery approaches are especially useful for these 

applications, in that a short burst of chemotactic factors can promote early cell migration, 

followed by a longer-term release of chondrogenic factors to induce the recruited cells to 

produce cartilage matrix [184,188].

Even if scaffolds can recruit cells and promote chondrogenesis, one potential issue that still 

remains is integration with the surrounding tissue. During normal load bearing, mechanical 

stresses at this interface can be quite significant if the scaffold is not well integrated with the 

surrounding healthy tissue [190]. In a recent study in meniscus, Qu et al [185] used PDGF to 

enhance migration from native tissue, while simultaneously providing small doses of 

collagenase to loosen the native matrix in order to improve integration. These findings could 

be directly applied to cartilage tissue engineering, using small amounts of degradation to 

create a more seamless border between the healthy neighboring tissue and the scaffold’s 

neo-tissue (Figure 4D) [191–193]. Alternatively, Allon et al [194] used a collagen adhesion 

protein in order to improve day zero integration mechanically, though the lack of retention of 

the protein may have caused a loss in these mechanics by Day 21. This retention, as noted 

previously, could certainly be improved; kartogenin release from scaffolds through PLGA 

microspheres improved integration between scaffolds and the surrounding tissue in a rabbit 

model [195]. Likewise, TGF-β3, with its strong matrix forming stimulus, improved the 

integration strength between core-ring constructs [196]. Thus both cell migration and 

mechanical integration can be enhanced via drug delivery approaches, increasing the 

likelihood of success in cartilage tissue engineering. By combining techniques to promote 

chondrogenesis with both spatiotemporal release and that promote integration, scaffolds are 

now better suited to replace injured cartilage in all shapes and sizes.

4. Orthobiologics: Delivering Cell-based Local “Drug Factories”

While many (if not most) drug delivery systems rely on a purified agent with a defined 

delivery profile, this need not be the case. Indeed, many factors that improve cartilage 

formation are produced by healthy cells, both in the joint and in other autologous cell 

sources. For this reason, cellular therapeutics have become increasingly popular. For 

instance, mesenchymal stem cell (MSC) and platelet-rich plasma (PRP) injections have 
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become increasingly popular, as these cells produce anti-inflammatory proteins and growth 

factors that can quell an inflamed joint and promote tissue regeneration. Recent work has 

further tailored this behavior and the inherent production capabilities of cells both in vitro 
and in vivo, turning cells into “drug factories” that produce the desired bioactive factors or 

ECM components in a localized fashion after implantation. This final section will review the 

use of such cell based orthobiologics as potential localized drug delivery agents.

4.1. MSC and PRP Injections to Localize Cell-based “Drug Factories”

MSCs, also known as multipotent mesenchymal stromal cells, and more recently, “medicinal 

signaling cells” [197], represent a heterogeneous population of stromal derivatives 

[198,199]. Traditionally, these cells were of great interest to the musculoskeletal field given 

their ability to differentiate into functionalized cells resembling osteoblasts, chondrocytes, 

and adipocytes. MSCs have been applied in the context of regenerative medicine, where 

controlled differentiation of MSCs can be used to form native tissue-like constructs [200–

202]. More recently, however, others have begun to consider the immuno-modulatory 

capacity of MSCs on their own [203,204]. In vivo, MSCs appear to migrate to sites of injury 

from perivascular niches and are purported to release factors that regulate tissue 

inflammation and recruit additional tissue reparative cells (Fig 5A). In this sense, MSCs can 

act as both the carrier and the producer of a potential therapeutic, “living drug producers”.

In the context of cartilage, intra-articular MSC injections have gained traction as a potential 

treatment for osteoarthritis (OA). These injections typically involve an aspiration (bone 

marrow or adipose) weeks beforehand, followed by expansion to obtain a high dose of cells, 

and ultimately a second “procedure” for cell application [205,206]. To avoid this second 

procedure, point-of-care systems have also been developed to concentrate bone marrow or 

adipose for same-day application [207–209], yet the long-term benefits of these therapies are 

not fully proven. Although there is no clear consensus on the direct chondro-regenerative 

effect of MSC injections, many studies have reported improved pain scores in patients with 

OA [210,211]. Lamo-Espinosa et al [212] showed that a high dose (100 × 106) of bone 

marrow-derived MSCs and hyaluronic acid delivered intra-articularly improved WOMAC 

scores by 16.5 points after 12 months compared to hyaluronic acid injections alone. 

Additionally, Soler et al [213] showed not only decreased pain and improved physical 

functioning, but also signs of regeneration via MRI T2-mapping, 12 months following intra-

articular injection. While compelling, the exact mechanism by which MSCs are modulating 

the articular microenvironment has yet to be elucidated. Furthermore, the MSCs can be 

retained within the joint for long time periods (>10–12 weeks, [214,215]), as their size limits 

clearance through the lymphatic vessels. It should be noted that the majority of these cells 

localize to the synovial lining and fat pad [216,217], and may act to quench the activities of 

inflammatory cells in these tissues within the joint [218].

In addition to MSCs, other cell and cell product-based orthobiologics have become 

commonly used in clinical practice. For example, platelet-rich plasma (PRP) offers an 

unmodified biological additive that can be isolated at the time of surgery/intervention and 

has a much simpler regulatory pathway than other engineered delivery systems. PRP is 

isolated from autologous whole blood, through one or two centrifugation and isolation steps, 
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separating plasma from red blood cells and concentrating the platelets within the plasma. 

Once activated by calcium chloride or other mechanisms (e.g. contact with collagen), PRP 

delivers a myriad of growth factors to the injection site, most notably TGF-β, PDGF, FGF, 

VEGF, and IGF [219,220]. The delivery of these growth factors to the joint can have a 

positive anti-inflammatory benefit [221,222], and may provide a cost-effective and 

regulatory-sensitive treatment pathway compared to delivery of specific growth factors. 

Furthermore, many of the factors found in PRP can increase matrix production and promote 

chondrogenesis. More recently, to combine the combinatorial factors of PRP with controlled 

delivery systems, several groups have incorporated activated-PRP into scaffolds [223–225], 

and have reported improved cartilage regeneration using this approach. While ease of use 

and low cost make PRP an intriguing option, perhaps the greatest drawback is the high 

variability of its components between patients, and within the same patient at different times 

[226,227].

4.2. Exosomes as Therapeutic Delivery Vehicles for Cartilage Repair and Regeneration

Cell-to-cell communication through soluble factors (endocrine, paracrine and autocrine 

signaling) is fundamental to the development of organisms and the specialization of 

musculoskeletal tissues. Both platelets and MSCs can release soluble factors to improve 

regeneration, and many have attempted to harness this soluble factor signaling between cell 

populations using either indirect ‘conditioned media’ [228,229] or direct ‘co-cultures’ 

[230,231] contexts. For instance, mixtures of chondrocytes and MSCs result in improved 

MSC chondrogenesis either in pellet culture [232,233] or within 3D scaffold environments 

[234,235]. Our understanding of the mechanisms of this cell-to-cell signaling has been 

further expanded by the emergence of extracellular vesicles (EVs) and other mechanisms by 

which cells convey information to each other [236].

Recent evidence points to a role for exosome and EV secretion as a primary mediator of the 

therapeutic effects exerted by MSCs [237–239]. Exosomes are naturally occurring, cell-

produced nanoparticles ranging from 40–100 nm. Exosomes are formed by the folding-in of 

the membrane of multi-vesicular bodies, and can be released into the environment by fusion 

with the cell membrane (Fig 5B). MSC-generated exosomes contain a range of protein [240] 

and miRNA [241] products that target various cell immune and repair pathways 

[240,242,243]. Due to their likely role in the immunomodulatory capacity of MSCs, 

exosomes present an attractive therapeutic opportunity. If MSCs act as “living drug carriers”, 

then exosomes may represent “drug deliverables” that can be “manufactured” outside of the 

body and subsequently injected into damaged environments. The most common method for 

exosome isolation from MSCs is ultracentrifugation [244]. Once isolated, they can be 

delivered intra-articularly, allowing for the therapeutic effects of MSCs that can be applied 

in a more precise and controlled manner.

Several groups have investigated the therapeutic potential of exosome delivery. Vonk et al 

[245] tested the effect of bone-marrow MSC derived exosomes on OA chondrocytes cultured 

in the presence of TNF-α, as a model for OA cartilage inflammation. They showed that 

exosome delivery decreased expression of COX2 and pro-inflammatory interleukins, and 

reduced collagenase activity, indicating an anti-inflammatory benefit. Furthermore, 
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increased production of proteoglycans and type II collagen was observed, implying a 

potential for exosomes in promoting cartilage regeneration. Similarly, Tofiño-Vian et al 

[246] treated OA chondrocytes with interleukin(IL)-1β to provoke an inflammatory 

response, and evaluated the effect of exosomes on the production of inflammatory mediators 

by these cells. Exosome treatment decreased production of TNF-α, IL-6, PGE2, and NO. 

Additionally, they noted decreased metalloproteinase activity and increased anti-

inflammatory IL-10 and type II collagen expression. These studies demonstrate that 

exosomes may be an ideal and natural drug delivery system that can be utilized and tuned 

for chondro-protective and chondro-regenerative applications.

4.3. Local Biofactor Delivery via Genetic Modification

To further enhance cell-derived delivery strategies, techniques in gene therapy are being 

utilized as a means to reprogram cell behavior for therapeutic action [247–249]. A benefit of 

this approach is that one can more precisely control and tune the advantageous activity of the 

delivered cells. In the context of MSC injections, gene therapy can be applied to enhance 

their inherent immunomodulatory capacity by fine-tuning their ability to reach inflamed 

areas or by upregulating the expression of anti-inflammatory proteins (Fig 5C - left). For 

example, Shen et al [250] determined that MSCs modified to overexpress CXCR2 were 

more able to target inflamed mucosa in a mouse model of oral mucositis. While not intended 

for the knee joint environment, this approach could be adapted to target the inflamed 

synovium in order to protect cartilage. Furthermore, Xia et al [251] genetically engineered 

MSCs to express a TNFα blocker, Atsttrin, and so suppressed matrix proteases and 

inflammatory factors and halted the degenerative progression in a mouse model of OA.

Viral transduction is an efficient method for genetic modification of cell behavior and 

commonly includes the use of lenti-, retro-, and adeno-associated viral vectors [252]. 

Rowland et al [253] made use of scaffold-mediated lentiviral gene delivery system to induce 

a single MSC population towards site-specific chondrogenic and osteogenic phenotypes in 

osteochondral constructs. In this instance, the lentiviral vectors enabled the efficient 

transduction of genetic material so that MSCs overexpressed either TGF-β3 or BMP-2 in 

defined regions, without the antagonistic consequences of both growth factors expressed 

simultaneously in the same cells at the same location. Venkatesan et al [254] developed a 

recombinant adeno-associated vector (rAAV) genetically encoding SOX9, an early 

prochondrogenic transcription factor. The rAAV-SOX9 vector was applied to MSCs to 

induce chondrogenesis upon seeding of 3D-woven PCL scaffolds. This resulted in a 

prolonged period of SOX9 expression (>21 days) and protected against hypertrophic 

differentiation of cells in the construct. Even more sophisticated systems have been 

developed using CRISPR based gene editing methods [255], where the vectors reprogram 

host cells to produce anti-inflammatory factors when inflammation spikes. Much like the 

bio-response material delivery systems, these advanced gene editing and gene therapy 

methods can reprogram endogenous cells to act in a bio-responsive and autonomous manner 

to quench inflammation when it arises [256]. Ultimately, these approaches offer the potential 

of direct joint injection, allowing for local reprogramming of chondrocytes and synovial 

fibroblasts in a degenerative joint (Fig 5C – right). Such an approach could provide both 

long-lasting biofactor delivery, in a physiologic context, and in an on-demand manner. Large 
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animal (equine model) and human clinical trials in this arena are now underway, with early 

findings showing great promise [257–260]. Several potential limitations and concerns with 

these approaches do however decrease enthusiasm. These relate to vector retention within 

the joint, the possibility of off-target transduction, and vector immunogenicity [261–263]. 

These attributes will certainly need to be addressed as these therapies move through clinical 

trials.

5. Conclusions

The use of bioactive factors in cartilage injury management clinically has progressed in 

recent years. Innovative biological and engineering technologies have significantly improved 

the efficacy and efficiency of these factors. Emerging techniques and methods in material 

synthesis, polymer modification and functionalization, carrier development, and scaffold 

fabrication, have improved: 1) delivery to the joint environment, 2) localization at damaged, 

inflamed, or regenerated tissue, and 3) retention and activity of therapeutic factors in the 

joint. Additionally, as the field of orthobiologics continues to grow, cell-based, cell-product, 

and cell reprogramming-based therapeutic delivery mechanisms will offer an alternative to 

conventional delivery approaches. Serving as endogenous “drug factories”, these cells, 

sometimes enhanced by gene therapy, offer the potential for durable and efficient bioactive 

production that might not only stabilize joints, but also enhance tissue regeneration. Each of 

these delivery strategies require additional evaluation, specifically with regards to safety 

(novel polymer systems, cell sources, gene therapy), consistency (biological variability), and 

clinical efficacy (significant improvement in patient-reported outcomes) over the long term. 

Furthermore, these clinical outcomes are often the result of numerous complex variables; for 

example, even structural restoration of cartilage tissue may not fully quell patient-reported 

pain or discomfort. Thus, new drug delivery cartilage therapies must aim to address both 

local functional (i.e., tissue regeneration) and joint-wide issues (i.e., inflammation, pain), 

and establish predictive relationships between these objective tissue-level metrics and 

clinical outcomes. That said, delivery of bioactive factors for both palliative OA 

management and cartilage regeneration has already improved preclinical outcomes and will 

likely see a marked increase in clinical implementation in the coming years, as the versatility 

and potency of these systems is increasingly validated in large animals and human clinical 

trials.
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Abbreviations

ECM extracellular matrix

PG proteoglycans

OA osteoarthritis

NSAID nonsteroidal anti-inflammatory drug
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TGF transforming growth factor

MSC mesenchymal stem cell

BMP bone morphogenetic protein

IGF insulin-like growth factor

FGF fibroblast growth factor

HA hyaluronic acid

kDa kilodaltons

MDa megadaltons

TNF tumor necrosis factor

IL interleukin

MMP matrix metalloproteinase

DMOAD disease-modifying osteoarthritis drug

PLGA poly-lactic-glycolic acid

PCL polycaprolactone

PEA polyester amides

nm nanometer

PEG polyethylene glycol

ELP elastin-like polypeptide

CAP chondrocyte-affinity peptide

ACI autologous chondrocyte implantation

MACI matrix-induced autologous chondrocyte implantation

SDF stromal cell-derived factor

PRP platelet-rich plasma

MRI magnetic resonance imaging

WOMAC Western Ontario and McMaster Universities Arthritis Index

PDGF platelet-derived growth factor

VEGF vascular endothelial growth factor

EV extracellular vesicle

PGE prostaglandin
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NO nitric oxide

rAAV recombinant adeno-associated vector
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STATEMENT OF SIGNIFICANCE

Articular cartilage is a remarkable and sophisticated tissue that tolerates complex stress 

within the joint. When injured, cartilage cannot self-repair, and these injuries often 

progress to joint-wide osteoarthritis, causing patients debilitating pain and loss of 

mobility. Current palliative and surgical treatments only provide short-term symptomatic 

relief and are limited with regards to efficiency and efficacy. Bioactive factors, such as 

drugs and growth factors, can improve outcomes to either stabilize the degenerated 

environment or regenerate replacement tissue. This review highlights recent advances and 

novel techniques to enhance the delivery, localization, retention, and activity of these 

factors, providing a synthesis of the cartilage drug delivery field that can guide future 

research in restorative and regenerative treatments for damaged cartilage.
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Figure 1. 
Cartilage Composition, Disease Progression, Tissue Engineering, and Treatment Modalities. 

[A] Cartilage is composed of a type II collagen network (blue), interwoven with long 

hyaluronan chains (green) and their associated proteoglycan complexes. [B] Cartilage 

injuries often increase in size and can result in joint-wide degenerative changes. [C] 

Cartilage tissue engineering combines cells, materials, and factors in order to treat damaged 

cartilage. [D] Two distinct modes of biofactor delivery for cartilage applications. (Left) Joint 

preservation via bioactive factor incorporation into biomaterial carriers to target cells within 

the joint. (Right) Tissue replacement via cell-based scaffolds that are supplemented with 

growth factors.
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Figure 2. 
Drug Delivery Approaches. Benefits (green) and drawbacks (red) of [A] oral delivery, [B] 

topical delivery, and [C] joint injection of bioactive factors, highlighting the need for [D] 

drug delivery systems to enhance delivery and retention of these factors.
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Figure 3. 
Intra-articular Drug Delivery Systems. [A] Materials used for nano- and micro-spheres, 

liposomes, and microcapsules span a wide range of sizes (10nm – 1mm). [B] Hydrogel 

“drug depots” can extend drug release within the joint. [C] Targeting molecules (e.g. 

WYRGRL) can focus delivery to the damaged cartilage interface. [D] Cationic particles can 

increase penetrance for improved drug delivery within cartilage tissue. [E] Drug delivery 

vehicles can target specific cells and structures (e.g. chondrocytes, synovial fibroblasts, 

angiogenic regions).

Patel et al. Page 37

Acta Biomater. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
[A] Systematic literature search (Pubmed: cartilage scaffold drug delivery) revealed trends in 

growth factor release for promoting chondrogenesis (query window: Sep 2013-Sep 2018). 

[B] Characteristic drug release profiles of factors encapsulated or soak-loaded in hydrogels/

scaffolds (red) or within particles/more elaborate systems (green). Values replotted from 

literature sources [36,37,159,163,169–173]. [C] Depiction of chondral and osseous scaffolds 

for spatiotemporal control, combined into biphasic and gradient scaffolds. [D] Mechanisms 

to improve cartilage repair by increased chondrocyte migration from adjacent cartilage, 

increased MSC recruitment from the subchondral bone, and improved integration between 

the scaffold and surrounding tissue.
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Figure 5. 
Cells and Cell-based Products as Drug-Delivery Mechanisms. MSCs are isolated from either 

bone marrow or adipose tissue, expanded, and [A] injected into the joint to deliver bioactive 

factors. Cultured MSCs can also be used to isolate the therapeutic exosomes for [B] more 

controlled and precise delivery of factors. [C] Genetic modification of cultured cells or direct 

delivery of the vector into the joint can modify cells to provide local and sustained 

production of therapeutic factors.
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Table 1.

Common polymer types (natural and synthetic) used as drug-delivering carriers and drug-releasing scaffolds. 

Chemical structure, advantages, drawbacks, and cartilage applications provided.
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