Table 2.
Transformation prerequisites and equivalence factors from iterated (×100) linear regression in feasible-sized training sets (Step 1).
| Size (N) | Iterations | Rsq mean | Rsq SD | Rsq 2.5Q–97.5Q | Beta mean | Beta SD | Beta 2.5Q–97.5Q | Itc mean | Itc SD | Itc 2.5Q–97.5Q | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| FTLD-Tau GM | Tot | 1 | 0.92 | – | – | – | 0.89 | – | – | – | 1.08 | – | – | – |
| 24 | 100 | 0.92 | 0.03 | 0.87 | 0.96 | 0.89 | 0.04 | 0.80 | 0.96 | 1.08 | 0.04 | 0.99 | 1.16 | |
| 12 | 100 | 0.91 | 0.05 | 0.79 | 0.98 | 0.89 | 0.07 | 0.74 | 1.01 | 1.09 | 0.11 | 0.88 | 1.31 | |
| FTLD-Tau WM | Tot | 1 | 0.92 | – | – | – | 0.90 | – | – | – | 1.11 | – | – | – |
| 24 | 100 | 0.91 | 0.02 | 0.88 | 0.94 | 0.90 | 0.03 | 0.84 | 0.96 | 1.12 | 0.09 | 0.93 | 1.25 | |
| 12 | 100 | 0.90 | 0.06 | 0.77 | 0.97 | 0.90 | 0.08 | 0.75 | 1.05 | 1.12 | 0.19 | 0.79 | 1.49 | |
| FTLD-TDP GM | Tot | 1 | 0.75 | – | – | – | 1.00 | – | – | – | 0.96 | – | – | – |
| 24 | 100 | 0.76 | 0.10 | 0.44 | 0.87 | 1.00 | 0.14 | 0.74 | 1.25 | 0.95 | 0.35 | 0.37 | 1.67 | |
| 12 | 100 | 0.72 | 0.18 | 0.26 | 0.94 | 0.98 | 0.22 | 0.57 | 1.41 | 0.90 | 0.55 | -0.12 | 1.98 | |
| FTLD-TDP WM | Tot | 1 | 0.78 | – | – | v | 0.81 | – | – | – | 0.09 | – | – | – |
| 24 | 100 | 0.78 | 0.07 | 0.64 | 0.87 | 0.81 | 0.07 | 0.65 | 0.93 | 0.10 | 0.29 | -0.56 | 0.57 | |
| 12 | 100 | 0.76 | 0.12 | 0.47 | 0.92 | 0.81 | 0.13 | 0.61 | 1.10 | 0.14 | 0.53 | -0.66 | 1.33 | |
FTLD-Tau, frontotemporal lobar degeneration with inclusions of the tau protein; FTLD-TDP, frontotemporal lobar degeneration with inclusions of the transactive response DNA-binding protein 43 kDa; GM, gray matter; Itc, intercept; N, number of tissue samples; Q, quantile; Rsq, R squared; SD, standard deviation; Tot, total dataset; WM, white matter. Table shows transformation prerequisites (i.e., Rsq) and equivalence factors (i.e., beta, intercept) in randomly subsampled training sets of small sample size, corresponding to a half (N = 12) or one full rack (N = 24) in staining batches, feasible for use in prospective transformations. We performed 100 iterations of the linear regression, and we report mean, standard deviation and a non-parametric quantile-based confidence interval (2.5–97.5% of the distribution) for R squared, beta and intercept values of the linear models. For comparison, we also show these parameters from linear models obtained in the total datasets (i.e., FTLD-Tau GM/WM, FTLD-TDP GM/WM).