Skip to main content
. 2019 Jul 3;13:682. doi: 10.3389/fnins.2019.00682

Table 2.

Transformation prerequisites and equivalence factors from iterated (×100) linear regression in feasible-sized training sets (Step 1).

Size (N) Iterations Rsq mean Rsq SD Rsq 2.5Q–97.5Q Beta mean Beta SD Beta 2.5Q–97.5Q Itc mean Itc SD Itc 2.5Q–97.5Q
FTLD-Tau GM Tot     1 0.92 0.89 1.08
24 100 0.92 0.03 0.87 0.96 0.89 0.04 0.80 0.96 1.08 0.04 0.99 1.16
12 100 0.91 0.05 0.79 0.98 0.89 0.07 0.74 1.01 1.09 0.11 0.88 1.31
FTLD-Tau WM Tot     1 0.92 0.90 1.11
24 100 0.91 0.02 0.88 0.94 0.90 0.03 0.84 0.96 1.12 0.09 0.93 1.25
12 100 0.90 0.06 0.77 0.97 0.90 0.08 0.75 1.05 1.12 0.19 0.79 1.49
FTLD-TDP GM Tot     1 0.75 1.00 0.96
24 100 0.76 0.10 0.44 0.87 1.00 0.14 0.74 1.25 0.95 0.35 0.37 1.67
12 100 0.72 0.18 0.26 0.94 0.98 0.22 0.57 1.41 0.90 0.55 -0.12 1.98
FTLD-TDP WM Tot     1 0.78 v 0.81 0.09
24 100 0.78 0.07 0.64 0.87 0.81 0.07 0.65 0.93 0.10 0.29 -0.56 0.57
12 100 0.76 0.12 0.47 0.92 0.81 0.13 0.61 1.10 0.14 0.53 -0.66 1.33

FTLD-Tau, frontotemporal lobar degeneration with inclusions of the tau protein; FTLD-TDP, frontotemporal lobar degeneration with inclusions of the transactive response DNA-binding protein 43 kDa; GM, gray matter; Itc, intercept; N, number of tissue samples; Q, quantile; Rsq, R squared; SD, standard deviation; Tot, total dataset; WM, white matter. Table shows transformation prerequisites (i.e., Rsq) and equivalence factors (i.e., beta, intercept) in randomly subsampled training sets of small sample size, corresponding to a half (N = 12) or one full rack (N = 24) in staining batches, feasible for use in prospective transformations. We performed 100 iterations of the linear regression, and we report mean, standard deviation and a non-parametric quantile-based confidence interval (2.5–97.5% of the distribution) for R squared, beta and intercept values of the linear models. For comparison, we also show these parameters from linear models obtained in the total datasets (i.e., FTLD-Tau GM/WM, FTLD-TDP GM/WM).