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Abstract
Introduction  We previously developed a tandem mass spectrometry-based label-free targeted metabolomics analysis frame-
work coupled to two distinct chromatographic methods, reversed-phase liquid chromatography (RPLC) and hydrophilic 
interaction liquid chromatography (HILIC), with dynamic multiple reaction monitoring (dMRM) for simultaneous detection 
of over 200 metabolites to study core metabolic pathways.
Objectives  We aim to analyze a large-scale heterogeneous data compendium generated from our LC–MS/MS platform with 
both RPLC and HILIC methods to systematically assess measurement quality in biological replicate groups and to investigate 
metabolite abundance changes and patterns across different biological conditions.
Methods  Our metabolomics framework was applied in a wide range of experimental systems including cancer cell lines, 
tumors, extracellular media, primary cells, immune cells, organoids, organs (e.g. pancreata), tissues, and sera from human 
and mice. We also developed computational and statistical analysis pipelines, which include hierarchical clustering, replicate-
group CV analysis, correlation analysis, and case–control paired analysis.
Results  We generated a compendium of 42 heterogeneous deidentified datasets with 635 samples using both RPLC and 
HILIC methods. There exist metabolite signatures that correspond to various phenotypes of the heterogeneous datasets, 
involved in several metabolic pathways. The RPLC method shows overall better reproducibility than the HILIC method 
for most metabolites including polar amino acids. Correlation analysis reveals high confidence metabolites irrespective of 
experimental systems such as methionine, phenylalanine, and taurine. We also identify homocystine, reduced glutathione, 
and phosphoenolpyruvic acid as highly dynamic metabolites across all case–control paired samples.
Conclusions  Our study is expected to serve as a resource and a reference point for a systematic analysis of label-free LC–MS/
MS targeted metabolomics data in both RPLC and HILIC methods with dMRM.

Keywords  Targeted metabolomics · LC–MS/MS · RPLC · HILIC · Measurement reliability · Amino acids · Metabolite 
dynamics

1  Introduction

Mass spectrometry (MS) is a popular and powerful plat-
form for metabolomics studies (Johnson et al. 2016; Patti 
et al. 2012; Wishart 2016). Although nuclear magnetic reso-
nance (NMR)-based metabolomics is also widely used, MS 
is more easily coupled to various chromatographic columns 
to separate analytes prior to analysis, thereby reducing the 
complexity of a biological sample and increasing sensitivity 
for simultaneous detection of a large number of metabolites 
(Griffiths et al. 2010; Zhou and Yin 2016).

MS-based metabolomics is performed predominantly by 
subjecting samples to chromatographic separation before 
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MS analysis. Chromatographic columns make it possible to 
separate complex analyte mixtures based on physicochemi-
cal properties of a wide range of compounds, including iso-
mers. Liquid chromatography (LC) is most frequently used, 
while gas chromatography (GC) is preferred for measuring 
volatile compounds. LC methods include reversed-phase 
liquid chromatography (RPLC) and hydrophilic interaction 
liquid chromatography (HILIC). RPLC is typically used 
for a broad range of metabolites, especially nonpolar and 
weakly polar metabolites, whereas HILIC has a comple-
mentary usage for hydrophilic, polar, and ionic metabolites 
such as sugars, amino acids, and nucleic acids (Buszewski 
and Noga 2012; Cubbon et al. 2010; Ivanisevic et al. 2013; 
Lu et al. 2008; Rojo et al. 2012; Tang et al. 2016). While 
a recent study performed a systematic technical evaluation 
of hydrophilic and hydrophobic LC–MS in metabolomics 
profiling (Xie et al. 2018), it lacks a biological evaluation 
of abundance measurements in biological replicates under 
a wide range of different conditions.

We previously developed a tandem mass spectrometry-
based targeted metabolomics system that profiles abundance 
of more than 200 metabolites as a steady-state snapshot of 
global metabolism. It utilizes both RPLC and HILIC meth-
ods with dynamic MRM (dMRM) as a means to maximize 
the coverage and sensitivity of target metabolites. Together 
with our customized computational and statistical analysis 
pipelines, this system has been recently applied in several 
biological contexts (Halbrook et al. 2018; Schofield et al. 
2018; Sousa et al. 2016; Svoboda et al. 2018). Herein, we 
report heterogeneous data sets generated from a wide range 
of experiments and sample types using our LC–MS/MS 
targeted metabolomics platforms over a period of about 
1 year from 2017 to 2018. The data were collected with no 
specific criteria to both be unbiased and include as much 
data as possible. Using these, we carried out comprehensive 
global meta-analysis in which we systematically evaluated 
data quality of both RPLC and HILIC methods by statistical 
measures and characterized global patterns of metabolite 
changes and variability in case versus control groups.

2 � Materials and methods

2.1 � Sample preparation

Preparation of the sample types below has been described 
before (Halbrook et al. 2018; Schofield et al. 2018; Sousa 
et al. 2016; Svoboda et al. 2018; Yuan et al. 2012). A brief 
description follows. Each distinct experimental condition has 
at least three biological replicate samples prepared from dif-
ferent cell culture plates/preparations or animals (i.e., n ≥ 3), 
which defines a (biological) replicate group in this study.

2.2 � Primary and cultured cells

Biological replicates with n ≥ 3 were seeded at equivalent 
density, grow in log phase, and at end point media was fully 
aspirated. Aqueous metabolites of adherent primary or cul-
tured cells on 6-well or 10 cm2 plates were extracted by 
adding 1 mL or 4 mL of 80% cold (− 80 °C) methanol, 
respectively, followed by incubation at − 80 °C for 10 min. 
Cells were then scrapped and all material, including soluble 
and insoluble material, was collected. This was then fol-
lowed by centrifugation at 14,000 rpm at 4 °C for 10 min to 
pellet the insoluble material. Suspension cells were gently 
centrifuged to pellet and media was completely aspirated. 
Metabolites were extracted using the method above. The 
procedure is done on a bucket of dry ice and as quickly as 
possible in order to stop metabolism immediately. Samples 
were normalized by the volume corresponding to protein 
concentration measured from parallelly prepared lysates 
(typically, 1–2 million cells at 70–80% confluence). Then, 
samples were dried under vacuum and suspended in a 1:1 
H2O/methanol solution for LC–MS analysis.

2.3 � Tissues, organs, and tumors

Samples of 50–200 mg (n ≥ 3) were placed in a tube con-
taining 1 mL of 80% cold (− 80 °C) methanol and then 
homogenized using steel beads and a Qiagen Tissue Lyser by 
multiple rounds of 45-second shaking at room temperature 
before centrifugation at 14,000 rpm at 4 °C for 10 min. Sam-
ples were normalized by taking the volume corresponding to 
10 mg of the tumor weight and further processed as above 
for LC–MS analysis.

2.4 � Cultured media and sera

Metabolites from equivalent volumes of media or sera (n ≥ 3; 
typically, ~ 200 µL) were extracted by adding 100% cold 
(− 80 °C) methanol with a 1:4 ratio of the sample to metha-
nol (i.e., 80% methanol final) and further processed as above 
for LC–MS analysis.

2.5 � LC–MS/MS metabolomics analysis

Our LC–MS/MS metabolomics analysis was performed 
as described previously (Halbrook et al. 2018; Schofield 
et al. 2018; Sousa et al. 2016). In brief, an Agilent 1290 
UHPLC and 6490 Triple Quadrupole (QqQ) mass spec-
trometer (LC–MS/MS) were used for label-free targeted 
metabolomics analysis. Agilent MassHunter Optimizer and 
Workstation Software LC–MS Data Acquisition for 6400 
Series Triple Quadrupole B.08.00 was used for standard 
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optimization and data acquisition. Agilent MassHunter 
Workstation Software Quantitative Analysis Version B.0700 
for QqQ was used for initial raw data extraction and analysis. 
Each MRM transition and its retention time of left delta and 
right delta of 1 min. Additional parameters include mass 
extraction window of 0.05 Da right and left from the extract 
m/z, Agile2 integrator algorithm, peak filter of 100 counts, 
noise algorithm RMS, noise SD multiplier of 5 min, S/N 
3, Accuracy Max 20% max %Dev, and Quadratic/Cubic 
Savitzky-Golay smoothing algorithm with smoothing func-
tion width of 14 and Gaussian width of 5.

For RPLC, a Waters Acquity UPLC BEH TSS C18 col-
umn (2.1 × 100 mm, 1.7 µm) was used in the positive ioni-
zation mode with mobile phase (A) consisting of 0.5 mM 
NH4F and 0.1% formic acid in water; mobile phase (B) con-
sisting of 0.1% formic acid in acetonitrile. Gradient program: 
mobile phase (B) was held at 1% for 1.5 min, increased to 
80% at 15 min, then to 99% at 17 min and held for 2 min 
before going to initial condition and held for 10 min. For 
HILIC, a Waters Acquity UPLC BEH amide column 
(2.1 × 100 mm, 1.7 µm) was used in the negative ionization 
mode with mobile phase (A) consisting of 20 mM ammo-
nium acetate (NH4OAc) in water at pH 9.6; mobile phase (B) 
consisting of acetonitrile (ACN). Gradient program: mobile 
phase (B) was held at 85% for 1 min, decreased to 65% at 
12 min, then to 40% at 15 min and held for 5 min before 
going to the initial condition and held for 10 min.

Both columns were at 40 ̊C and 3 µL of each sample 
was injected into the LC–MS with a flow rate of 0.2 mL/
min. Calibration was achieved through Agilent ESI-Low 
Concentration Tuning Mix. Optimization was performed 
on the 6490 QqQ in the RPLC-positive or HILIC-negative 
mode for each of 245 standard compounds (215 and 217 
compounds for RPLC-positive and HILIC-negative, respec-
tively) to obtain the best fragment ion and MS parameters 
such as fragmentation energy for each standard. Retention 
time (RT) for each standard was measured from a pure stand-
ard solution or a mixture standard solution. The LC–MS/
MS methods were created with dynamic MRM (dMRM) 
with RTs, RT windows, and transitions of all 245 standard 
compounds (see Supplementary Table, “Methods”). Key 
parameters of electrospray ionization (ESI) in both the posi-
tive and the negative acquisition modes are: Gas temp 275 
̊C, Gas Flow 14 l/min, Nebulizer at 20 psi, SheathGasHeater 
250 ̊C, SheathGasFlow 11 L/min, and Capillary 3000 V. For 
MS: Delta EMV 200 V or 350 V for the positive or negative 
acquisition mode respectively and Cycle Time 500 ms and 
Cell Acc 4 V for both modes. In this study we denote the 
dMRM method with RPLC in the positive ionization mode 
by RPLC-Pos-dMRM and the dMRM method with HILIC 
in the negative ionization mode by HILIC-Neg-dMRM. 
We note that our methods do not distinguish stereoisomers, 
hence care should be taken in interpretation of such data.

2.6 � Computational data processing, quality control, 
and statistical analysis

Pre-processed data with Agilent MassHunter Workstation 
Software Quantitative Analysis were post-processed for fur-
ther quality control in the programming language R. Let Aij 
be a data matrix of raw abundance with M metabolites and 
N samples, i.e., i = 1 to M and j = 1 to N. First, we examined 
the distribution of sums of all metabolite abundance peak 
areas across individual samples, 

�
Sj =

∑M

i=1
Aij ∶ j = 1 to N

�
 , 

in a given experiment as a measure for equal sample loading 
into the instrument. Any outlier sample was removed, which 
is defined by a loading difference of greater than 70% com-
pared to the average of the total abundance sums. The choice 
of 70% is based on our experience, rather than an optimiza-
tion technique, and this has consistently yielded interpreta-
ble data and biologically relevant results in all experiments 
on our platform (Halbrook et al. 2019; Schofield et al. 2018; 
Svoboda et al. 2018). Next, we calculated coefficients of 
variation (CVs) in all biological replicate groups (n ≥ 3) for 
each metabolite given a cut-off value of peak areas in each 
of the RPLC-Pos-dMRM and the HILIC-Neg-dMRM meth-
ods. We then compared distributions of CVs for the whole 
dataset for a set of peak area cut-off values of 0, 1000, 5000, 
10000, 15000, 20000, 25000 and 30000 in each method. A 
noise cut-off value of peak areas in each method was chosen 
by manual inspection of the CV distributions. The noise-
filtered data of individual samples were then normalized by 
the total intensity of all metabolites. We retained only those 
metabolites with at least two replicate measurements for a 
given experimental variable. The remaining missing value 
in each condition for each metabolite was filled with the 
median value of the other replicate measurements. Let 
A�
ij

(
i = 1 toM� ≤ M, j = 1 toN� ≤ N

)
 be the noise-filtered, 

normalized, and median-imputed data matrix. Then, each 
metabolite abundance level in each sample was divided (i.e., 
scaled) by the mean of all abundance levels across all sam-
ples in a given experiment, A∗

ij
= A�

ij
∕
�

1

N�

∑N�

k=1
A�
ik

�
 (“nor-

malized relative abundance” hereafter), for comparisons, 
statistical analyses, and visualizations among metabolites. 
This normalization and scaling method has been used in our 
previous studies with biologically meaningful results (Hal-
brook et al. 2019; Schofield et al. 2018; Svoboda et al. 2018). 
A comparison analysis with other alternative methods 
(Kirpich et al. 2018; Li et al. 2017; van den Berg et al. 2006; 
Wanichthanarak et al. 2017) is beyond the scope of this 
study. Finally, we visually inspected a correlation heatmap 
profile of the samples of the resultant data to identify and 
remove any further outlier samples based on hierarchical 
clustering and abnormal heatmap patterns. Heatmaps were 
generated with the function, heatmap.2, from the Biocon-
ductor package, gplots, and hierarchical clustering was 
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performed with default parameters in heatmap.2. Pathway 
analysis was done using the webtool, MetaboAnalyst (Chong 
et al. 2018).

3 � Results and discussion

3.1 � Global view of a compendium of heterogeneous 
targeted metabolomics datasets

A flowchart overview of our approach in this study is 
depicted in Fig. 1a. We compiled 42 datasets of LC–MS/
MS-based targeted metabolomics with both RPLC-Pos-
dMRM and HILIC-Neg-dMRM methods. There are a 
total of 638 samples analyzed, which include cancer cell 
lines, tumors, extracellular media, primary cells, immune 
cells, organoids, organs (e.g. pancreata), tissues, sera, and 
shRNA/drug treatments in human and mice. A total of 448 
measurements were made in both methods for 285 unique 
compound entities (due to multiple detection). We retained 
measurements for those metabolites detected in both RPLC-
Pos-dMRM and HILIC-Neg-dMRM methods as independ-
ent measurements. From this compendium we constructed 
a 448 by 638 data matrix for global characterization (Sup-
plementary Table S1). 36.7% of the values in this data 
matrix were missing, and we removed 11 samples where 
no compound was measured. We find that this is a generic 
problem associated with generating metabolomics data in a 
large number of heterogeneous samples, especially with a 
HILIC method. It relates to several factors including gen-
eral metabolite stability (e.g. succinate and fumarate), poor 
ionization efficiency of some metabolites such as carbohy-
drates, large dynamic ranges of certain metabolites in differ-
ent cell/tissue types (e.g. GABA and certain carbohydrates), 
and complex matrix effects. Figure 1b depicts a correlation 
heatmap and a hierarchical clustering of all metabolites in 
both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. 
Figure 1c shows a correlation heatmap and a hierarchi-
cal clustering of all samples. We find that there are a few 
groups of highly correlated metabolites. For example, at 
the height of 6 in the dendrogram tree, the 31 metabolites 
in Cluster #1 are enriched in purine, pyrimidine, glycine/
serine, and glutathione metabolism, and the 88 metabolites 
in Cluster #2 include metabolites in the TCA cycle, gly-
colysis, pyruvate, and phenylalanine/tyrosine/tryptophan 
metabolism (Fig. 1d). This suggests that those metabolites 
tend to change their abundance in the same direction across 
different conditions, which suggests that they are subject 
to pathway-level metabolic regulation. The lack of cluster-
ing among samples reflects the heterogeneous nature of all 
datasets and indicates that experimental bias is not driving 
clustering and influencing downstream analysis. In fact, the 
most highly correlated 25 samples (Cluster #3, Fig. 1c) do 

not exhibit common phenotypes, and this cluster includes 
cell lines, murine tumors and several experimentally dis-
tinct variables. Therefore, it suggests the existence of general 
metabolic phenotypes that can arise from various perturba-
tions, independent of cell/tissue types.

3.2 � Analysis of normalized relative abundance

Raw data from the LC–MS/MS analysis are peak areas of 
ion counts for each identified metabolite. These raw data do 
not reflect absolute abundance and cannot be compared 
directly between experiments run at different times. Instead 
we normalized each sample by the total ion counts of all 
metabolites to approximately correct equal sample loading. 
Then, each metabolite abundance value was divided by the 
mean of all abundance values across all samples in each 
experiment, defined as normalized relative abundance, i.e., 
A∗
ij
 (see Sect. 2.3 of Materials and Methods). We first exam-

ined normalized relative abundance distributions of all 
metabolites across all datasets using medians in replicate-
group measurements. Figure 2a shows the number of median 
measurements for each metabolite across all 183 replicate 
groups. There are a total of 13,026 measurements for 448 
metabolites in both RPLC-Pos-dMRM and HILIC-Neg-
dMRM methods in the 42 experiments. 71 metabolites were 
measured in all 183 replicate groups (Fig. 2a). All of these 
came from the RPLC-Pos-dMRM method. This may indi-
cate that the RPLC-Pos-dMRM method is more robust in 
detecting those metabolites than the HILIC-Neg-dMRM 
method. Those most frequently detected metabolites across 
different conditions are enriched in metabolism of amino 
acids, nitrogen, glutathione, and purine (MetaboAnalyst; 
FDR < 0.01). The remaining metabolites show a monotonic 
decrease in the number of measured replicate groups. It is 
unclear what is the generating function or mechanism of this 
linearly decreasing distribution.

We next calculated the average of all abundance val-
ues for each metabolite. Figure 2b shows a histogram 
of the average abundance values for all 448 metabolites 
and Fig. 2c shows a distribution of the ordered average 
abundance values. Three of the top 20 metabolites are 
involved in cysteine/methionine metabolism (cystine, 
acetyl-serine, and glutathione) and others in glycoly-
sis, hexosamine, amino acids, mevalonate, energy, and 
redox metabolism. We also find that one of the top 20 
metabolites, phenylalanine, is among the most repro-
ducible metabolites by both RPLC-Pos-dMRM and 
HILIC-Neg-dMRM methods, along with methionine 
and taurine, as discussed below (Sect. 3.4). On the other 
hand, the bottom 20 metabolites include GDP-glucose, 
NADP+, fumaric acid, glycerol, dihydrofolate, leucine, 
docosahexaenoic acid, homocystine, TMP, sucrose, and 
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Fig. 1   Global view of the metabolomics data compendium. a A flow-
chart and a summary of our approach. b A correlation heatmap of 
448 metabolite measurements of relative normalized abundance from 
both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods along with 
unsupervised hierarchical clustering. The color key is based on Pear-
son correlation coefficients. c A correlation heatmap of 627 samples 

along with unsupervised hierarchical clustering. The color code is 
the same as in b. See Supplementary Table S1 for the data used for 
b, c. d Dendrogram trees of Cluster #1 and Cluster #2 at the height 
of 6. The suffix, “rp”, in the metabolite names stands for RPLC-Pos-
dMRM and “hn” for HILIC-Neg-dMRM
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deoxyadenosine. These metabolites are involved in many 
different metabolic pathways with no significant enrich-
ment (MetaboAnalyst), suggesting that low abundance 
is not a pathway-specific or pathway-level feature. Fig-
ure 2d is a scatter plot of the average abundance and the 
number of replicate groups with measurements. The top 
five metabolites are highly abundant in 56–183 distinct 
groups on average, indicating the tendency of more fre-
quent detection of more abundant metabolites. This analy-
sis offers insight into the importance of those relatively 
high abundant metabolites in diverse conditions with 
potential effects on phenotypic differences.

3.3 � Replicate‑group CV analysis of RPLC‑Pos‑dMRM 
and HILIC‑Neg‑dMRM data

The coefficient of variation or CV (= SD/mean) is a standard 
quantitative measure of statistical dispersion or variability 
(Carobene et al. 2013). We use CV to assess variability or 
consistency of replicate measurements in each replicate 
group for quality assessment. We calculated biological 
replicate-group CVs for both the RPLC-Pos-dMRM and 
HILIC-Neg-dMRM methods and examined their quality or 
reliability differences. Figure 3a shows a comparison of rep-
licate-group CV distributions of the two methods. There are 

Fig. 2   Analysis of relative abundance. a The distribution of the num-
bers of median measurements for 448 metabolites across all 183 bio-
logical replicate groups. There are 71 metabolites with measurements 
in the maximum 183 replicate groups as listed and as indicated in red 
circles. See also Supplementary Table S2 for the list of 71 metabo-
lites. b A histogram distribution of the average normalized abundance 

values for all 448 metabolites. c An ordered distribution of b. The top 
20 metabolites are listed along with methionine and taurine (cf. Fig-
ure 4F). See also Supplementary Table S2 for the list of the top 20 
metabolites. d A scatter plot of the average normalized abundance of 
b or c and the numbers of replicate groups with measurements. The 
top 5 highly abundant metabolites are shown in red
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28,765 CV values in RPLC-Pos-dMRM and 22,069 CV val-
ues in HILIC-Neg-dMRM from all 183 replicate groups for 
220 and 228 metabolites, respectively. RPLC-Pos-dMRM 
measurements show more CVs < 0.2 than HILIC-Neg-
dMRM measurements by about two-fold. The summary sta-
tistics also show overall better quality of RPLC-Pos-dMRM 
measurements than HILIC-Neg-dMRM. The reliability of 
each metabolite measurement was assessed by the average 
CV in all replicate groups. We denote the average CV of a 
metabolite by CVk =

1

m

∑m

i=1
CVk,i , where k is a metabolite 

and m is the number of replicate groups with measurements. 
The ordered distributions of {CVk} in Fig. 3b shows an over-
view of average measurement reliability of all metabolites 
in each method (see also Supplementary Table S3). We cal-
culated CVk for only those metabolites that were measured 
in at least 20 replicate groups ( m ≥ 20 ), which yielded 215 
and 210 metabolites from RPLC-Pos-dMRM and HILIC-
Neg-dMRM, respectively, with 154 of them in common. The 
reliability difference between the two methods is very clear, 
although Pearson’s correlation of CVs from the two methods 
for the 154 common metabolites shows a significant posi-
tive relationship (r = 0.37; p < 2.4e−6). This suggests greater 
chromatographic regularity or compound stability in RPLC-
Pos-dMRM than HILIC-Neg-dMRM, which is consistent 
with previous studies on HILIC (Hao et al. 2008; Rhoades 
and Weljie 2016). It also suggests that most metabolites 
show a similar tendency of reliability in each method. The 
quantity, CVk , from our heterogeneous dataset could be used 
as a reliability index or a guidance in each method for other 
similar applications of LC–MS/MS targeted metabolomics. 
Among the 50 most reliable metabolites from each method, 
there are 20 overlapping metabolites including leucine/iso-
leucine, methionine, hydroxyproline, valine, nicotinamide, 
glutamate, phenylalanine, serine, glycine, and NAD (see 
Supplementary Table S3), which are likely to exhibit high 
stability and efficient ionizations in both methods. Among 
the 50 least reliable metabolites from each method, there are 
14 overlapping metabolites including GDP-glucose, uridine 
5′-diphosphate, cytidine 5′-diphosphate, sucrose, malate, 
guanosine 5′-diphosphate, lactate, and glyceraldehyde (see 
Supplementary Table S3), which would require more careful 
measurements and interpretations.

To examine the reliability in more detail, we further 
restricted our focus to those metabolites with measure-
ments in at least 70% of the 183 replicate groups (i.e., CV 
missing values less than 30% or m ≥ 183 × 0.7 = 128 ) for 
statistical robustness. There are 145 such metabolites for 
RPLC-Pos-dMRM and 77 such metabolites for HILIC-Neg-
dMRM. The heatmaps and hierarchical clustering in Fig. 3c, 
d show groups of metabolites with low CVs (i.e., better reli-
ability; rows in blue) in each method. While we visually 
notice overall better reliability in RPLC-Pos-dMRM from 
the heatmaps, there are metabolites with low CVs across all 

replicate groups in HILIC measurements such as taurine, 
thymine, phenylalanine, hypotaurine, pyridoxate, methio-
nine, and tryptophan.

A pathway analysis of most reliable metabolites with 
CVk < 0.4 (125 and 54 metabolites in RPLC-Pos-dMRM and 
HILIC-Neg-dMRM, respectively) shows that each method 
does not favor any unique pathway. Both methods tend to 
have reliable measurements for amino acids and nucleotides 
biosynthesis pathways, the main difference being the number 
of reliable metabolites given a threshold of CVk . This path-
way analysis supports the aforementioned positive correla-
tion of {CVk} between the two methods. On the other hand, 
by focusing on 19 amino acids from both methods, we find 
that four amino acids show lower CVk in HILIC-Neg-dMRM 
than in RPLC-Pos-dMRM: phenylalanine, tryptophan, pro-
line, and asparagine, the first three of which show similarly 
good measurement reproducibility as hydrophobic in both 
methods with CVk  < 0.4 (Fig.  3e, f). This suggests that 
those three amino acids may be used as most reliable refer-
ence metabolites in abundance measurements as well as in 
LC–MS/MS method development in both chromatographic 
column conditions. It is also observed that asparagine, aspar-
tate, and cysteine are less reliable in both methods (Fig. 3e, 
f). We note that phenylalanine and tryptophan are often used 
as quality control standards in metabolomics laboratories on 
an empirical basis, corroborating our findings (Dr. Maureen 
Kachman, personal communication). We point out that all 
polar amino acids except asparagine show better reproduc-
ibility (i.e., lower CVk ) in RPLC-Pos-dMRM than HILIC-
Neg-dMRM (Fig. 3e, f).

3.4 � Correlation analysis of RPLC‑Pos‑dMRM 
and HILIC‑Neg‑dMRM data

We continued to examine differences between RPLC-Pos-
dMRM and HILIC-Neg-dMRM from a correlation point of 
view by focusing on those metabolites that were measured 
in at least 70% of all 42 experiments with both methods. 
We asked if abundance profiles of each metabolite from 
the two methods were well correlated in individual experi-
ments as they were conducted on different days. A total of 
3601 measurements were made for 237 metabolites in the 
42 experiments. There were 221 metabolites that were meas-
ured in at least two experiments with both methods. 47 of 
them were measured in at least 70% of all 42 experiments. 
For each metabolite in each experiment, we calculated the 
Pearson correlation coefficient between two abundance pro-
files measured by the two methods. Figure 4a shows a heat-
map of all RPLC-HILIC correlation coefficients, where the 
metabolites were sorted by the average correlation across all 
the experiments and the columns were sorted by the aver-
age correlation across all the metabolites. Larger circles 
in darker blues indicate good correlation between the two 
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methods. The top metabolites with reliable measurements 
across most of the experiments include guanosine, 5-methly-
thio-adenosine, phosphocreatine, xanthine, proline, taurine, 
NAD+, and methionine, among others. On the other hand, 

linoleate, glucuronic acid, 4-hydroxy-l-proline, dehydro-L-
ascorbic acid, and acetylcholine, among others show incon-
sistent measurements between the two methods, indicating 
that their retention mechanisms or ionization efficiency may 
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greatly differ between the two methods from experiment to 
experiment on different days.

To further examine the 47 metabolites measured by the 
two methods, we next analyzed {CVk} as in the previous sec-
tion. Figure 4b shows a distribution of {CVk} , where those 

metabolites on the left with smaller CVk are more reproduc-
ible and hence reliable across the 42 datasets by both meth-
ods on average. The top seven metabolites are methionine, 
4-hydroxy-l-proline, phenylalanine, taurine, glutamic acid, 
hypotaurine, and NAD+ with CVk < 0.3. We also calculated 
the average of {CVk} in each of the two methods. The scat-
ter plot in Fig. 4c shows a distribution of {CVk} from the 
two methods for all 47 metabolites. Given our reference 
value of CVk = 0.4, there are 15 metabolites with CVk < 0.4 
in both methods that we deem reproducible across diverse 
conditions. The three most reproducible metabolites from 
both methods are methionine, phenylalanine, and taurine. 
Phenylalanine was among the top 20 metabolites of high 
average abundance as discussed above. There are several 
metabolites which are reliable in either method alone based 
on a threshd of CVk = 0.4 . The RPLC-Pos-dMRM meas-
urements are more reliable for 35 metabolites, whereas the 
HILIC-Neg-dMRM measurements are more reliable for 17 
metabolites.

Fig. 3   Replicate-group CV analysis. a Distributions of replicate-
group CVs of the RPLC-Pos-dMRM and HILIC-Neg-dMRM meth-
ods. There are 28,765 CV values in RPLC-Pos-dMRM and 22,069 
CV values in HILIC-Neg-dMRM from all 183 replicate groups for 
220 and 228 metabolites, respectively. Summary statistics of all rep-
licate-group CVs from the two methods are shown in the inset. b The 
ordered distributions of {CVk} for individual metabolites from the 
RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. The top 5 and 
bottom 5 metabolites at the two tails are listed from each method. c 
Heatmap and hierarchical clustering of replicate-group CVs for 145 
metabolites with missing values less than 30% across all replicate 
groups in the RPLC-Pos-dMRM method. d Heatmap and hierarchi-
cal clustering of replicate-group CVs for 77 metabolites with missing 
values less than 30% across all replicate groups in the HILIC-Neg-
dMRM method. CVs are standardized by the column Z-score in c, d. 
e A scatter plot of {CVk} of 19 amino acids shows a reproducibility 
trend and patterns as color coded as a guidance for 3 groups. The 15 
amino acids show lower {CVk} or better reproducibility in RPLC-Pos-
dMRM, while the 4 amino acids do so in HILIC-Neg-dMRM. The 
six polar amino acids are indicated by asterisks. See also Supplemen-
tary Table S3 for all {CVk} values in b, e and the ordered lists of the 
145 and 77 metabolites of c, d 

◂

Fig. 4   RPLC-HILIC correlation analysis. a Heatmap of all RPLC-
HILIC Pearson correlation coefficients for 47 metabolites that were 
measured in at least 70% of all 42 experiments. The metabolites were 
sorted by the average correlation across all the experiments and the 
columns were sorted by the average correlation across all the metab-
olites. The size of the circles is proportional to absolute values of 
correlation coefficients. Larger circles in darker blues indicate good 
correlation between the RPLC-Pos-dMRM and HILIC-Neg-dMRM 

measurements. b Distribution of {CVk} across the 42 datasets in 
both RPLC-Pos-dMRM and HILIC-Neg-dMRM methods. c A scat-
ter plot of {CVk} from the RPLC-Pos-dMRM and HILIC-Neg-dMRM 
measurements for all 47 metabolites. The three most reproducible 
metabolites by both methods are shown in red. See also Supplemen-
tary Table S4 for the list of 47 metabolites along with {CVk} in both 
methods
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3.5 � Analysis of abundance fold changes for effect 
size and variability

To study the directionality and magnitude of metabolite 
changes upon experimental perturbation, we analyzed fold 

changes (FC) of metabolite abundance across all case–con-
trol condition group pairs. For all case–control pairs and 
each metabolite, we calculated the median ( m̃ ) of normal-
ized abundance values in each group of replicates, i.e., 
m̃case and m̃control , and the fold change ( ̃F ) of the medians, 
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F̃ = m̃case∕m̃control . Then, we calculated the average of abso-
lute values of log2(F̃) for all case–control pairs for each 
metabolite, mean(|log2(F̃)|) , which represents an average 
magnitude of the fold change in the case group relative 
to the control group for that metabolite. The magnitude 
or absolute value of log2(F̃) is also called the effect size.

There are a total of 448 metabolites in 176 case–con-
trol pairs from both RPLC-Pos-dMRM and HILIC-Neg-
dMRM methods. There are 37.3% missing values in the 
448 by 176 data matrix. A missing value occurs when no 
measurement was made in either a case or control con-
dition. For a hierarchical clustering of the full data, we 
removed those metabolites and case–control pairs that 
have more than 50% missing values across all case–con-
trol pairs and all metabolites, respectively. This left us 
with 294 metabolites and 161 case–control pairs with 
15.8% missing values. Figure 5a shows a heatmap of the 
294 by 161 data matrix of log2(F̃) values along with hier-
archical clustering dendrograms on both axes. The full 
448 by 176 data matrix of fold changes gives us a histo-
gram of all average fold-change magnitudes defined by 
mean(|log2(F̃)|) and their ordered distribution in Fig. 5b. 
The average fold-change magnitudes for most metabolites 
are less than 2 (the peak of the histogram) and the top 20 
metabolites with the highest average effect sizes are mostly 
involved in glycolysis, redox, pyrimidine, and methionine/
cysteine/folate metabolism. Homocystine shows the larg-
est average FC magnitude of more than 20, and lactate/
glyceraldehyde the second largest of more than 9. We note 
that lactate and glyceraldehyde were not distinguishable in 
our HILIC-Neg-dMRM method with identical data. Most 
of the top 20 metabolites were measured in more than 70 
case–control pairs, except homocystine in nine pairs in the 
HILIC method and NADP in 12 pairs in the HILIC method 
(Fig. 5c). In addition, we calculated the standard deviation 
(SD) of the effect sizes for each metabolite to examine 
the effect-size variability in all case–control pairs for that 

metabolite. Figure 5d shows a histogram of the SDs and 
an ordered SD distribution. The SDs for most metabo-
lites are less than 1 and there are seven metabolites with 
SD > 3 including lactate/glyceraldehyde and orotate. We 
also performed an analysis of median absolute deviation 
(MAD) to complement the SD analysis. Figure 5e shows 
a MAD histogram and an ordered MAD distribution. The 
top 20 most variable metabolites with the highest MADs 
are involved in glycolysis, redox, pyrimidine, energy, and 
methionine/cysteine/folate metabolism. Figure 5f, g show 
good positive correlations between the average effect sizes 
and the SD and MAD variability, respectively. Homocys-
tine, lactate/glyceraldehyde, orotate, GSH, and dihydro-
folate have both the highest average effect size and the 
largest variability by both SD and MAD among the top 20, 
which suggests that they are most dynamic and responsive 
metabolites across this diverse array of conditions.

We note that we have not performed analysis of batch 
effects in this study because it is challenging to analyze and 
model batch effects in all 42 datasets in a reasonable way. 
Any attempt to correct batch effects globally may introduce 
mathematical artifacts into certain data points locally, mak-
ing biological interpretations more complex or unreasonable 
across all datasets. We consider the analysis of batch effects 
an independent topic for a future study. Therefore, our analy-
sis and results should be interpreted within the constraints 
of this limitation.

4 � Conclusions

We performed LC–MS/MS targeted metabolomics to gen-
erate 42 datasets in a wide range of experiments and sam-
ple types from the same platforms with both RPLC-Pos-
dMRM and HILIC-Neg-dMRM methods. We carried out a 
series of computational and statistical analyses to system-
atically assess data quality of both methods in biological 
replicate groups to identify more reliable measurements in 
each method. We find that the RPLC-Pos-dMRM method 
tends to generate more reproducible measurements than the 
HILIC-Neg-dMRM method, including polar amino acids. 
On the other hand, several metabolites are measured reliably 
in both methods such as methionine, phenylalanine, and tau-
rine. Phenylalanine is among the most abundant metabolites 
across all samples on average along with acetylcarnitine, 
cystine, arginine, lactate/glyceraldehyde, UDP-GlcNAc, 
AMP, GSH, and acetyl-CoA. We also characterized global 
abundance changes and variability in case–control groups 
to identify most dynamic and variable metabolites across 
heterogeneous conditions, such as homocystine, lactate/
glyceraldehyde, and GSH. Those metabolites are involved 
in cysteine metabolism (taurine, cystine, homocystine), gly-
colysis (glyceraldehyde, lactate), hexosamine biosynthesis 

Fig. 5   Abundance fold change analysis. a Heatmap of log
2
(F̃) for 294 

metabolites and 161 case–control sample pairs. b A histogram of all 
average fold-change magnitudes ( = mean(|log

2
(F̃)|) ; effect size) and 

an ordered distribution of the average magnitudes. The top 20 metab-
olites are listed. c A scatter plot of the average fold-change magni-
tudes and the numbers of tested case–control pairs. d Effect-size 
variability in terms of the standard deviation (SD). A histogram of 
SDs of the effect sizes and an ordered SD distribution. The top five 
metabolites are listed. e Effect-size variability in terms of the median 
absolute deviation (MAD). A histogram of MADs of the effect sizes 
and an ordered MAD distribution. The top five metabolites are listed. 
f A scatter plot of the average effect sizes and the SD variability. The 
union of the top five metabolites from b, d are listed. g A scatter plot 
of the average effect sizes and the MAD variability. The union of the 
top five metabolites from b, e are listed. See Supplementary Table S5 
for the full fold-change dataset

◂
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(UDP-GlcNAc), redox balance (GSH), fatty acids metab-
olism (acetylcarnitine, acetyl-CoA), and the TCA cycle 
(acetyl-CoA). This might suggest that they tend to play more 
significant roles than others in the associated metabolic path-
ways under many different conditions. For example, lactate, 
taurine, methionine, and acetylcarnitine were recently found 
to be more frequently differentially abundant in tumors com-
pared to normal tissues across different cancer types (Reznik 
et al. 2018). Our study offers a systematic guideline and a 
reference point in targeted metabolomics analysis by either 
RPLC-Pos-dMRM or HILIC-Neg-dMRM method for more 
reliable biological interpretations without sample-dependent 
optimization of the LC–MS system.

5 � Supplementary material

The Supplementary Material is provided in a compressed zip 
file containing the following materials. A list of metabolites 
measured in RPLC-Pos-dMRM and HILIC-Neg-dMRM 
methods is available in the Supplementary Table (MS Excel 
file) along with their formulae, precursor ion mass, prod-
uct ion mass, RTs, RT window, and CAS numbers (Excel 
spreadsheet, “Methods”). All source data used for Figs. 1 to 
5 are available in the Supplementary Table (Excel spread-
sheets, “Table S1″ to “Table S5”). The raw abundance data 
of peak areas are available in the Supplementary Table 
(Excel spreadsheet, “Raw data”). All analysis codes in R and 
associated data are available in the file directory, “codes”.
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