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Key Points

•We provide a compre-
hensive analysis of
PTPN2-associated ge-
nomic alterations and
clinical implications in
a large cohort of T-ALL.

• PTPN2 loss associates
with mutations in the
IL7R/JAK-STAT signal-
ing pathway, PHF6 and
WT1, but is exclusive
from PTEN deletions.

Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is a phosphatase known to be

a tumor suppressor gene in T-cell acute lymphoblastic leukemia (T-ALL). Because the full

clinicobiologic characteristics of PTPN2 loss remain poorly reported, we aimed to provide

a comprehensive analysis of PTPN2 deletions within a cohort of 430 patients, including

216 adults and 214 children treated according to the GRAALL03/05 (#NCT00222027 and

#NCT00327678) and the FRALLE2000 protocols, respectively. We used multiplex ligation-

dependent probe amplification to identify an 8% incidence of PTPN2 deletion, which was

comparable in adult (9%) and pediatric (6%) populations. PTPN2 deletions were significantly

associated with an ab lineage and TLX1 deregulation. Analysis of themutational genotype of

adult T-ALL revealed a positive correlation between PTPN2 deletions and gain-of-function

alterations in the IL7R/JAK-STAT signaling pathway as well as PHF6 and WT1 mutations.

Of note, PTPN2 and PTEN (phosphatase and tensin homolog) deletions were mutually

exclusive. Regarding treatment response, PTPN2-deleted T-ALLs were associated with

a higher glucocorticoid response and a trend for improved survival in children, but not in

adults, with a 5-year cumulative incidence of relapse of 8% for PTPN2-deleted pediatric cases

vs 26% (P 5 .177).

Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is an uncommon, aggressive neoplasm that accounts for
;25% and 10% of adult and pediatric acute lymphoblastic leukemias, respectively.1,2 T-ALL derives
from the clonal transformation and proliferation of lymphoid progenitors with thymic stage of maturation
arrest.3,4 Cytogenetic and global transcriptomic analyses led to the classification of T-ALL into molecular
groups characterized by abnormal expression of specific transcription factors (TAL, LMO1/2, TLX1/3,
LYL, HOXA, MEF2C) and a specific stage of differentiation blockade.3,5,6 Across all these subgroups,
a number of additional recurrent genetic abnormalities are found, including the loss of major tumor
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suppressive pathways such as inactivating alterations of PTEN and
CDKN2A and activation of oncogenic pathways (eg, activating
mutations in NOTCH1, IL7R/JAK).6

Protein tyrosine phosphatase non-receptor type 2 (PTPN2; also
known as TC-PTP) is another tumor suppressor gene described to
be inactivated in T-ALL.7-9 It is a ubiquitous nontransmembrane
tyrosine phosphatase whose substrates include various receptor
tyrosine kinases, such as the epidermal growth factor receptor,
the platelet-derived growth factor receptor b, and the hepato-
cyte growth factor receptor.10-12 Moreover, PTPN2 is involved in
hematopoietic development and regulation of T-cell activation
through the dephosphorylation of c-Src, Fyn, Lck, JAK-1-3, and
STAT-1,-3,-5, and -6.13-17

In 2011, Kleppe et al18 identified biallelic inactivation of PTPN2 in
2 out of 39 cases of peripheral T-cell lymphoma “not otherwise
specified,” but none in a cohort of 50 cases of Hodgkin lymphoma.
They also identified biallelic inactivation of PTPN2 in the Hodgkin
lymphoma cell line, SUP-HD1, which was associated with activation
of the JAK/STAT pathway.

PTPN2 deletions have been described in up to 6% of combined
adult and pediatric T-ALLs,7,8 almost exclusively in cases with
abnormal expression of the TLX1 transcription factor. Furthermore,
PTPN2 loss seems to be associated with the presence of NUP214-
ABL1, because PTPN2 negatively regulates this fusion oncogene.7

PTPN2 deletion also cooperates with JAK-1/3, increasing the
effects of their oncogenic mutations by increasing cytokine
sensitivity and JAK-STAT signaling, thus promoting leukemic cell
proliferation.8,19

Nevertheless, data regarding the incidence and clinical impact of
PTPN2 deletions in large and unbiased T-ALL patient cohorts are
lacking. In this study, we aimed to provide a comprehensive analysis
of the clinical characteristics, the prognosis, and the genomic
landscape of adult and pediatric PTPN2-deleted patients within
a consecutive series of 430 T-ALL treated within the French adult
(GRAALL03/05; n 5 216) and pediatric (FRALLE2000; n 5 214)
prospective clinical trials.

Patients and methods

Clinical trials

Adult patients (16 to 59 years old) were included in the GRAALL03/
05 trials, which were registered at clinicaltrials.gov (GRAALL-2003,
#NCT00222027; GRAALL-2005, #NCT00327678). Pediatric
patients (1 to 20 years old) were treated in 10 French pediatric
hematology departments, members of the FRALLE study group,
according to the FRALLE 2000 T guidelines, a German BFM-
inspired protocol.20 Patients aged from 16 to 20 years were either
treated in the GRAALL (22/216 patients, 10%) or in the FRALLE
protocol (12/214 patients, 5.6%) according to the initial health
care center (either adult or pediatric departments). Studies were
conducted in accordance with the Declaration of Helsinki and
approved by local and multicenter research ethical committees.

Immunophenotypic and molecular characterization of

T-ALL samples

Diagnostic T-ALL samples were analyzed for immunophenotype,
fusion transcripts (SIL-TAL1, CALM-AF10, NUP214-ABL, MLL),
oncogenic transcripts (TLX1 and TLX3), T-cell receptor (TCR)

rearrangements, and NOTCH1/FBXW7/RAS/PTEN mutations, as
previously described.4,21-23

Multiplex ligation-dependent probe amplification

(MLPA) analysis

MLPA analysis was performed using the MRCHolland (Amsterdam,
The Netherlands) SALSA MLPA probe mix P383-A1 TALL
according to the manufacturer’s recommendations. Polymerase
chain reaction products were separated by capillary electrophoresis
on an ABI-3130 device. Coffalyser software, available at http://
www.mlpa.com, was used for the analysis.

Next-generation sequencing

A custom capture Nextera XT gene panel (Illumina) targeting
complete coding exons and their adjacent splice junctions of 78
genes was designed based on targets known to be mutated in
T-ALL and/or important in T lymphopoiesis. DNA Libraries were
prepared using Nextera Rapid Capture Enrichment and under-
went 2 3 150-bp paired-end sequencing on an Illumina MiSeq
sequencing system with MiSeq Reagent Kit v2 (Illumina). Briefly,
sequence reads were filtered and mapped to the human genome
(GRCh37/hg19) using in-house software (Polyweb; Institut Imag-
ine, Paris, France). Annotated variants were filtered according to
the following criteria: (1) coverage ,303, ,10 alternative reads,
and variant allelic fraction,7%were filtered out; (2) polymorphisms
described in dbSNP, 1000Genomes, EVS, Gnomad, and EXAC
with a calculated mean population frequency .0.1% were
removed; and (3) nonfiltered variants were annotated using somatic
database COSMIC and ProteinPaint (St. Jude Children’s Research
Hospital–Pediatric Cancer data portal), published data, and in silico
predictions.

Statistical analysis

Group comparison for categorical and continuous variables
was performed with Fisher’s exact and Mann-Whitney U tests,
respectively. The cumulative incidence of relapse (CIR) was
calculated from complete remission to relapse date, censoring
patients alive without relapse at last follow-up. Overall survival
(OS) was calculated from the date of diagnosis to the last follow-
up date by censoring living patients. Survival analysis was
performed using the Kaplan-Meier method, and the curves were
compared using the log-rank test. Statistical analysis was
performed with Stata software, version 12 (StataCorp, College
Station, TX). All P values were 2-sided, with P , .05 considered
statistically significant.

Results

PTPN2 deletion incidence in T-ALL

A total of 430 T-ALL was screened for PTPN2 deletions by
MLPA analysis. Two hundred sixteen adult patients and 214
pediatric patients were prospectively treated in the GRAALL-
2003-2005 and the FRALLE-2000 protocols, respectively. The
incidence of PTPN2 deletions in the whole cohort was 8% (33
patients, 48% monoallelic, 52% biallelic), in line with published
data7,8,24 (Table 1). No significant difference was observed
between adult and pediatric T-ALLs, as we identified PTPN2
deletions in 9% of adult patients (50% monoallelic and 50%
biallelic; supplemental Tables 3 and 4) and 6% of the pediatric
population (46% monoallelic and 54% biallelic; supplemental
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Tables 5 and 6). High-resolution array CGH was performed
for a subset of 88 of the 430 patients analyzed by MLPA
(supplemental Figure 2) and identified 7 PTPN2 deletions all
also identified by MLPA analysis. These deletions encompassed
the entire gene (Figure 1A), and all were also found by MLPA
(Figure 1B). PTPN2-deleted patients had significantly lower
messenger RNA (mRNA) expression than those with no
alteration of PTPN2 copy number (Figure 1C). No significant
difference was seen in mRNA expression levels between
samples with monoallelic or biallelic deletion of PTPN2 (data
not shown).

PTPN2 deletions associate with IL7R/JAK-STAT

mutations and are mutually exclusive from

PTEN deletions/mutations

Regarding oncogenetics features, we confirmed the significant
association between PTPN2 deletions and TLX1 expression as well
as NUP214-ABL fusion7,8 (Table 1; supplemental Figure 3). Indeed,
48% and 21% of PTPN2-deleted T-ALLs expressed TLX1 and
NUP214-ABL, respectively, vs 13% and 7% of cases with wild-type
PTPN2. In line with these observations, a strong association of
PTPN2 deletions with the ab lineage TCR status of T-ALL was
observed (P 5 .009; Table 1). In contrast to published data, not all

PTPN2-deleted patients expressed TLX1/3 because at least 11
cases were TLX1/3 negative (Table 1).

Interestingly, in this large cohort of 430 patients, all PTEN
abnormalities were restricted to PTPN2 wild-type patients (P 5 .01;
Table 1; Figure 2). Moreover, 85% of the PTPN2-deleted
population presented mutations of NOTCH1/FBXW7 vs 63%
of wild-type patients (P 5 .01; Table 1).

We then took advantage of our published next-generation sequenc-
ing data from 194 of the 216 adult patients included in this study.25

Among those 194 patients, 19 harbored PTPN2 deletions. Overall, at
least 1 mutation was detected in 19/19 PTPN2-deleted T-ALL and
173/175 wild-type patients. The comparison of the mutation and
large deletion frequencies between PTPN2-deleted and wild-type
patients is shown in Figure 2, with a focus on alterations presented by
at least 5% of the whole cohort. Data regarding all the abnormalities
are reported in supplemental Table 7.

A significant association between mutations in IL7R/JAK-STAT
signaling pathway (including DNM2, SH2B3, STAT5B, IL7R, JAK3,
JAK1) and PTPN2 deletions was observed. Indeed, mutations in the
IL7R/JAK-STAT pathway were found in 14/19 (74%) of PTPN2-
deleted T-ALL vs 72/175 (41%) of the wild-type cohort (P 5 .008)
(Figure 2; supplemental Tables 8 and 9). A higher rate of PHF6
mutations, with 95% of mutations among PTPN2-deleted

Table 1. Clinicobiologic characteristics of adult and pediatric patients with T-ALL (GRAALL and FRALLE protocols) according to PTPN2 status

PTPN2 del, n 5 33 (8%)* PTPN2 WT, n 5 397 (92%) Total, N 5 430 (100%) P

Clinical subsets analyzed

Male, n (%) 22/33 (67) 306/397 (77) 328/430 (76) .2

Age, median (range), y 27.4 (4.3-57.0) 16.8 (1.1-59.1) 17.5 (1.1-59.1) .02

WBC, median (range) 48.1 (4.1-574) 57.8 (0.3-980) 57.7 (0.3-980) .2

CNS involvement (%) 5/33 (15) 37/394 (9) 42/427 (10) .3

TCR status (available)† 26/33 277/397 303/430

Immature (IM0, IMD, IMG), n (%) 2/26 (8) 64/277 (23) 66/303 (22) .08

ab lineage (IMB, pre-ab, TCR ab) , n (%) 23/26 (88) 174/277 (63) 197/303 (65) .009

gd lineage (TCR gd), n (%) 1/26 (4) 39/277 (14) 40/303 (13) .2

Oncogenetics, n (%)†

TLX1 13/27 (48) 39/308 (13) 52/335 (15) <.0001

TLX3 9/27 (33) 52/308 (17) 61/335 (18) .06

SIL-TAL1 1/27 (4) 37/308 (18) 38/335 (17) .3

NUP214-ABL 5/24 (21) 17/257 (7) 22/281 (8) .03

PTEN-deleted/mutated 0/33 (0) 55/396 (14) 55/429 (13) .01

NOTCH1/FBXW7 mutated 28/33 (85) 250/397 (63) 278/430 (65) .01

RAS mutated 3/33 (9) 36/397 (9) 39/430 (9) 1

Treatment response, n (%)†

Corticosensitivity 25/32 (78) 217/388 (56) 242/420 (58) .015

CR 32/33 (97) 374/397 (94) 406/430 (94) 1

MRD1 $ 1024
‡ 9/20 (45) 102/274 (37) 111/294 (38) .5

Comparison of the clinicobiologic characteristics of PTPN2-deleted and wild-type T-ALL patients in the whole cohort. TCR status and oncogenetics were determined as previously
described.4,21,23 Bold P values are statistically significant (P , .05).
CNS, central nervous system; CR, complete remission; del, deleted; IM0, no TCR rearrangement; IMB, VDJ rearrangement of TCRb is observed; IMD, only TCRd rearrangement is

observed; IMG, both TCRd and TCRg rearrangements are observed; WBC, white blood cell count; WT, wild-type.
*Monoallelic 16/33; biallelic 17/33.
†Detailed data in supplemental Figure 3.
‡MRD was centrally assessed by real-time quantitative allele-specific oligonucleotide polymerase chain reaction and interpreted according to EuroMRD group guidelines.34,35
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patients vs 41% within the PTPN2 wild-type group, was also
observed (P , .0001) (Figure 2; supplemental Table 8). Moreover,
PTPN2 deletions and WT1 mutations were significantly associ-
ated, because 26% of PTPN2-deleted adults presented with
WT1 mutations vs 10% among PTPN2 wild-type T-ALL (P 5 .047)
(Figure 2; supplemental Table 8). Conversely, none of the analyzed
pathways was mutually exclusive from PTPN2 deletions except
PTEN deletions/mutations.

Prognostic impact of PTPN2 deletions in adult and

pediatric patients

Among the entire cohort, the median age of PTPN2-deleted
patients was 27.4 years, significantly older than wild-type patients
(Table 1; supplemental Figure 4). There was no statistically significant
difference regarding the main other clinical characteristics analyzed.

Despite this, the treatment response differed between the 2 groups
because the corticosensitivity rate was higher among PTPN2-deleted
(25/32, 78%) than wild-type patients (217/388 [56%]; Table 1).
Complete remission and minimal residual disease (MRD) rates were
not significantly different (Table 1).

In adults, we observed no significant differences in either 5-year
CIR (deleted PTPN2, 32%; 95% confidence interval [CI],
16% to 59% vs wild-type PTPN2, 30%; 95% CI, 24% to 37%;
P 5 .988) or 5-year OS (deleted PTPN2, 62%; 95% CI, 36% to
80% vs wild-type PTPN2, 66%; 95% CI, 59% to 73%; P5 .843)
(Figure 3A,C).

In contrast, we noted a trend in better survival in the pediatric
population. Indeed, 5-year CIR was 8% (95% CI, 1% to 43%)
among PTPN2-deleted pediatric patients vs 26% (95% CI, 20% to
33%; P 5 .177), and 5-year OS was 92% (95% CI, 54% to 99%)
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among PTPN2-deleted cases vs 78% (95% CI, 71% to 83%; P 5
.234) (Figure 3B,D). Altogether, these data suggest that PTPN2
deletions are not associated with poor outcome in either adult or
pediatric T-ALL.

Discussion

This study provided a comprehensive analysis of PTPN2 deletions
in a fully characterized cohort of 430 T-ALL patients. The previously
described 8% incidence of deletions of the entire PTPN2 locus was
confirmed,7,8,24 but we observed that deletion rates are similar in
the adult and pediatric populations, in contrast to a previous study
reporting a higher prevalence of PTPN2 alterations in adults.24 This
discrepancy is likely explained by the larger size of the adult cohort
reported here.

The equilibrium between protein tyrosine kinases and protein
tyrosine phosphatases is essential for normal cellular signaling, and
this balance is often disrupted in cancer.26 PTPN2 is a phosphatase
whose loss sensitizes the leukemic cells to cytokine stimulation,
thus supporting T-ALL proliferation through the activation of

multiple cytokine receptor pathways, such as JAK-STAT.7,8,19 In
line with this, we report a significant association between PTPN2
deletions and mutations in the IL7R/JAK-STAT signaling path-
way, especially DNM2. DNM2 is a GTPase involved in clathrin-
dependent endocytosis.27 The role of DNM2 loss-of-function
mutations in T-ALL has recently been deciphered28 with DNM2
mutations impairing IL7R endocytosis and increasing cell sur-
face receptor expression. As such, DNM2 mutations enhance
interleukin-7 signaling and could have an additive effect to PTPN2
deletions in promoting T-ALL progression.

Kleppe et al have identified NUP214-ABL kinase as a substrate of
PTPN27 and have demonstrated in vitro oncogenic synergy between
NUP214-ABL expression and PTPN2 downregulation. Our data are
consistent with these observations, because we observed a significant
association of PTPN2 deletions with the NUP214-ABL fusion
protein in T-ALL. In addition, Vicente et al have reported a significant
association between epigenetic regulators, including PRC2,WT1, and
PHF6, and mutations in the IL7R/JAK-STAT pathway.24 Our data are
partly concordant with this observation because we found a strong
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association between PHF6 and PTPN2 mutations and, to a lesser
extent, WT1 and PTPN2 mutations, but we did not detect any
significant correlation between mutations of the PRC2 complex and
PTPN2.

To date, most of PTPN2-deleted T-ALL cases have been identified
among TLX1- or TLX3-positive subgroups.7-9,24 We confirm the
significant association between PTPN2 deletions and TLX1 expression
in both the adult and the pediatric cohorts. These findings are also in
line with previously described associations between DNM2 and PHF6
alterations and TLX1/TLX3 overexpression.9,29

Interestingly, PTPN2-deleted T-ALL patients show a highly signif-
icant association with the ab lineage TCR status. This is in contrast
to data from Wiede et al, who developed genetic and pharmaco-
logic murine models of PTPN2 inactivation to demonstrate that
PTPN2 deficiency promotes gd T-cell growth in an LCK- and
STAT5-dependent manner.30 One may hypothesize either that
PTPN2 deletion may have different consequences depending on
the oncogenic context or that murine models have their limits.

Alternatively, these data could suggest that PTPN2 is a candidate
for an ab lineage differentiation arrest of thymic maturation.

PTEN is the most commonly inactivated phosphatase in T-ALLs,
accounting for ;10% to 15% of cases. Its loss of function drives
leukemogenesis.31 Large deletions andmutations within the exon 7 hot
spot are known to impact prognosis.32 Thus, we wondered about
the cooccurrence of both PTPN2 and PTEN deletions. Importantly,
we observed no PTEN alteration among the patients with PTPN2
deletions. This observation was independent of age, because it was
noted in both adult and pediatric patients. We hypothesize that PTEN
and PTPN2 pathways could be functionally incompatible, as recently
demonstrated for TAL1 and IL7R/JAK-STAT signaling cascades.33

Functional experiments are needed to understand the mutual exclusion
of these 2 phosphatase alterations in T-ALL.

To date, the clinical impact of PTPN2 deletions is unknown. Our
study reveals that PTPN2 deletions tend to associate with an
improved CIR and OS in the pediatric cohort. Because survival data
were only available for 13 PTPN2-deleted pediatric T-ALL, this
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study may not be powered to identify a significant difference. On the
contrary, we did not observe any survival difference according to
PTPN2 deletions within the adult population.
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