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Key Points

• Receptor-engineered
T-cell therapy has good
efficacy and acceptable
safety in advanced my-
eloma in the context
of SCT.

• Engineered T cells ex-
panded, trafficked to
bone marrow, per-
sisted, and exhibited
functionality; were as-
sociated with a clinical
response.

This study in patients with relapsed, refractory, or high-risk multiple myeloma (MM)

evaluated the safety and activity of autologous T cells engineered to express an affinity-

enhanced T-cell receptor (TCR) that recognizes a peptide shared by cancer antigens New

York esophageal squamous cell carcinoma-1 (NY-ESO-1) and L-antigen family member 1

(LAGE-1) and presented by HLA-A*02:01. T cells collected from 25 HLA-A*02:01-positive

patients with MM expressing NY-ESO-1 and/or LAGE-1 were activated, transduced with

self-inactivating lentiviral vector encoding the NY-ESO-1c259TCR, and expanded in culture.

After myeloablation and autologous stem cell transplant (ASCT), all 25 patients received an

infusion of up to 1 3 1010 NY-ESO-1 specific peptide enhanced affinity receptor (SPEAR)

T cells. Objective response rate (International Myeloma Working Group consensus criteria)

was 80% at day 42 (95% confidence interval [CI], 0.59-0.93), 76% at day 100 (95% CI,

0.55-0.91), and 44% at 1 year (95% CI, 0.24-0.65). At year 1, 13/25 patients were disease

progression-free (52%); 11 were responders (1 stringent complete response, 1 complete

response, 8 very good partial response, 1 partial response). Three patients remained disease

progression-free at 38.6, 59.2, and 60.6 months post-NY-ESO-1 SPEAR T-cell infusion. Median

progression-free survival was 13.5months (range, 3.2-60.6 months); median overall survival

was 35.1 months (range, 6.4-66.7 months). Infusions were well tolerated; cytokine release

syndrome was not reported. No fatal serious adverse events occurred during study conduct.

NY-ESO-1 SPEAR T cells expanded in vivo, trafficked to bone marrow, demonstrated

persistence, and exhibited tumor antigen-directed functionality. In this MM patient

population, NY-ESO-1 SPEAR T-cell therapy in the context of ASCT was associated with

antitumor activity. This trial was registered at www.clinicaltrials.gov as #NCT01352286.

Introduction

Engineered T-cell immunotherapy offers a new approach for the treatment of multiple myeloma (MM),
and the use of genetically engineered T cells in this disease is closely following the clinical development
of T-cell immunotherapy for other hematologic malignancies, such as diffuse large B-cell lymphoma and
pediatric acute lymphoblastic leukemia.1-5 Autologous T cells can be engineered to recognize known
tumor-specific antigens by expressing chimeric antigen receptors6 or affinity-enhanced T-cell receptors
(TCRs).7 Our specific peptide enhanced affinity receptor (SPEAR) T cells contain optimized TCRs that,
in the context reported here, recognize a 9-amino acid peptide derived from New York esophageal
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squamous cell carcinoma-1 (NY-ESO-1) antigen and presented by
the allele HLA-A*02:01, which is found in ;50% of whites, ;40%
of Hispanics, ;20% of African Americans, and up to 20% of
Asians.8 Unlike chimeric antigen receptors, TCR-engineered T cells
continue to use physiological signaling pathways, so the risks
for cytokine release syndrome (CRS) and neurologic toxicity are
expected to be lower than those reported in studies using chimeric
antigen receptors.9 Cancer-testis antigens NY-ESO-1 and L-Antigen
Family Member (LAGE) 1 are each expressed in various tumors and
occur in approximately 30% and 50% of MM samples tested,
respectively.10,11 Expression of NY-ESO-1 in advanced myeloma
correlated with high-risk features,12 and LAGE-1 expression in
relapsed MM was associated with shorter progression-free survival
(PFS).13 The amino acid sequences of NY-ESO-1 and LAGE-1 share
a high degree of homology,14 and the peptide sequences presented
are identical.

Our affinity-enhanced NY-ESO-1c259 TCR recognizes the peptide
sequence SLLMWITQC, expressed by NY-ESO-1 or LAGE-1 in
complex with HLA-A*02:01, as previously described,15,16 and was
clinically tested in patients with metastatic synovial sarcoma or
metastatic melanoma.17,18 We hypothesized that adoptive trans-
fer of autologous NY-ESO-1c259TCR engineered T cells (hereafter
referred to as NY-ESO-1 SPEAR T cells) could improve clinical
responses after autologous stem cell transplant (ASCT) in HLA-A*02:
01-positive patients with advanced MM expressing NY-ESO-1 and/or
LAGE-1. This study enrolled patients with antigen-positive relapsed,
refractory, or high-risk for relapse MM who were eligible for ASCT.
NY-ESO-1 SPEAR T cells were infused 4 days after high-dose
melphalan and 2 days after ASCT. Data from 20 patients were
reported previously.19 Here, we describe long-term clinical outcomes
and expanded correlative translational studies for the full cohort of
25 patients who received NY-ESO-1 SPEAR T cells post-ASCT for
advanced MM, including long-term persistence, marrow trafficking,
functionality based on cytokine production, and longitudinal pheno-
typic analyses.

Materials and methods

Full details of the study design and methodology used in this clinical
trial have been reported,19 and are summarized here. The study
CONSORT diagram is presented in the supplemental Materials
(supplemental Figure 1).

Study design and patients

This was a phase 1/2a open-label clinical trial carried out at 2 centers
in the United States (clinicaltrials.gov identifier: NCT01352286).
Study approval was obtained from the Institutional Review Boards
of the University of Maryland and the University of Pennsylvania, the
US Food and Drug Administration, and the National Institutes of
Health Recombinant DNA Advisory Committee. This study was
conducted in accordance with International Council for Harmoni-
zation Good Clinical Practice and the ethical principles outlined in
the Declaration of Helsinki. All patients provided written informed
consent before participating in the trial. Eligible patients were aged
18 to 80 years; were HLA-A*02:01 positive, with refractory,
relapsed, or high-risk MM associated with 1 or more adverse
cytogenetic abnormalities; had measurable disease; and confirmed
expression of NY-ESO-1 and/or LAGE-1 by quantitative reverse
transcription polymerase chain reaction on fresh bone marrow
aspirates.

Study regimen

Approximately 7 to 14 days after being immunized with the
pneumococcal conjugate vaccine, which acts as a marker of
antigen-specific immune reconstitution, patients underwent steady-
state apheresis for T-cell collection. Isolated T cells were then
activated using anti-CD3/CD28 immunomagnetic beads, trans-
duced with lentiviral vector encoding the affinity-enhanced
NY-ESO-1c259TCR, and expanded in culture. Patients underwent
stem cell mobilization (using 1.5 g/m2 cyclophosphamide plus
10 mg/kg granulocyte colony-stimulating factor) and collection.
Once the NY-ESO-1 SPEAR T cells were available, patients were
conditioned with high-dose melphalan (140-200 mg/m2), followed
by ASCT 2 days later. At 2 days post-ASCT, patients received an
infusion of autologous NY-ESO-1 SPEAR T cells (up to 1 3 1010

transduced T cells). All patients received lenalidomide maintenance
therapy (10 mg/day; supplemental Materials) per the standard of
care, if they remained in the study through day 100 post-ASCT.
The main study times were: day 0, ASCT (stem cell infusion); day 2,
NY-ESO-1 SPEAR T-cell infusion; day 42, first disease assess-
ment; and day 100, second disease assessment; further disease
assessment then occurred at months 6, 9, and 12 and every
3 months thereafter (supplemental Figure 2).

Endpoints

The primary endpoint was the occurrence of adverse events (AEs) per
National Cancer Institute Common Terminology Criteria for Adverse
Events Version 4 guidelines, including at least grade 4 laboratory
toxicities at any time from pneumococcal conjugate vaccine immuni-
zation until 12 months post-NY-ESO-1 SPEAR T-cell infusion.
Secondary endpoints were the evaluation of NY-ESO-1 SPEAR
T-cell bioactivity and its mechanism of action, and the evaluation of
clinical response per the International Myeloma Working Group
(IMWG) Consensus Panel 1 criteria,20 including objective response
rate (ORR), best objective response (BOR), duration of response
(DOR), PFS, and overall survival (OS). (The protocol was amended
to follow the updated IMWG consensus criteria for response
assessment in MM21; therefore, the individual clinical responses in
this report may not directly match those stated previously.19) Per
IMWG 2011 criteria, patients remain responders as long as they
do not meet progression criteria. Exploratory endpoints included
the evaluation of immunological parameters associated with the
persistence, bioactivity, and functionality of NY-ESO-1 SPEAR
T cells.

NY-ESO-1 SPEAR T-cell and lentiviral vector

manufacturing and assays for gene-modified T-cell

persistence, trafficking, and phenotypic analysis

The methodology for each of these procedures has been
described previously,19 and is presented in the supplemental
Materials.

Statistical methods

The sample size calculation of 25 patients was based on the primary
endpoint of safety, and that the rate of study-related AEs was at
least 40% against the alternative that this rate was less than 40%.
In addition, based on historical data, the complete response (CR)
rate after ASCT in patients was estimated to be 36%. It was
expected that the CR rate in this trial would be 66%. Using the
1-sided x2 test, we had 91.6% power to detect this meaningful
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difference at a significant level of 5% if approximately 25 patients
were enrolled.

The intent-to-treat (ITT) population included all patients who were
enrolled in the trial (ie, all patients with a date of informed consent).
The modified intent-to-treat (mITT) population included all ITT
patients who received NY-ESO-1 SPEAR T-cell infusion and was
the primary analysis population for both safety and efficacy.
Because the ITT and mITT populations were the same for this
study (N 5 25 for both), only analyses associated with the ITT
population were reported. Data collected in the study were docu-
mented using summary tables and subject data listings. Continuous
variables were summarized using descriptive statistics. Categorical
variables were summarized using frequencies and proportions. Time-to-
event data were summarized using Kaplan-Meier methodology, using
the 25th, 50th (median), and 75th percentiles with associated 2-sided
95% confidence intervals (CIs), using the complementary log-log
transformation, as well as the proportion of censored observations. The
95% CIs for proportions were calculated using Clopper-Pearson
(exact) confidence limits. The number and percentage of patients who
experienced at least 1 AE (including patients who received a second
T-cell infusion) were summarized overall, for each system organ class
(per Medical Dictionary for Regulatory Activities, MedDRA), and for
each preferred term. AEs were graded according to the National
Cancer Institute Common Terminology Criteria for Adverse Events
Version 4. No formal hypothesis-testing analysis of AE incidence rates
was performed.

Results

Patients

A total of 85 patients were screened at 2 sites, of which 25 patients
were enrolled and received NY-ESO-1 SPEAR T-cell infusion
(Table 1; supplemental Figure 1). The main reasons for ineligibility
in a significant proportion of screened patients were incorrect
HLA type and lack of tumor antigen (NY-ESO-1 and/or LAGE)
expression. Four of the 25 patients received a second infusion of
NY-ESO-1 SPEAR T cells after responding and then progressing
after the first infusion. Median patient age was 59 years, 15/25

(60%) were men, and 19/25 (76%) were white. All patients were
HLA-A21 and LAGE-11, and 14/25 (56%) were NY-ESO-11.
Twelve (48%) of the 25 patients had at least 1 cytogenetic
abnormality, most commonly a 13q deletion (8/25 [32%] patients).
Patients had received a median of 3 (range, 1 to .4) prior
therapies, and 4 of the 25 patients had received a prior autologous

Table 1. Patient disposition

Patients (N 5 25)

ITT population, n 25

mITT population, n 25

Patient status at end of infusion 1 interventional phase, n (%)* 25 (100)

Disease progression 22 (88)

Did not progress† 3 (12)

Patient status at end of infusion 2 interventional phase

(for patients with second infusion), n (%)*

4 (16)

Disease progression‡ 4 (16)

Patients completed the study if they discontinued because of disease progression or
death after their last T-cell infusion, or if they were progression-free at the time of study
completion (at Sponsor discretion) and moved into long-term follow-up. ITT population: all
patients who were enrolled in the trial. mITT population: all patients in the ITT population
who received $ 1 T-cell infusion.
*Denominator for percentages is based on the ITT population.
†Did not progress by the time of the primary analysis; participation was terminated by the

study sponsor.
‡One patient progressed before withdrawing consent.

Table 2. Patient demographic and baseline characteristics

Parameter Patients (N 5 25)

Sex, n (%)

Female 10 (40)

Male 15 (60)

Age, y*

Mean (SD) 59 (8)

Median 59

Minimum, maximum 45, 72

Race, n (%)

Black or African American 5 (20)

White 19 (76)

Multiracial 1 (4)

HLA status, n (%)

HLA-A21 25 (100)

NY-ESO-1 status, n (%)

NY-ESO-11 14 (56)

NY-ESO-12 11 (44)

LAGE-1 status, n (%)

LAGE-11† 25 (100)

ECOG performance status, n (%)

0 7 (28)

1 16 (64)

2 2 (8)

Previous therapies, n (%)‡

1 5 (20)

2 6 (24)

3 4 (16)

.4 10 (40)

Cytogenetic abnormalities, n (%)

$1 12 (48)

Deletion (13q) 8 (32)

Deletion (17p) 1 (5)

Hypodiploid 0 (0)

Transduced cell dose, n (%)

,1 3 109 3 (12)

1-5 3 109 21 (84)

$5 3 109 1 (4)

Median (range) 3.1 3 109 (0.5-5.05 3 109)

ECOG, Eastern Cooperative Oncology Group; SD, standard deviation.
*Age at informed consent/screening.
†One patient tested positive for LAGE-1 per the laboratory report at screening but was

erroneously recorded as LAGE-1 negative in the database, and this was not corrected prior
to database lock.
‡Four patients had received a prior autologous stem cell transplant.
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stem cell transplant. Further demographic and baseline details are
presented in Table 2.

Safety

At the time of study interventional phase completion, 14 (56%)
patients died because of disease progression, and 11 (44%)
patients remained alive. AEs were summarized for the period
from day 22 (administration of high-dose melphalan) to the end of
the intervention phase. All patients experienced at least 1 AE
(Table 3). The most common AEs were diarrhea (96%), decreased
appetite (92%), nausea (92%), fatigue (88%), and thrombocyto-
penia (88%), which are consistent with ASCT (ie, myeloablative
chemotherapy). A summary of hematologic and nonhematologic
AEs occurring at grade 3 or 4 is presented in Table 4; the majority
of these AEs resolved. The only notable nonhematologic grade
3 or 4 AE that did not resolve during the observation period
was ejection fraction decreased (grade 3), reported in 1 patient
(supplemental Table 1). Twenty-four patients (96%) had AEs
with a maximum severity of at least grade 3, but there were
no grade 5 AEs. Grade 4 AEs occurred in 23/25 (92%) patients,
of which cytopenias were common. Thirteen (52%) patients
experienced serious AEs (SAEs; Table 3). SAEs occurring in more
than 1 patient were neutropenia (4/25 [16%] patients); atrial
fibrillation, autologous graft-versus-host disease (GVHD), and
pyrexia (each occurring in 3/25 [12%] patients); and diarrhea,
febrile neutropenia, and hypoxia (each occurring in 2/25 [8%]
patients). There were no reports of CRS during this study,
although all 25 patients had 1 or more AEs that were considered
to be potential symptoms of CRS. The most common of these
occurring at grade 3 (8 patients) were maculopapular rash
(12%), and hypoxia (8%). Autologous GVHD (any event) was
reported in 6/25 (24%) patients (including autologous GVHD in
gastrointestinal tract and autologous GVHD in skin), of which 3

were SAEs. Histologic studies that confirmed autologous
GVHD were published previously.19 All 6 cases of autologous
GVHD were considered at least possibly related to NY-ESO-1
SPEAR T-cell therapy, and all cases resolved after limited treatment
with topical steroids or oral immunosuppression. Three patients
experienced pancytopenia after initial bone marrow recovery
after chemotherapy. Two of these cases were considered possibly
related to NY-ESO-1 SPEAR T-cell therapy, and the other case was
considered unrelated. All these events resolved. Neurologic events
related to T-cell therapy (considered by the investigator as probably
related, possibly related, or unlikely related to T-cell infusion)
included fatigue (13/25 [52%] patients), muscular weakness
(9/25 [36%] patients), and peripheral sensory neuropathy (5/25
[20%] patients). There were no AE reports consistent with
encephalopathy, seizure, or inflammatory polyneuropathy related
to T-cell therapy.

Table 3. Overall summary of adverse events (ITT population)

Category Patients (N 5 25), n (%)

Adverse events 25 (100)

Any AE related* to study intervention 24 (96)

Any AE $ grade 3 24 (96)

AE grade 3 hematologic† 21 (84)

AE grade 3 nonhematologic† 23 (92)

AE grade 4 hematologic† 23 (92)

AE grade 4 nonhematologic† 7 (28)

Any AE related* to study intervention and $grade 3 21 (84)

Serious adverse events 13 (52)

Any SAE related* to study intervention 7 (28)

Any SAE $ grade 3 12 (48)

Any SAE related* to study intervention and $grade 3 7 (28)

Any SAEs with fatal outcome 0

Observation period: administration of high-dose melphalan (day –2) to end of
intervention phase. AEs were coded using MedDRA Version 20.0.
SAE, serious AE.
*Defined (by the investigator) as definitely related, probably related, possibly related, or

unlikely related to T-cell infusion.
†Hematologic AEs were defined as blood system disorders or investigations involving an

increase/decrease in blood cells; nonhematologic AEs were defined as all other system/
organ class terms.

Table 4. Hematologic and nonhematologic adverse events occurring

at toxicity grade 3 or 4 in ‡5% of patients by preferred term (ITT

population)

Preferred term*

Patients (N 5 25), n (%)

Grade 3 Grade 4

Hematologic toxicities

Febrile neutropenia 15 (60) 2 (8)

Anemia 14 (56) 0 (0)

Neutropenia 4 (16) 7 (28)

Leukopenia 1 (4) 13 (52)

Lymphopenia 0 (0) 2 (8)

Thrombocytopenia 0 (0) 18 (72)

Nonhematologic toxicities

Diarrhea 10 (40) 0 (0)

Hypophosphatemia 6 (24) 0 (0)

Hypocalcemia 4 (16) 1 (4)

Graft-versus-host disease 3 (12) 0 (0)

Hypokalemia 3 (12) 0 (0)

Rash 3 (12) 0 (0)

Stomatitis 3 (12) 0 (0)

Abdominal pain 2 (8) 0 (0)

Fatigue 2 (8) 0 (0)

Hyponatremia 2 (8) 0 (0)

Hypoxia 2 (8) 0 (0)

Mucosal inflammation 2 (8) 0 (0)

Neutropenic colitis 2 (8) 0 (0)

Nausea 2 (8) 0 (0)

Esophagitis 2 (8) 0 (0)

Pain in extremity 2 (8) 0 (0)

Atrial fibrillation 1 (4) 1 (4)

Hypotension 1 (4) 1 (4)

Pneumonitis 1 (4) 1 (4)

Patients were counted once for each preferred term.
Observation period: administration of high-dose melphalan at day –2 to end of

intervention phase. AEs were coded using MedDRA Version 20.0. Definition of hemato-
logic/nonhematologic AE terms are provided in Table 3.
*AE data are listed in descending order of frequency of grade 3 events.
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Efficacy

At year 1, 13/25 patients were disease progression-free (52%),
11 of which were responders (1 stringent complete response, 1
complete response, 8 very good partial response, and 1 partial
response; Tables 5 and 6). Three of 25 patients (12%) remained
disease progression-free at 38.6, 59.2, and 60.6 months post-
NY-ESO-1 SPEAR T-cell infusion (Figure 1A). The median PFS was
13.5 months (95% CI, 8.9-31.1 months; range, 3.2-60.6 months;
Figure 1B). The median OS was 35.1 months (95%CI, 22.7 months-
not reached; range, 6.4-66.7 months; Figure 1C). Per IMWG 2011
criteria, ORR was 80% at day 42 (95% Clopper-Pearson CI, 0.59-
0.93), 76% at day 100 (95% Clopper-Pearson CI, 0.55-0.91), and
44% at 1 year (95% Clopper-Pearson CI, 0.24-0.65; Table 5). BOR
data by time are presented in Table 6. Median DORwas 12.2 months
(95% CI, 7.6-29.8 months).

In the 4 patients who received a second infusion of NY-ESO-1
SPEAR T cells, 1 patient (who had a bone marrow biopsy
that was almost 100% full of myeloma) had a transient very
good partial response in conjunction with marked expansion of
CD81 T cells in the marrow (;70%), especially after addition of
low-dose lenalidomide; however, these T cells were composed
chiefly of 2 dominant clonotypes that were distinct from the
infused NY-ESO-1 SPEAR T cells, suggesting epitope spread-
ing.19 The remaining 3 patients did not exhibit significant clinical
responses or T-cell expansion.

Persistence, trafficking, and function of NY-ESO-1

SPEAR T cells in peripheral blood and bone marrow

Persistence of NY-ESO-1 SPEAR T cells. Persistence
was measured at baseline and after NY-ESO-1 SPEAR T-cell
infusion in all 25 treated patients. Quantitative polymerase chain
reaction of peripheral blood mononuclear cells (PBMCs) from
responders and nonresponders showed peak concentrations
(assessed by copies of TCR vector per microgram genomic DNA)
within the first 7 days post-NY-ESO-1 SPEAR T-cell infusion
(Figure 2A). Concentrations declined rapidly thereafter in most patients,
but remained quantifiable (more than lower limit of quantification) until
the day 100 point in all but 2 patients (1 responder and 1
nonresponder). Ten patients had quantifiable persistence 1 year
after infusion (8 responders and 2 nonresponders). Two patients
(201 and 252) had detectable NY-ESO-1 SPEAR T cells at 5 years

postinfusion (tumor antigen expression status in patient 201 was
not known at the time of disease progression; patient 252 relapsed
with antigen-positive tumor). Three responders had long-term
elevations of NY-ESO-1 SPEAR T cells (patient 201: DOR, 141
weeks; PFS, 146 weeks; and OS, 254 weeks; patient 250: DOR,
46 weeks; PFS, 52 weeks; and OS, 122 weeks; patient 252: DOR,
139 weeks; PFS, 145 weeks; and OS, 290 weeks). No statistical
correlation between persistence and response could be estab-
lished because of the small number of nonresponders (4 patients).
Flow cytometry using PBMC samples confirmed the expression of
modified TCRs in the T cells from study patients (Figure 2B). These

Table 5. ORR per IMWG 2011 criteria by time points of interest (ITT

population)

Time point ORR (N 5 25), n (%) 95% Clopper-Pearson CI

Day 42 20 (80) 0.59-0.93

Day 100* 19 (76) 0.55-0.91

Day 180 16 (64) 0.43-0.82

Day 270 13 (52) 0.31-0.72

Year 1† 11 (44) 0.24-0.65

ORR is defined as the proportion of patients who have a positive response by IMWG
2011 criteria (sCR, CR, VGPR, PR) relative to the total number of patients in the
population.
CR, complete response; PR, partial response; sCR, stringent complete response; VGPR,

very good partial response.
*Day 100 responders (n 5 19): 1 sCR, 12 VGPR, and 6 PR.
†Year 1 responders (n 5 11): 1 sCR, 1 CR, 8 VGPR, and 1 PR.

Table 6. BOR by time (ITT population)

Time and parameter/category or criterion,

IMWG 2011 response, n (%) Patients (N 5 25), n (%)

Day 42

sCR 1 (4)

CR 0

VGPR 10 (40)

PR 9 (36)

SD 5 (20)

PD 0

Day 100

sCR 1 (4)

CR 0

VGPR 12 (48)

PR 6 (24)

SD 5 (20)

PD 1 (4)

Day 180

sCR 2 (8)

CR 1 (4)

VGPR 11 (44)

PR 2 (8)

SD 3 (12)

PD 2 (8)

Day 270

sCR 2 (8)

CR 1 (4)

VGPR 8 (32)

PR 2 (8)

SD 2 (8)

PD 4 (16)

Year 1

sCR 1 (4)

CR 1 (4)

VGPR 8 (32)

PR 1 (4)

SD 2 (8)

PD 1 (4)

Patients without a response evaluated at the visit are included in the denominator.
BOR, best objective response; PD, progressive disease or relapse; SD, stable disease.
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(A) Patient response profiles. Swimmer plot showing

duration of clinical response and survival after disease

progression. Patients 207, 256, and 264 were

disease progression-free at more than 3 years post-

NY-ESO-1c259 T-cell therapy. Day 0, ASCT; day 2,

NY-ESO-1c259 T-cell infusion. (B) PFS, Kaplan-Meier

plot. Surviving (censored) patients are represented

by tick marks. (C) OS, Kaplan-Meier plot. Surviving

(censored) patients are represented by tick marks.
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assays demonstrated the persistence of potentially physiologi-
cally relevant numbers of NY-ESO-1 SPEAR T cells (both CD41

and CD81 subpopulations) in the peripheral blood. Persistence of
NY-ESO-1 SPEAR T cells in PBMCs and bone marrow for patients
with paired samples was also demonstrated (Figure 2C).

Infiltration and proliferation of NY-ESO-1 SPEAR T cells.
Infiltration of the bone marrow by NY-ESO-1 SPEAR T cells,
evaluated in 11 of 25 patients, was detected at day 7 post-T-cell
infusion and persisted to day 100. The percentage of NY-ESO-1
SPEAR T cells (CD41 or CD81) in the bone marrow was assessed
at days 7, 21, 42, and 100 (Figure 2C). Proliferation of NY-ESO-1
SPEAR T cells and nontransduced cells was assessed in
peripheral blood and bone marrow via staining with the cell
proliferation marker Ki-67, and similar levels of proliferation
(;10%) were observed in all cases (Figure 2D). These data
demonstrated that NY-ESO-1 SPEAR T cells were present in
peripheral blood and bone marrow by day 7, with evidence of
ongoing trafficking between the 2 compartments beyond this time
point (data not shown).

Memory phenotype of persisting NY-ESO-1 SPEAR
T cells. Memory phenotypes of NY-ESO-1 SPEAR T cells were
reported for 8 of 25 patients as a result of the limited availability of

paired samples of peripheral blood and bone marrow (Figure 3A-B).
Distribution of memory subsets within NY-ESO-1 SPEAR T cells in
the bone marrow was reflective of that observed in the paired
PBMCs. Although all memory subsets (central memory [CM],
effector memory [EM], EM RA1 [EMRA], stem cell memory [SCM],
and naı̈ve) were observed in each manufactured product infused,
persisting cells in patient samples were predominantly from either
the EMRA or SCM lineage (Figure 3B). The presence of both
a self-renewing and effector population supports the hypothesis that
NY-ESO-1 SPEAR T cells were trafficking between these 2 compart-
ments and colonizing the bone marrow, and suggests that sampling
the peripheral blood compartment is representative of the tumor
compartment (ie, bone marrow) in MM.

Postinfusion cytokine production by NY-ESO-1 SPEAR
T cells. Production of the cytokines interferon g, interleukin 2,
and tumor necrosis factor a in NY-ESO-1 SPEAR T cells was
evaluated in postinfusion peripheral blood samples. NY-ESO-1
SPEAR T cells produced cytokines in response to antigen-specific
stimulation (using SLLMWITQC peptide), and did so at a consistent
level postinfusion; furthermore, they did not lose functionality, as
cytokine production was maintained up to 1 year postinfusion
(Figure 4A). Only transduced T cells reacted with antigen-specific
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cytokine responses (Figure 4B). No cytokine response to
antigen was observed before the engineered NY-ESO-1 TCR
was introduced (day –50 sample). On restimulation with antigens
in vitro, using antigen-loaded T2 cells, detectable levels of
cytokines were generated by T cells within the sample, whereas
no cytokines were detected in the absence of antigen-specific
stimulation (unpulsed T2 cells, negative control). Cells from all
samples were capable of producing cytokines, as demonstrated
by phorbol myristate acetate and ionomycin stimulation (positive
control).

Functional T-cell characterization was performed in 11 of 25
patients after infusion to evaluate the activity of the CD81 T cells
recognizing antigen (SLLMWITQC peptide pulsed onto T2 targets).
Polyfunctionality of peripheral blood and bone marrow CD81 T cells
was evaluated in response to phorbol myristate acetate and
ionomycin stimulation, and in response to unpulsed T2 target cells
(data not shown). Antigen-specific polyfunctional CD81 T cells
(expressing at least 2 of the 3 cytokines measured) were present in
the peripheral blood and bone marrow at days 21, 42, and 100
postinfusion (Figure 4C). Antigen-specific polyfunctional CD41

T cells were present in the peripheral blood and bone marrow
at days 21 and 42; however, at day 100, they were present in the
peripheral blood but were not detected in the bone marrow in 2 of 3
patients tested (data not shown). Approximately 30% of NY-ESO-1

SPEAR T cells were polyfunctional in both the peripheral blood and
bone marrow compartments.

Accumulation of exhaustion markers. NY-ESO-1 SPEAR
T cells were evaluated for expression of the exhaustion markers
lymphocyte activation gene-3 (LAG3; CD223), programmed death-1
receptor (PD1), and T cell immunoglobulin and mucin domain-3
(TIM3) in paired peripheral blood and bone marrow samples from
11 of 25 patients. Overall, the trends in LAG3, PD1, and TIM3
expression in CD41 and CD81 gene-modified T cells (pentamer1)
were similar in each compartment (Figure 4D). In the peripheral
blood, relative to levels in the manufactured product, the
percentage of CD81 pentamer1 T cells expressing TIM3 de-
creased after infusion up to day 100 postinfusion (data not shown).
In addition to it being a T-cell exhaustion marker, TIM3 can also be
expressed on activated T cells. This may explain the observation that
the majority of gene-modified T cells in the manufactured product,
which consists of activated T cells, expressed TIM3 (data not
shown). The percentage of CD81 pentamer1 cells expressing PD1
peaked at day 7 postinfusion. Minimal to no expression of LAG3
was observed in the manufactured product and at postinfusion
points up to day 100.

Diversity in NY-ESO-1 SPEAR T-cell populations. TCR
diversity postinfusion, a potential indicator of antigen-specific T-cell
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responses within the bone marrow, was evaluated via TCR Vb
CDR3 sequencing. In 12 of 14 pre- and posttreatment paired
samples, a consistent decrease in TCR diversity (ie, decreased
polyclonality) was observed postinfusion (Figure 5); no dominant
population was seen in any sample. This suggests that clonal
expansion of T cells may be occurring in the bone marrow, and may
be an indirect indicator of antitumor reactivity.

Discussion

NY-ESO-1 SPEAR T-cell therapy in the setting of ASCT was
associated with long-term survival with a favorable safety profile and
potential clinical activity in this cohort of 25 patients with relapsed,
refractory, or high risk for relapse MM. This long‐term and expanded
analysis demonstrated that the engineered T cells expanded in vivo,
trafficked to bone marrow, demonstrated persistence, exhibited
tumor antigen-directed functionality, and were associated with
a long-term clinical response in a subset of patients. There were no
fatal SAEs during this study, and the most common AEs (diarrhea,
decreased appetite, nausea, fatigue, and thrombocytopenia) were
consistent with ASCT. Although there were no reports of CRS, all
patients had potential symptoms of CRS, and it is known that AEs
may mask clinical diagnosis of milder cases of CRS post-ASCT.19

Six patients experienced and recovered from autologous GVHD
that was possibly related to NY-ESO-1 SPEAR T-cell therapy.
As described in our earlier report,19 we performed analyses of
engineered T cells in inflamed and normal colonic tissue and
peripheral blood in patients who developed autologous GVHD.
Although engineered T cells were identified in inflamed tissue, they
were at lower proportions in sites of inflammation than in adjacent

noninflamed tissues, suggesting that gene-modified T cells were
not principally driving the GVHD. Furthermore, we had previously
observed autologous GVHD in the gut and skin after post-ASCT
adoptive transfers of activated but non-gene-modified T cells.22

Autologous GVHDwas not reported in another study with NY-ESO-
1 SPEAR T cells.23 As of study interventional phase completion,
11 of 25 patients remained alive and 3 patients were disease
progression-free at more than 3 years after NY-ESO-1 SPEAR
T-cell therapy.

Functional studies characterizing the persistence of the engineered
T cells, as demonstrated by detection of viable populations with
functional activity, showed that the majority of patients with MM
studied had detectable levels of NY-ESO-1 SPEAR T cells after
1 year of follow-up. There was also rapid infiltration of NY-ESO-1
SPEAR T cells into the bone marrow (ie, by day 7 postinfusion), with
subsequent evidence of cell cycling/proliferation. These persisting
NY-ESO-1 SPEAR T cells exhibited and maintained polyfunction-
ality postinfusion by producing multiple cytokines in response to
antigen stimulation. In addition, exhaustionmarkers did not appear to
accumulate in these persisting NY-ESO-1 SPEAR T cells, suggest-
ing infused T cells could maintain functional activity against the
antigen over prolonged periods (ie, up to 180 days postinfusion).
Furthermore, there was evidence that SPEAR T cells were highly
polyfunctional in bone marrow postinfusion. Similar results were
shown in a study evaluating NY-ESO-1 SPEAR T cells in 10
patients with metastatic synovial sarcoma, in which 7 patients
who were monitored beyond 200 days had detectable circulating
NY-ESO-1 SPEAR T cells.23 In addition, persisting NY-ESO-1
SPEAR T cells (CD41 and CD81) in synovial sarcoma remained
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virtually negative (data not further specified) for exhaustion markers
PD1 and LAG3. The persisting NY-ESO-1 SPEAR T cells in our
study included highly differentiated effector subsets (EM and
EMRA) and a population of self-renewing SCM cells, with the latter
being associated with long-term persistence of functional T cells.24

Memory cell phenotypes in the metastatic synovial sarcoma study
showed a similar pattern.23 The reduction in T-cell polyclonality
observed in our study, which was reported as a decrease in the
clonal diversity index over time, may indicate the emergence of
a selected population of T cells, and may reflect effects from
ASCT.25 However, it should be noted that the sequencing
approach used here detected endogenous TCRs expressed on
both transduced and nontransduced NY-ESO-1 SPEAR T cells
from manufacturing, as well as native T cells; thus, it cannot be
stated which T-cell population was expanding, only that overall
diversity was decreasing.

This MM study identified a small subset of patients who achieved
long-term clinical responses, and other patients in whom long-term
NY-ESO-1 SPEAR T-cell persistence was demonstrated. Because
of the small number of patients involved, it is currently unclear
whether there is a relationship between long-term persistence of
engineered T cells and a clinically relevant outcome (eg, absence of
tumor antigen expression, PFS, and/or OS, etc). This is the first time
that extended persistence of TCR-engineered T cells has been
reported, with NY-ESO-1 SPEAR T cells detectable at up to 5 years
postinfusion. Although the NY-ESO-1 SPEAR T cells administered
in our study after a myeloablative preparative regimen and ASCT
led to antitumor activity, the degree to which the engineered T
cells contributed to the overall clinical benefit cannot be clearly
determined in a single-arm study, as ASCT alone has antitumor
activity. In addition, it is possible that lenalidomide maintenance may
have contributed to the clinical responses observed and, conceiv-
ably, may have enhanced NY-ESO-1 SPEAR T-cell functions. Thus,
further clinical trials are warranted, either with ASCT or as
monotherapy after nontransplant conditioning. Given the accept-
able safety profile and the evidence for clinical activity shown by
our data, SPEAR T-cell therapy could also be considered for other
NY-ESO-1–expressing malignancies.
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