Molecular Therapy

Nucleic Acids
Original Article

AMERICAN SOCIETY of
w GENE & CELL

el THERAPY

IProEP: A Computational Predictor

for Predicting Promoter

Hong-Yan Lai,"* Zhao-Yue Zhang,"* Zhen-Dong Su,! Wei Su,! Hui Ding,! Wei Chen,** and Hao Lin'

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic

Science and Technology of China, Chengdu 610054, China; 2Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese

Medicine, Chengdu 611730, China; 3Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology,

Tangshan 063000, China

Promoter is a fundamental DNA element located around the
transcription start site (TSS) and could regulate gene tran-
scription. Promoter recognition is of great significance in
determining transcription units, studying gene structure,
analyzing gene regulation mechanisms, and annotating gene
functional information. Many models have already been pro-
posed to predict promoters. However, the performances of
these methods still need to be improved. In this work, we
combined pseudo k-tuple nucleotide composition (PseKNC)
with position-correlation scoring function (PCSF) to formu-
late promoter sequences of Homo sapiens (H. sapiens),
Drosophila melanogaster (D. melanogaster), Caenorhabditis
elegans (C. elegans), Bacillus subtilis (B. subtilis), and Escher-
ichia coli (E. coli). Minimum Redundancy Maximum Rele-
vance (mRMR) algorithm and increment feature selection
strategy were then adopted to find out optimal feature sub-
sets. Support vector machine (SVM) was used to distinguish
between promoters and non-promoters. In the 10-fold
cross-validation test, accuracies of 93.3%, 93.9%, 95.7%,
95.2%, and 93.1% were obtained for H. sapiens,
D. melanogaster, C. elegans, B. subtilis, and E. coli, with the
areas under receiver operating curves (AUCs) of 0.974,
0.975, 0.981, 0.988, and 0.976, respectively. Comparative re-
sults demonstrated that our method outperforms existing
methods for identifying promoters. An online web server
was established that can be freely accessed (http://lin-group.
cn/server/iProEP/).

INTRODUCTION

In a genome, promoters are important regions of DNA that locate
near the transcription start sites (TSSs) of genes." They are essen-
tially nucleotide sequences of approximately extending dozens to
hundreds base pairs upstream and downstream of the TSS. They al-
ways serve as regulatory elements for the assembly of transcription
machinery, especially combining with RNA polymerase® for pro-
moting accurate initiation of transcription. Additionally, evidence
has proved that promoters play crucial roles in the regulation of
gene expression, such as alternative splicing, stability of transcripts,
mRNA localization, and translation.” The identification of pro-
moters in a gene is an important part of the recognition of a gene’s
complete structure. Hence, the mapping of promoters to genome is

usually the first step in unraveling the mechanisms of gene tran-
scriptional and expressional regulation. Therefore, research on pro-
moter prediction is full of significance and deserves to be pushed
forward.

DNA elements in promoters are different between eukaryotes and
prokaryotes. In eukaryotes, most protein-coding genes and some
nuclear small RNAs have binding sites for RNA polymerase II
The core region of RNA polymerase II-dependent promoters usu-
ally contains several regulatory units: the TATA element, which is
located 25 bp upstream of the TSS; the initiator; and the down-
stream promoter element (DPE), usually located 30 bp down-
stream of the TSS.* In prokaryotes, most genes are regulated by
the o”® promoter, which contains three basic elements: the Prib-
now Box with the consensus sequence 5-TATAAT-3' located
10 bp upstream of the TSS, the —35 region with the consensus
sequence 5'-TTGACA-3’ located 35 bp upstream of the TSS,
and the initiator adjacent to the TSS.>® Distinct gene-regulatory
mechanisms and sequence compositions among species promote
us to use different methods to identify promoters in their
genomes.””

With the development of high-throughput sequencing technology,
increasing genomes need to be annotated. It is costly, laborious,
and time consuming to use experimental methods to characterize
promoters, however, which promotes the development of the compu-
tational methods in promoter identification. There have been many
attempts to predict promoters in different species. Some models
were based on the principle of sequence similarity, and others
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converted the original sequences into numeric sequences and then
adopted machine learning approaches to perform recognition. The
latter extracted features according to various promoter properties,
such as CpG content,” free energy,'* consensus sequence,'' and global
descriptor,'” and built the prediction programs based on machine
learning approaches, such as Fisher’s linear discriminant,' decision
tree,'* support vector machine (SVM),"> Hidden Markov Model,"!
neural network,'* pattern-based nearest neighbor search approach,'”
and so on. Recently, deep learning has been used to grasp complex

ot~ 16,17
promoter sequence characteristics' >’
18-22

and related bioinformatics
identification problems.
hibited encouraging performance, most of those predictors focused
on only one species, and there is still space for prediction performance
improvement.

Although existing algorithms have ex-

In this study, according to the steps shown in Figure 1, we developed an
effective and powerful computational promoter prediction program for
eukaryote and prokaryote species. We firstly collected promoter and
non-promoter sequences in five species to construct the reliable bench-
mark datasets. The features extracted from the primary sequences were
filtered according to the ability of distinguishing promoters from non-

Table 1. The Optimal Values of Three PseKNC Parameters for Five Species

Kingdom Species k A ) ACC (%)

H. sapiens 4 24 0.1 90.9
Eukaryotes D. melanogaster 5 9 0.1 89.5

C. elegans 4 22 0.1 81.4

B. subtilis 4 12 0.2 83.8
Prokaryotes

E. coli 4 12 0.1 80.7
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Figure 1. A Flowchart to Outline the Promoter
Prediction Program Construction

Features

promoters by using feature selection technique.
Subsequently, the optimal features were inputed
into the SVM to train, test, and build models.
Finally, based on the proposed model, we estab-
lished a user-friendly web server iProEP, which
can be freely accessed at http://lin-group.cn/

Feature
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R server/iProEP/.
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As indicated in the PseKNC section (see Mate-
rials and Methods), three parameters, k, A, and
w, must be determined when using PseKNC
to formulate promoters and non-promoters.
In the PseKNC, the k and A describe the
short-range and long-range sequence-order ef-
fect, respectively, and w is the weight factor to
adjust the ratio of the two effects. In this work, the optimal values
of the three parameters for five species can be obtained by searching
the following scopes:

ke[2, 6], step=1
Ae(1, 30], step=1 (Equation 1)
wel0.1, 1], step=0.1

For each species, the performances of 1,500 (5 x 30 x 10) different
combinations of three parameters were examined to obtain their
optimal combination that could produce best accuracy. Thus, we con-
structed 1,500 SVM classifiers based on 5-fold cross-validation for
each species. The optimal combinations of the three parameters for
five species were reported in Table 1.

The Ultimate Five Promoter Classifiers

By combining PseKNC with position-correlation scoring function
(PCSF), promoter and non-promoter samples can be formulated by
(4* + 6 + n) dimension features. In the 4% + 6A dimension PseKNC
features, 4% reflects the DNA short-range correlation information,
and 6\ describes the long-range correlation information. The posi-
tion information is characterized by n dimension PCSF (see Materials
and Methods). When incorporating these features into a prediction
model, redundant information or noise might influence the perfor-
mance of the model. Therefore, Minimum Redundancy Maximum
Relevance (mRMR) combined with the increment feature selection
(IFS) process was adopted to eliminate these unrelated features for
improving the accuracy and robustness of promoter recognition
models.

Ultimately, by constructing a great number of SVM-based
models and comparing these models’ performance using 5-fold
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Table 2. The Feature Numbers and Accuracies for Five Species before and
after mRMR Feature Selection

Original Features Optimal Features

Feature ACC Feature ACC

Kingdom Species Number (%) Number (%)
H. sapiens 423 93.4 410 93.5
Eukaryotes D. melanogaster 1,097 93.3 893 93.8
C. elegans 405 94.4 65 95.6
B. subtilis 345 94.0 55 95.5
Prokaryotes
E. coli 345 92.1 44 93.2

cross-validation, the optimal feature subsets for five species were
screened out and shown in Table 2. It is obvious that the accuracies
were indeed improved after removing noise features. It was also noted
that the feature dimensions for C. elegans, B. subtilis, and E. coli were
dramatically decreased after feature selection. However, only 13 and
204 features were excluded for H. sapiens and D. melanogaster. The
reason for these phenomena may be that promoter sequences of
H. sapiens and D. melanogaster are much more complex than those
of the other three species.

After determining the optimal feature subsets, for convenience in
subsequent comparisons, the 10-fold cross-validation was applied
to seek the best SVM-related parameters (¢ and ) and to evaluate
those models. For H. sapiens, D. melanogaster, C. elegans,
B. subtilis, and E. coli, the optimal values of ¢ and vy are 2 and 273,
2and 2% 2°and 27, 2°and 277, and 27 and 27}, respectively.
The detailed results were listed in Table 3. In addition, receiver oper-
ating characteristics (ROC) curves were also plotted in Figure 2 to
visually show the prediction capability of our model on discrimina-
tion between promoters and non-promoters.

Comparison with Existing Promoter Classifiers

Comparison with other existing methods is an important strategy to
highlight the merits of proposed models. Currently, several computa-
tional methods have been developed for eukaryote and prokaryote pro-
moter prediction.'””** To provide a fair comparison of the same data,
only a method called IPMD** was used to make comparisons, because
the same benchmark datasets and same cross-validation rule were used
in both works. Furthermore, comparison in the paper** has demon-
strated that IPMD is superior to other existing predictors, such as
NNPP2.2, McPromoter. The IPMD is a hybrid method that combined
PCSF and increment of diversity (ID) with the modified Mahalanobis
Discriminant. Figure 3 recorded the results obtained by our proposed
method and IPMD. The results show that our model is superior to the
IPMD model, especially for C. elegans, B. subtilis, and E. coli.

Moreover, multi-window Z-curve®” and PseZNC® have been pro-
posed as feature extraction approaches for 6’° promoter prediction
in E. coli. Based on the same E. coli data, multi-window Z-curve

1% Tts overall accuracy is only 77.81%

was re-evaluated in Lin et al

Table 3. The Results for Five Species by Using 10-Fold Cross-Validation

Kingdom Species ACC (%) Sn (%) Sp (%) AUC
H. sapiens 93.3 92.3 92.7 0.974
Eukaryotes D. melanogaster 93.9 92.6 92.6 0.975
C. elegans 95.7 95.0 94.4 0.981
B. subtilis 95.2 94.8 94.3 0.988
Prokaryotes
E. coli 93.1 92.2 91.2 0.976

with the area under receiver operating curve (AUC) of 0.8480, which
is lower than those of our proposed method. PseZNC is a feature
extraction technique that combines multi-window Z-curve with
PseKNC. The accuracy of the PseZNC-based method is also lower
than our method. Detailed comparison was exhibited in Figure 4.
Z-curve theory has been successfully applied in prokaryotic gene pre-
diction because of the characteristics of period-3 in codon. However,
promoter sequence cannot code amino acids and dose not obey the
codon rule. This is why the two Z-curve-based methods cannot pro-
duce better results on promoter prediction.

Recently, two predictors called iPromoter-2L>” and MULTiPly*® were
also designed for E. coli promoter prediction. We could make a raw
comparison because the benchmark data in these studies were all
derived from RegulonDB. Both predictors could provide multi-layer
prediction for recognizing promoters and their subtypes. The former
was based on multi-window-based PseKNC and Random Forest,
which produced the accuracy (ACC), sensitivity (Sn), and specificity
(Sp) of 81.68%, 79.20%, and 84.16%, respectively. The latter obtained
the related three indexes of 86.92%, 87.27%, and 86.57% by a SVM-
based model. It was found that our proposed model yielded ACC,
Sn, and Sp of 93.1%, 92.2%, and 91.2%, respectively (Table 3), which
are superior to the two predictors.

Cross-Species Evaluation

Cross-species evaluation on eukaryote and prokaryote was performed
to assess the generalization ability of the proposed method. It should be
noted that because of the different sequence structure, composition,
and regulatory mechanism between eukaryote and prokaryote, the
following experiments were performed. We first evaluated the
H. sapiens-based model on D. melanogaster and C. elegans data. Results
(Table 4) showed that the accuracies are only 77.10% and 66.63% for
the two test datasets. Subsequently, we investigated the prediction per-
formances of the D. melanogaster-based model on H. sapiens and
C. elegans data. Only 68.41% of H. sapiens sequences and 65.68% of
C. elegans sequences can be correctly identified. Finally, we performed
similar examinations and obtained similar results on the models from
C. elegans, B. subtilis, and E. coli. The unsatisfactory results are mainly
due to the species-specificity property of promoter sequences.

Web Server and Tutorial
A user-friendly and publicly accessible web server could provide con-
venience for researchers.”’ ! Thus, based on our proposed method,
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ROC curves for promoter prediction in (A) H. sapiens, (B) D. melanogaster, (C) C. elegans, (D) B. subtilis, and (E) E. coli.

we established a powerful web server called iProEP, by which re-
searchers can identify promoters by uploading DNA sequences. A
step-by-step guide on how to use the web server is given as follows:

Step 1. Click on the web address http://lin-group.cn/server/
iProEP/ and the user will see the brief summary about iProEP
(Figure 5).

Step 2. Click on the “Predictor” on the navigation bar, then
choose a suitable species and input the query DNA sequences
into the input box for prediction. It should be noted that the se-
quences must be FASTA format with the length of >300 bp for
eukaryote and >81 bp for prokaryote. Click on the “example” but-
ton below the input box to see the sample sequence in the FASTA
format.

Step 3. Click on the “submit” button to obtain the predicted result.
If the sequence is longer than 300 or 81 bp, the predictor will scan
the sequence using the 300- or 81-bp window with the step of 1 bp
for eukaryote or prokaryote, respectively. The result for each sub-
sequence will be displayed on the result page.

DISCUSSION

Computationally identifying promoters has attracted scholars’ atten-
tion for many years, and many encouraging results were obtained.

340 Molecular Therapy: Nucleic Acids Vol. 17 September 2019

However, it is still a challenging topic in bioinformatics."” In this
work, we proposed a new feature extraction technique that combines
PseKNC with PCSF for improving prediction ACC. A series of exam-
inations demonstrated that our proposed method can distinguish
promoter from non-promoter sequences with good performance.
Thus, we established a predictor iProEP for providing convenience
to scholars.

In the future work, many more promoters derived from other spe-
cies will be collected for species-specific promoter prediction.'”*
Moreover, although the combination of PseKNC and PCSF worked
well in this study, new feature extraction techniques should be
developed to further improve the performance of promoter predic-
tion. Finally, with accumulation of more and more data and the
development of a deep learning technique in many biological prob-
lems,'”*""**7% it is suitable to identify promoters by using a deep
learning technique.

MATERIALS AND METHODS

Benchmark Dataset

A key step for constructing a powerful and robust prediction model is
to construct an objective and strict benchmark dataset. In this work,
we established five benchmark datasets including promoter and non-
promoter sequences for five species (Table 5).
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Figure 3. The Comparison between Our Proposed Method with IPMD Classifiers in 10-Fold Cross-Validation

Eukaryotic Promoter Database (EPD)’° is a high-quality and non-
redundant promoter resource and can be freely accessed at https://
epd.epfl.ch//EPD_database.php. The 1,787 H. sapiens and 1,886
D. melanogaster Pol II promoter sequences were obtained from the
EPD database. The 598 C. elegans promoter sequences were extracted
from CEPDB (C. elegans promoter database; http://rulai.cshl.edu/
cgi-bin/CEPDB/home.cgi). Each eukaryotic promoter is 300 bp
long from 249 bp upstream to 50 bp downstream regions of TSS
(TSS is regarded as 0-th site).

For prokaryote, 270 B. subtilis c** promoters were collected from
DBTBS” (http://dbtbs.hgc.jp), and 741 E. coli K-12 6”° promoter se-
quences were gained from RegulonDB*® (http://regulondb.ccg.unam.
mzx/). All prokaryotic promoters have 81 nt with the region from —60
to +20 flanking TSS (TSS is regarded as the 0-th site).

The negative datasets were taken from the five species genome se-
quences. We randomly extracted 1,800 coding sequences and 1,800
introns from human DNA sequences from http://www.fruitfly.org/
sequence/human-datasets.html *° to generate the non-promoter da-
taset for H. sapiens. For D. melanogaster, a negative dataset including
2,859 coding sequences and 1,799 introns was downloaded from
the website (http://www.fruitfly.org/sequence/drosophila-datasets.
html).*” The negative sample of C. elegans contains 600 coding se-
quences, and 600 introns were randomly extracted from Exon-Intron
Database (EID).*' For prokaryotes, all negative samples were
randomly taken from the well-known database GenBank.** The num-
ber of non-promoter sequences for B. subtilis and E. coli are 600
(including 300 coding sequences and 300 convergent intergenic se-
quences) and 1,400 (including 700 coding sequences and 700 conver-
gent intergenic sequences), respectively.

To get rid of the influence of noise data, we eliminated the sequences
that contain other IUPAC code letters, such as “N,” “S,” and “W,”

from both positive and negative datasets. In order to ensure that
the format of negative sequences can match the promoters, the
lengths of eukaryotic and prokaryotic non-promoter sequences are
also 300 and 81 bp, respectively. The details of the benchmark data-
sets were listed in Table 5.

It is well known that sequence similarity could influence the evaluation
on the proposed mode.”> We investigated the sequence similarity of
the five species promoters by using CD-HIT. After setting the cutoff
of sequence identity to 0.8 to exclude high similar promoters, we found
that 98.0%, 99.3%, 95.0%, 98.5%, and 96.0% promoters for H. sapiens,
D. melanogaster, C. elegans, B. subtilis, and E. coli remained, suggesting
that the original datasets are objective enough to construct prediction
models. Moreover, for the purpose of providing an objective compar-
ison with the previous promoter prediction method IPMD, the same
benchmarking datasets as used by IPMD are also provided. All data
used in this study can be freely downloaded from http://lin-group.
cn/server/iProEP/pages/download.php.

Pseudo k-Tuple Nucleotide Composition (PseKNC)

In general, the input of almost all the existing machine learning clas-
sification methods, such as SVM,**~*° Random Forest,"” and Artificial
Neural Network,**° must be a numeric value rather than a string
sequence. Thus, each sample must be transferred into a fixed length
of the feature vector.

A simple and common strategy to transform a DNA sample into a
vector is to use its k-tuple nucleotide composition, which can be
formulated by a vector D with 4* elements according to the following
formula:

D= k—tuple pk—tuple k—tuple k—tuple T
=fi S . fl ces ,

4k

(Equation 2)
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where the symbol T means the transposition of a vector, and fikfw “ s
the normalized frequency of the i-th k-tuple nucleotide component
occurring in the DNA sequence.

In order to take both local and global sequence-order information
of a DNA sequence into consideration, PseKNC>"** was proposed
and has been widely utilized to represent DNA or RNA se-

53,54
quences.

Its basic principle is to combine the correlation of
physiochemical properties of oligonucleotides and k-mer composi-
tion to formulate DNA sequences. There are two kinds of
PseKNCs: type I and type II PseKNC. The former is also called
the parallel correlation type, which mixes different physicochem-
ical properties together to represent a nucleotide sequence with a
vector containing 4° + A components. The latter is named the se-
ries correlation type, which describes a nucleotide sequence by a
vector containing 4* + AA factors. Comparing with the type I
PseKNC, which has been widely and successfully applied in various
bioinformatics fields,®”> few works focused on the application of
type I PseKNC.*** Considering the merit of type II PseKNC
that different correlation information was separated independently,
this work employed the type II PseKNC to transform sample
sequences into vectors given as below:

DpseKNC = [dl dZ o ]T

: d4k d4’<+1"'d4’<+)‘ d4’<+/1+1"'d4k +AA]

(Equation 3)

where

fk—tuple

u k

1<u<4
4 k—tuple w7 ( )
Zi—lfi + ij—lTj
d,= - B
WT gk

(4k+1 <u<4k+/XA )

£k tuple w7 -
Zi:lﬁ + ij:1Tj
(Equation 4)

fik_mp “ has the same meaning as in Equation 2; A is an
integer number less than L — k, which reflects the correlation
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Table 4. The Results for Cross-Species Examination

Kingdom Model Training Model Test ACC (%)
D. melanogaster 77.19
H. sapiens
C. elegans 66.63
H. sapiens 68.41
Eukaryotes D. melanogaster
C. elegans 65.68
H. sapiens 66.57
C. elegans
D. melanogaster 69.58
B. subtilis E. coli 75.95
Prokaryotes
E. coli B. subtilis 80.92

tiers or correlation rank along a DNA sequence; w is a weight
factor used to balance the effect of global correlation information
and local property; and 7; (j=1, 2, -+, AA) represents the m-tier
correlation factor, which describes the sequence-order correlation
between all the m-tier contiguous k-tuple nucleotides along a
DNA sequence. Here 7; can be calculated by

1 Lk
1
L — ZL’.HI
i=1
1 Lk
2
2= I—k Z]i,Hl
i=1
1 L=k

A<(L—- k) ,

L— k=2A+1

]AA—I
ii+1
i=1

—

[

L—k=2A+1

1 AN
T = — o
ML k- 2+l ; T

(Equation 5)

where

Jiiom=H:(RRi 1) * He(RispRis 1)
E=1,2, voe, Aym=1,2, ¢ee, X; i=1,2, 0o+, L—2A—1’

(Equation 6)

where H;(RiR;, ) is a numerical value of the £-th physicochemical
property  for the RiR;;1 at position i,
H:(Ri+mRism+1) is the corresponding value for the dinucleotide
Ri s mRi+m+1 at position i + m, and A is the number of physicochem-
ical properties. In this study, six DNA local structural properties of
the 16 DNA dinucleotides were utilized in this work; the concrete

dinucleotide

values of three local translational properties (slide, shift, rise) and
three local angular properties (roll, tilt, twist) were taken from
Gonii et al.’s”” work. It should be noted that the original values of
six DNA local structural properties should be subjected to a standard
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optimal feature subsets. SVM algorithm was used to implement classification. 10-
fold cross-validated results showed that the accuracies for H. sapiens, D.
melanogaster, C. elegans, B. subtilis, and E. coli were respectively 93.3%, 93.9%,
95.7%, 95.2%, and 93.1% and the areas under ROCs (AUCs) for the above five

JHEPD CEPl
[ADETES Repiont)

b-server

ackage

Address: Chengdu, 610054, China
Contact: [Feedback]

Figure 5. The Homepage of the iProEP Web Server
Available at http://lin-group.cn/server/iProEP/.

version by Equation 7 and then can be used in Equation 6 to calcu-
late PseKNC:

H?(RiRHl) - <H?(RiRi+1)>
SD(H(RiRir1))

H:(RiRi11) = (Equation 7)
where H?(R,-R,—H) is the original value of the £-th DNA local struc-
tural property for the dinucleotide R;R; . at position i, the symbol<>
means taking the average of the quantity therein for the 16 different
combinations of A, G, C, T for R;R;, 1, and SD represents the corre-
sponding SD. The standard version of these physicochemical prop-
erty values can be also found in many other DNA-related studies.’
The superiority of the final standard 16 values converted by Equa-
tion 7 is that they will have a zero mean value over the 16 different
dinucleotides and will not be changed if going through the same con-
version procedure again.’®

species were respectively 0.974, 0.975, 0.981, 0.988, and 0.976.

Benchmark Dataset Features
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PCSF

By aligning promoter sequences for every species, we can construct a
position-correlation scoring matrix (PCSM).>**” Each row in the
PCSM consisted of factor p,;, which is the probability of k-mer x at
the i-th site of promoter samples. p,; can be calculated by the
following formula:

Dxi= %, (Equation 8)
where n,; is the actual count of x appearing at the i-th site, and b,;
is the corresponding pseudocount. N; indicates the sum of real
counts of all k-mers at the i-th site (namely, positive sample num-
ber), and B; is the corresponding sum of the pseudocount. If
the sample size is not large enough, some k-mers will not be
present when k increases. Hence, the pseudocount could improve

Molecular Therapy: Nucleic Acids Vol. 17 September 2019 343


http://lin-group.cn/server/iProEP/
http://www.moleculartherapy.org

Molecular Therapy: Nucleic Acids

Table 5. The Detail Information of the Training Datasets for Five Species

Non-promoter

Kingdom Species Promoter CDS Non-CDS* Location
H. sapiens 1,787 1,800 1,800 [—249, +50]
Eukaryotes (300 bp)
D. melanogaster 1,886 1,799 2,859 [—249, +50]
C. elegans 598 600 600 [—249, +50]
Prokaryotes (81 bp) B. subtilis 270 300 300 [—60, +20]
E. coli 741 700 700 [—60, +20]

CDS, coding sequences.
“Intron for eukaryotes and convergent intergenetic region for prokaryotes.

estimation of the probability p,; for k-mer x at the i-th site. B; and
b,; can be given by

) (Equation 9)

b= poVNi d
in which py is the background frequency of k-mer, which is equal to 1/
4%, With the increasing sample number N;, the influence of pseudo-
counts will weaken, because of the slow increase of v/N;.

PR

Some conservation sites of trimers for five species have been screened
out by a great number of complex conservation analyses and ACC
evaluations in Lin and Li.>* Based on these sites and PCSM, the
PCSF feature of positive and negative samples for five species can
be expressed as

PCSF = [flfl ﬁfnL

where 7 is the number of selected conservation sites, and each element
is defined as

(Equation 10)

fi=In(psi/po ).

In this equation, py is the background probability of each trimer (py =
1/4%), and Pxi can be obtained on the basis of PCSM.

(Equation 11)

mRMR

Commonly, picking out of the most useful features from the high-
dimension data is a requisite step to exclude noise, improve predic-
tion ACC and efficiency, avoid model overfitting, as well as build a
robust model. In the present work, with the increase of two variables
in Equation 4, k and 4, the dimension of PseKNC features will raise
sharply, which may result in the curse of dimensionality. Therefore,
it is absolutely necessary to find out the optimal features that could
produce a robust model with highest ACC. mRMR is a popular
feature selection technique that could calculate a score for each
feature for measuring the importance of the feature.>"'
series of intuitive measures of relevance and redundancy to find a
very compact subset from candidate features and has been widely
used in data mining of biological processes.”* %>
tures, two selection criteria, Mutual Information Difference criterion

It used a

For discrete fea-

344 Molecular Therapy: Nucleic Acids Vol. 17 September 2019

(MID) and Mutual Information Quotient criterion (MIQ), can be
used to calculate the score of a feature. In the study, we chose the
score from MIQ.

After scoring the PseKNC and PCSF features by mRMR, the IFS strat-
egy with 5-fold cross-validation was applied to obtain the best feature
subset that could produce the maximum prediction ACC. During the
IFS procedure, the ranked features were added in the training set one
by one according to mRMR rank; IFS strategy evaluates the perfor-
mance of the top k-ranked features. The 5-fold cross-validation was
to seek the best penalty coefficient ¢ and width parameter v for
SVM models when obtaining the best feature subset.”*>°

SVM
SVM is a widely employed machine learning algorithm based on sta-
tistical learning theory®® and has been extended in bioinformatics
fields.””"”” The core idea of SVM is to seek out a classification hyper-
plane that can maximize the margin of the feature space. LibSVM is a
popular softpackage for executing SVM’* and can be freely down-
loaded from https://www.csie.ntu.edu.tw/~cjlin/libsvm/. This study
used LibSVM with radial basis function (RBF) to perform classifica-
tion. We employed the grid search method with cross-validation to
seek the best penalty coefficient ¢ and width parameter y. The search-
ing space is as follows:

{ ce[27°,2"],

ye[27, 2],

step=2

step=2""" (Equation 12)

Performance Evaluation Metrics

In order to assess the quality of a predictor and compare different pre-
diction tools, the following three indexes,”” namely, the overall ACC,
Sn, and Sp, were used and formulated as

ACC= P+ 1N (Equation 13)
TP+ TN +FP+FN quation

sn=_ 1P (Equation 14)
n= TP n FN qua 10on


https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/

www.moleculartherapy.org

TN

Sp = m, (Equation 15)

where TP (true positive) and TN (true negative) present the numbers
of correctly identified promoters and non-promoters, respectively,
and FP (false positive) and FN (false negative) denote the number
of non-promoters incorrectly classified as promoters and the number
of promoters incorrectly classified as non-promoters.

ROC analysis was used to measure the performance of the model with
the varying of decision thresholds.”®
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