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A genome-wide scan statistic framework for
whole-genome sequence data analysis
Zihuai He1,2, Bin Xu3, Joseph Buxbaum4 & Iuliana Ionita-Laza1

The analysis of whole-genome sequencing studies is challenging due to the large number of

noncoding rare variants, our limited understanding of their functional effects, and the lack of

natural units for testing. Here we propose a scan statistic framework, WGScan, to simulta-

neously detect the existence, and estimate the locations of association signals at genome-

wide scale. WGScan can analytically estimate the significance threshold for a whole-genome

scan; utilize summary statistics for a meta-analysis; incorporate functional annotations for

enhanced discoveries in noncoding regions; and enable enrichment analyses using genome-

wide summary statistics. Based on the analysis of whole genomes of 1,786 phenotypically

discordant sibling pairs from the Simons Simplex Collection study for autism spectrum dis-

orders, we derive genome-wide significance thresholds for whole genome sequencing studies

and detect significant enrichments of regions showing associations with autism in promoter

regions, functional categories related to autism, and enhancers predicted to regulate

expression of autism associated genes.
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Most of the known genetic associations for complex traits
have been discovered through genome-wide association
studies. With continuing advances in massively parallel

sequencing technologies, it becomes increasingly possible to
perform large whole-genome sequencing studies, and hence
explore the contribution of rare and low-frequency variants in
both coding and non-coding regions to risk for complex traits.
For example, several large-scale whole-genome sequencing pro-
jects are ongoing, including the NHLBI Trans-Omics for Preci-
sion Medicine program (TopMed), the NHGRI Genome
Sequencing Program (GSP), the UK Biobank and the Simons
Simplex Collection1–4. The analysis of such data sets is challen-
ging, primarily because of the large number of rare variants in
these studies, our inability to accurately predict the functional
effects of variants in non-coding regions of the genome, and the
lack of natural units (i.e., the analogue of genes in the coding
regions) for testing.

Due to the extreme rarity of individual variants, various region-
based association tests have been developed to aggregate the
genetic variants in a gene/region as opposed to a one-at-a-time
single-variant analysis5. The analysis of whole-genome sequen-
cing data presents additional challenges due to the lack of natural
units for testing in the non-coding part of the genome. Investi-
gators currently adopt a sliding-window strategy to scan the
whole genome continuously with a pre-specified window size
using region-based tests, and then adjust for multiple testing
using Bonferroni correction6,7. This strategy is suboptimal
because the tests are correlated due to window overlap. Moreover,
the optimal window size is often unknown, and misspecification
can lead to potential power loss. Alternatively, a less agnostic
approach is to test for association with variants in different
categories, such as different chromatin states in large number of
tissues, gene-based sets etc8. A limitation of such analyses is that
the choice of categories for testing is subjective, and the correc-
tion for multiple testing is limited to the number of categories
being tested in individual studies resulting in study-specific sig-
nificance thresholds.

Here, we propose WGScan, a scan-statistic approach to
simultaneously detect the existence and location of the associa-
tions in a pre-specified region or at genome-wide scale (more
details on existing scan statistics are given in Supplementary
Material). We propose an efficient algorithm to estimate
moments of the test statistics, such that the significance threshold
at genome-wide level can be computed analytically while
accounting for the correlation among test statistics. WGScan can
incorporate multiple functional annotations of genetic variants
for potentially improved power to identify the signals in non-
coding regions. Using simulation studies, we show that WGScan
outperforms existing methods commonly used in the analyses of
whole-genome sequencing data. As a proof of principle, we first
apply the proposed WGScan tests to a Metabochip data set on
lipid phenotypes focusing on 99 fine-mapping regions (median
size 127 kb), and report significant associations between lipid
phenotypes and variants in several genes, e.g., PCSK9, CELSR2,
IFT172, LPL, BUD13, CETP, LDLR and TOMM40, with p-values
substantially smaller than those of standard gene-based tests. We
then use data on 7144 whole genomes from the Simons Simplex
Collection study on autism spectrum disorders to derive a
genome-wide threshold for whole-genome sequencing studies.
The method allows a genome-wide scan for both inherited and de
novo mutations, complementing previously published papers
focusing on de novo variants exclusively8–10. We also perform
enrichment analyses for the associated regions using several sets,
including promoter regions, catalogued gene sets for various
complex diseases and traits, enhancers predicted to regulate

expression levels for genes in these sets and Gene Ontology (GO)
cellular components.

Results
Overview of WGScan. We propose a scan-statistic approach,
WGScan, for the analysis of whole-genome sequencing data.
WGScan can simultaneously detect the existence, and estimate
the locations of the association signals at genome-wide scale (or
in a pre-specified large region). Specifically, given a study popu-
lation of n subjects, with Yi being the quantitative/dichotomous
outcome value; Xi= (Xi1, …, Xid)T being the d covariates, which
can include age, gender, principal components of genetic varia-
tion etc.; {Gij}1≤j≤p being the p genetic variants in the region of
interest, we are interested in simultaneous determining the win-
dows Φkl= {j:k ≤ j ≤ l} where the signals reside and testing the
association between Yi and GiΦkl

, adjusting for covariates Xi.
WGScan is based on score statistics Sj ¼

Pn
i¼1 Gij Yi � μ̂i

� �
, j= 1,

…, p, where μ̂i is the estimated mean under the null model.
WGScan first scans the genome with two types of scan

statistics, dispersion and burden, defined as

QDispersion;Φkl
¼

Xl

j¼k
S2j andQBurden;Φkl

¼
Xl

j¼k
Sj

� �2
; ð1Þ

and calculates the p-values pΦkl
of both for every window11–15.

Then it estimates a significance threshold for the minimum p-

value mink;l pΦkl

n o
, denoted as α*, that controls the family-wise

error rate of the entire analysis at nominal level (e.g., 0.05). The
threshold α* takes into account the multiple testing issue with
correlation structure among the test statistics. Finally, it defines
all windows Φkl with p-values pΦkl

< α� as significant. WGScan
also allows meta-analysis using summary statistics, integration of
multiple functional annotations and enrichment analysis using
summary statistics. We present the details in the Methods section.
The general workflow of the method is depicted in Fig. 1.

Empirical family-wise error rate simulations. We first con-
ducted empirical family-wise error rate simulations. Each repli-
cate consists of 2000 individuals with genetic data on 400 genetic
variants from a 200 -kb region, simulated using the SKAT
package11. The SKAT haplotype data set was generated using a
coalescent model (COSI), mimicking the linkage disequilibrium
structure of European ancestry samples16. The simulations focus
on variants with MAF < 0.05. We incorporate as weights wj=
beta(MAFj, 1, 25) to up-weight rare variants, where MAFj is the
minor allele frequency (MAF) for variant j. To investigate whe-
ther the proposed tests preserve the desired family-wise error rate,
we simulated quantitative/dichotomous phenotypes from the
following models

● Quantitative trait: Yi= Xi1+ εi
● Dichotomous trait: logitpi= α0+ Xi1

where Xi1 ~ N(0, 1), εi ~ N(0, 1), and they are all independent. For
the dichotomous trait, α0 is determined such that the prevalence
is 1%. Then equal numbers of cases and controls were generated.
We simulated 105 replicates to examine the family-wise error rate,
and compared WGScan with alternative methods employed
before in the analysis of whole-genome sequencing data, based on
an estimation of the effective number of tests, including those
based on the Beta distribution (M-Beta) or spectral decomposi-
tion (M-Spectral)8. More details on these alternative methods are
given in the Methods section.

We present the results for a dichotomous trait in Fig. 2. We
observe that the family-wise error rate of WGScan is protected at
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nominal level. M-Beta exhibits inflated error rate (e.g., 0.0717,
combined test), likely due to the violation of the assumption that the
correlation among p-values only affects the second shape parameter
of the beta distribution, which is not theoretically guaranteed. M-
Spectral has protected error rate when a correct threshold is
specified for the total variation explained (M-Spectral-95%), but it
can be either liberal or conservative when a misspecified threshold is
being used (e.g., M-Spectral-90% or 99%). The results for
quantitative traits are similar (Supplementary Fig. 1).

Empirical power simulations. We also evaluate the empirical
power of WGScan. For each replicate, we generate a 200 -kb
region as simulated in the empirical family-wise error rate
simulations. We consider two scenarios: high causal proportion
with small effects, and low causal proportion with large effects.
We set 2.5% or 0.5% variants in the 200 -kb region to be causal,
all within a 10 -kb signal window in each scenario. Then we
generated the quantitative/dichotomous phenotypes as follows:

● Quantitative trait: Yi= Xi1+ β1g1+…+ βsgs+ εi
● Dichotomous trait: logitpi= α0+ Xi1+ β1g1+…+ βsgs

where Xi1 ~ N(0, 1), εi ~ N(0, 1) and they are all independent;
(g1, …, gs) are selected risk variants. For the dichotomous trait, α0
is determined such that the prevalence is 1%. Then equal
numbers of cases and controls were generated. The sequencing
data were generated as described above. We set the effect
βj ¼ ajlog10 mjj, where mj is the MAF for the jth variant. For
dichotomous trait, we set a= 0.5 when causal proportion is 2.5%
(OR= 1.5, when MAF= 0.001), and a= 1.2 when causal
proportion is 0.5% (OR= 3.6, when MAF= 0.001). For quanti-
tative trait, we set a= 0.3 when causal proportion is 2.5%, and
a= 1.8 when causal proportion is 0.5%.

We compare with the standard sliding-window dispersion
(SKAT), burden and combined tests (SKAT-O), using Bonferroni
correction15. Specifically, we applied dispersion, burden and
combined tests to either 10- or 20 -kb sliding windows (sliding

window-10 kb/20 kb), with half of the window overlapping with
adjacent windows on each side. We also evaluated a sliding-
window approach using both 10- and 20 -kb windows (sliding
window-10kb20kb), since the underlying signal window is usually
unknown. The minimum p-value was then adjusted by multi-
plying by the total number of windows. For all methods, we
incorporate MAF-based weights, i.e., wj= beta(MAFj, 1, 25),
where MAFj is the minor allele frequency for variant j.

We present results for empirical power for a dichotomous trait
and 0.5% causal proportion in Fig. 2. We noticed that sliding
window-10 kb exhibits higher power than the sliding window-
20 kb in all scenarios, because the underlying signal window is
10 kb, and therefore sliding window-20 kb assumes a misspecified
working window size. In addition, sliding window-10 kb/20 kb is
less powerful than either sliding window-10 kb or sliding
window-20 kb, although the underlying signal window is
included. This is because consideration of multiple candidate
window sizes substantially increases the burden for multiple
comparisons, especially when a Bonferroni correction is applied
which does not take into account the correlation and overlap
among windows. The proposed WGScan exhibits higher power
than all compared methods, including sliding window-10 kb
where the working window size is the same as the signal window
size. In addition, the power improvement is larger when the
causal proportion is lower. There are two reasons for this power
improvement. First, WGScan takes into account the correlation
and overlap among windows while sliding window-10 kb uses a
conservative Bonferroni correction. Second, although the under-
lying signal window is 10 kb, the 0.5% or 2.5% randomly selected
causal variants can be concentrated in smaller windows within
the 10 -kb signal window, especially when the causal proportion is
low (0.5% in this example). WGScan is able to search for the
windows that contain the clustered causal variants. We observed
similar qualitative patterns in power comparisons for quantitative
traits, as well as the power comparisons with 2.5% causal
proportion (Supplementary Fig. 2).

WGScan scans the whole genome
with multiple candidate window sizes

WGScan calculates p -values for each
window with dispersion and burden tests

WGScan estimates genome-wide threshold
using extreme-value distribution
and defines significant windows

WGScan also allows:

Meta-analysis using summary statistics
Integration of multiple functional annotations
Enrichment analysis using summary statistics
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Fig. 1 Overview of WGScan
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Meta-analysis of candidate regions in Metabochip data for
lipid traits. As a proof of principle, we first applied WGScan to
regions potentially associated with total cholesterol (CHOL),
high-density lipoproteins cholesterol (HDL), low-density lipo-
proteins cholesterol (LDL) and triglycerides (TG) using Meta-
bochip data on eight studies collected in Northern and Western
Europe, for a total of 12,281 individuals17. Details on these studies
are reported in Supplementary Material. We restricted the ana-
lysis to rare (minor allele frequency < 0.05) variants. We report
the results from WGScan, scanning 99 fine-mapping regions
(median size 127 kb) with candidate window sizes 5 kb, 10 kb,
15 kb, 20 kb, 25 kb and 50 kb, with half of the window over-
lapping with adjacent windows on each side. In addition, we
performed a gene-based test for 266 genes located in these
regions18. We aim to illustrate that the proposed scan-statistic
approach outperforms the gene-based approach. Therefore, we
compared WGScan with gene-based approach in an integrative
analysis setting, where both methods include the same set of
GenoNet functional predictions across 127 tissues to up-weight
predicted functional variants for a fair comparison.19

We present the significant windows and genes in Fig. 3, and the
exact p-values in Supplementary Table 1. For the WGScan
analysis, we estimate a significance threshold of 3.75e−06 for all
tests (in total 128 × 2= 256 tests per window). For the gene-based
analysis, we used a significance threshold of 1.88e−04, corre-
sponding to the Bonferroni adjustment for 266 genes. Overall, we
find that both the scan-statistic and gene-based analyses detect
associations with variants in several well-known genes for lipid
traits, including PCSK9, LPL, LDLR and CETP. In addition, the
scan-statistic approach also detects associations with variants in
several other genes, not detected by the classic gene-based
analysis, such as CELSR2, IFT172 and ALDH1A2 (note also that
using a Bonferroni adjustment for the total number of tests, i.e.,
1.66e−08, would not allow detection of these additional genes).
Lead SNPs at 95 loci identified in a large GWAS on blood lipid
traits have been shown to be eQTLs in human liver for CELSR2
(rs629301), IFT172 (rs1260326) and ALDH1A2 (rs1532085),
adding support to the relevance of these genes to lipid traits20.

Applications to whole-genome sequencing data from the
Simons Simplex Collection. We then applied WGScan to whole-
genome sequencing data from the Simon Simplex Collection
(SSC). SSC is a unique repository of 2600 simplex families, col-
lected by the Simons Foundation Autism Research Initiative

(SFARI), in order to study genetic variants that contribute to the
overall risk of autism spectrum disorders (ASD)4. In this analysis,
we have used whole-genome data from the Pilot study+ Phase 1,
Phase 2, Phase 3–1 and Phase 3-2, consisting of 2076, 2368, 1796
and 904 individuals from 519, 592, 449 and 226 quad families,
respectively. Each family consists of one ASD case, one unaffected
sibling and their parents. Unlike previous studies on this data set
that have focused on de novo variants exclusively, we focus on
rare variants (minor allele frequency < 0.05), both inherited and
de novo8. We adopt a simple analysis strategy, and adjust the
offspring genotypes by subtracting the conditional expectation
(conditional on parental genotypes) from their genotypes, so that
the 3572 cases and controls can be considered as conditionally
independent samples. For binary outcomes, we show in Supple-
mentary Material that the score test paired with this adjustment is
also directly connected to retrospective paired t test for discordant
sib-pair association, which takes into account the correlation
between siblings within a pair. This approach also takes advan-
tage of the family structure to control for population stratifica-
tion. After all quality control steps detailed in the Method section,
the final data set comprised 1786 ASD cases and 1786 sibling
controls and 137,732,715 variants, of which 129,820,320 are rare
(minor allele frequency or MAF < 0.05). We apply WGScan to all
rare (MAF < 0.05) biallelic single-nucleotide variants adjusting for
gender, with candidate window sizes 5 kb, 10 kb, 15 kb, 20 kb,
25 kb and 50 kb. The primary analysis used a beta(1, 25) weighting
scheme to up-weight rare variants, i.e., wj0= beta(MAFj, 1, 25),
where MAFj is the minor allele frequency for variant j17.

Significance thresholds for whole-genome analysis. We estimate
the significance thresholds for sliding-window approaches with
individual dispersion and burden tests, a combination of them
(two tests per window), and dispersion and burden tests inte-
grating additional GenoNet scores in 127 tissues (256 tests per
window) with candidate window sizes 5 kb, 10 kb, 15 kb, 20 kb,
25 kb and 50 kb, with half of the window overlapping with
adjacent windows on each side. The GenoNet functional scores
are integrated as additional weights, i.e., wjr= beta(MAFj, 1,
25) ×GenoNetjr, r= 1, …, 127, where GenoNetjr is the GenoNet
score for variant j in rth tissue. We present the main results in
Fig. 4. As shown, the threshold estimated using WGScan that
accounts for correlations among windows (and among functional
scores in different tissues/cell types, when they are incorporated)
is substantially higher than using a naive Bonferroni threshold,
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Fig. 2 Family-wise error rate and power-simulation studies. The trait is dichotomous, and region size is 200 kb. Several candidate window sizes were
considered for WGScan, namely 5 kb, 10 kb, 15 kb, 20 kb, 25 kb and 50 kb. The left panel presents family-wise error rate comparison based on 105

replicates. M-Beta: method based on Beta distribution. M-Spectral-90%/95%/99%: method based on spectral decomposition, where leading eigenvalues
account for 90%/95%/99% of the total variation (i.e., sum of all eigenvalues). The right panel presents power comparison based on 1000 replicates, with
causal proportion 0.5%. WGScan: proposed test; sliding window: SKAT, Burden or SKAT-O test is applied to scan the region continuously using a sliding
window of 10 kb, 20 kb or both, adjusted by Bonferroni correction for the total number of windows tested. Source data are provided as a Source Data file
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especially when incorporating a large number of functional scores
in the analyses (2.6 × 10−9 vs. 5.9 × 10−11). Interestingly, the
threshold when performing only dispersion tests (6.5 × 10−8,
Supplementary Fig. 3) is slightly higher (more liberal) than when
performing only burden tests (3.6 × 10−8, Supplementary Fig. 3)
due to the fact that generally the correlation among dispersion-
type statistics tends to be larger than among burden-type statistics
(see also Supplementary Material).

Scan-statistic analysis of the SSC. We present the genome-wide
results of the scan-statistic analysis of 3,090,927 overlapping
windows from WGScan in Supplementary Fig. 4. The QQ plot
shows that both dispersion and burden test results are concordant
with the null expectation in each individual phase. There is no
single-window association signal from the standard dispersion or
burden tests below the estimated threshold for dispersion and
burden tests (2.4 × 10−8).
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We annotate the location of windows with respect to promoter
regions, defined as 3 kb upstream of the transcription start site
(TSS) of a gene. In each phase, we computed the proportion of
associated windows (at different thresholds p < 0.01, 0.005, 0.001
or 0.0005) overlapping promoter regions, and compared it with
unassociated windows (p > 0.9) using 100,000 resampling repli-
cates. We used Cauchy’s combination test to combine the
resulting p-values from individual significance thresholds, and
then Fisher’s combined probability test to aggregate p-values from
different phases21. The Cauchy’s combination test is applied in
order to accommodate the unknown dependency structure
among enrichment p-values from different significance thresh-
olds. The results are shown in Table 1. We found that the
promoter regions are significantly more enriched in associated
windows vs. unassociated windows (meta-analysis p-value= 5.9e
−08 for dispersion test). The significance of enrichment observed
in Pilot+ Phase 1 data (p= 2.00e−05) is replicated in Phase 3–1
(p= 4.02e−05) and Phase 3–2 (p= 0.0260). Since most variants
in the target windows are inherited variants, the effect of variants
in promoters in our analysis are mostly attributed to inherited
variants, complementing the findings from An et al.10 on the
effect of de novo mutations in promoter regions.

ToppFun functional enrichment analyses. Using ToppFun, we
have also tested whether the association signals from WGScan
(windows with dispersion or burden p < 0.005 from any indivi-
dual phase) are enriched in particular Gene Ontology (GO) cel-
lular components, and in sets of genes associated with human
diseases22,23. We assign a window to a gene if the window
overlaps the region 3 kb upstream and downstream of TSS of the
gene. The human disease data are based on DisGeNET, a repo-
sitory of genes and variants associated with human diseases,
integrating data from GWAS catalogues, animal studies and

expert curated repositories24. Currently, DisGeNET contains a
large number of associations between 17,074 genes and 20,370
diseases, traits and other clinical phenotypes. Interestingly, we
identify significant enrichments in gene sets for substance-related
disorders (Burden Bonferroni adjusted p: 7.18 × 10−9), autistic
disorder (4.56 × 10−8), autism spectrum disorders 2.59 × 10−7)
and autosomal recessive predisposition (6.58 × 10−06). We also
identify significant enrichments among relevant GO cellular
components, such as synapse, neuron part, neuron projection,
synapse part and cell-projection organisation. Detailed results are
shown in Table 2.

Enrichment of association signals in specific gene/region sets.
We then focused on nineteen sets of genes (both ASD associated
and general GENCODE-based sets), and an additional set of
regulatory non-coding elements to investigate whether the asso-
ciation signals from WGScan are enriched in those sets (more
details on these sets are in the Methods section). We also made
use of enhancer-target networks from the ENCODE+ Roadmap
and FANTOM5 data sets for genes in our selected gene sets,
resulting in 15 additional sets of enhancer only regions (linked to
the genes in the sets of interest) and 15 enhanced gene sets
(containing the original genes in the sets and additional enhancer
regions predicted to interact with genes in the sets)25. We con-
ducted enrichment analyses using window-based summary sta-
tistics (p-values), as detailed in the Methods section. We present
the results in Table 3.

We observed significant enrichment (Bonferroni threshold
= 0.05/20 gene sets= 0.0025) via either dispersion test,
burden test or both. The top five sets (ranked by minimum
p-value of dispersion and burden tests on the enhanced gene
sets) are: FMRP_targets_Darnell2011 (dispersion: p= 5.0e
−05); ASD_coexpression_networks_Willsey2013 (burden:

Table 1 Enrichment of association signals in promoter regions

Test Pilot+ Phase 1 Phase 2 Phase 3–1 Phase 3–2 Meta

Dispersion 2.0E−05 1 4.0E−05 0.0260 5.9E−08
Burden 3.2E−05 0.9999 0.9866 0.5377 0.0050

Observed proportion of significant windows that overlap promoter regions are compared with the expected proportion determined empirically based on control windows. The analysis is based on
100,000 replicates

Table 2 ToppFun enrichment results

Dispersion Burden

Category Name p-value Bonferroni
p-value

Name p-value Bonferroni
p-value

Cellular component (GO) Synapse 6.36E−11 6.00E−08 Synapse 6.52E−23 9.13E−20
Neuron part 3.12E−09 2.95E−06 Neuron part 4.81E−20 6.73E−17
Neuron projection 1.27E−08 1.20E−05 Neuron projection 1.75E−19 2.45E−16
Synapse part 3.19E−08 3.01E−05 Synapse part 1.68E−18 2.36E−15
Cell projection part 5.47E−08 5.16E−05 Cell projection part 2.21E−17 3.09E−14

Human disease
(DisGeNETa)

Substance-related
disorders

4.50E−13 4.05E−09 Substance-related disorders 4.48E−13 7.18E−09

Autism spectrum disorders 2.37E−09 2.13E−05 Autistic disorder 2.85E−12 4.56E−08
Neuroblastoma 4.92E−08 4.42E−04 Schizophrenia 3.95E−12 6.33E−08
Central neuroblastoma 7.81E−08 7.02E−04 Autism spectrum disorders 1.61E−11 2.59E−07
Autistic disorder 1.86E−07 1.67E−03 Autosomal recessive

predisposition
4.11E−10 6.58E−06

aDisGeNET: The DisGeNET database integrates human gene-disease associations from various databases for a large number of Mendelian and complex diseases
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p= 7.6e−05); Constrained_PLIScoreOver0.9 (burden: p=
1.9e−04); FXR2_wt_binding_sites (burden: 0.0023); FMR1_i-
so1_wt_binding_sites (burden: p= 0.0133). The analysis
replicated a number of ASD-associated gene sets, concordant
with the relevance of these gene sets to autism. Moreover, we
identified significant enrichment of associated windows in
enhancer regions predicted to interact with these ASD-
associated genes (p= 0.0016, 0.0013, 7.0e−04, 9.9e−05,
0.0014 for the aforementioned five gene sets). The enhanced
gene sets (containing the original genes in the sets and their
predicted enhancer regions) generally exhibit smaller p-values
(p= 2.2e−06, 2.5e−05 4.7e−05, 2.6e−04 and 0.0021) than
the original gene sets. The results show an effect for enhancers
predicted to interact with a number of ASD-associated genes
and add support to an important role of non-coding variation
in autism.

Discussion
We propose here a general scan-statistic approach, WGScan, for
the analysis of whole-genome sequencing studies. WGScan has
several important advantages, namely (1) it scans for association
in both coding and non-coding regions using multiple window
sizes and multiple functional annotations, while adjusting for the
correlation among test statistics, (2) it builds on existing
sequence-based association tests such as burden and SKAT, (3) it
only needs summary statistics so it can be applied to the meta-
analysis of multiple data sets, and (4) it is computationally
efficient.

WGScan with one fixed window size can be viewed as an
extension of the standard sliding-window approach using SKAT
or burden test commonly used in the analysis of whole-genome
sequencing data sets, by replacing the standard Bonferroni cor-
rection with analytically adjusting for the correlation among test
statistics. WGScan improves upon these simple sliding-window
analyses by allowing for multiple window sizes, multiple

functional annotations, and providing a significance threshold
that accounts for the correlations among different windows and
annotations.

As illustrated by the two data analyses, WGScan can be flexibly
applied to different phenotypes (quantitative and qualitative),
different analysis strategies (candidate region analysis and whole-
genome analysis) and different study designs (cross-sectional
study and family study). Although our analysis focused on rare
non-coding variants, we note that the WGScan framework can be
readily applied to study common variants or exons solely (by
assigning zero weights to rare or noncoding variants respectively).
As the quality of variant calling for indels and small structural
variants improves, these additional type of variations can be
incorporated as well26.

Using whole-genome sequencing data from the Simons Sim-
plex Collection study on Autism Spectrum Disorder, we estimate
genome-wide significance thresholds that are more liberal than
naive Bonferroni thresholds, and therefore can lead to more
powerful analyses. This is especially true when integrating a large
number of functional annotations; accounting for correlations
among different test statistics in this case becomes even more
important. For example, the threshold for a whole-genome study
using multiple window sizes and multiple functional scores across
different tissues/cell types is 2.6 × 10−9 using the WGScan
approach vs. 5.9 × 10−11 when using the naive Bonferroni
adjustment.

The application to the Simons Simplex Collection data has led
to several interesting results, despite the small sample size of the
data set. Namely, analyses based on both rare inherited and de
novo variation show autism-associated windows are significantly
enriched in several categories, such as promoter regions, gene sets
associated with brain-related diseases such as intellectual dis-
ability and schizophrenia, and enhancers predicted to interact
with these genes. These results support the study of both rare
inherited and de novo variation in non-coding regions in autism

Table 3 Enrichment of association signals in 20 target gene sets

Dispersion Burden

Name GeneSet EnhancerSet Enhanced
GeneSet

GeneSet EnhancerSet Enhanced
GeneSet

FMRP_targets_Darnell2011 5.0E−05 0.0016 2.2E−06 0.0057 2.6E−04 6.2E−04
ASD_coexpression_networks_Willsey2013 0.4368 0.8772 0.3939 7.6E−05 0.0013 2.5E−05
Constrained_PLIScoreOver0.9 2.2E-04 0.1319 1.3E−04 1.9E−04 7.0E−04 4.7E−05
FXR2_wt_binding_sites 0.0083 0.0315 0.0012 0.0023 9.9E−05 2.6E−04
FMR1_iso1_wt_binding_sites 0.0254 0.0225 0.0100 0.0133 0.0014 0.0021
FMR1_iso7_I304N_binding_sites 0.0485 0.0088 0.0162 0.0230 4.6E−04 0.0055
FMR1_iso7_wt_binding_sites 0.2504 0.1216 0.1942 0.0226 0.0082 0.0055
Processed_Transcript_GencodeV19 0.0257 — 0.0257 0.0114 — 0.0114
FMR1_iso1_I304N_binding_sites 0.2328 0.0640 0.1521 0.1010 3.3E−04 0.0237
regulatory_elements_neuro 0.0269 — 0.0269 0.3980 — 0.3980
FXR1_wt_binding_sites 0.0611 0.1849 0.0841 0.1087 0.0381 0.1104
BrainExpressed_Kang2011 0.6152 0.0030 0.2729 0.5306 0.0169 0.3241
Protein_Coding_GencodeV19 0.7413 4.4E−04 0.3192 0.4560 0.0363 0.3496
CHD8_targets_Cotney2015_Sugathan2014 0.3743 0.0080 0.3512 0.9345 0.2153 0.9074
Antisense_GencodeV19 0.4770 — 0.4770 0.4183 — 0.4183
lincRNA_GencodeV19 0.9507 — 0.9507 0.4613 — 0.4613
ASD_risk_genes_TADA_FDR0.3 0.7783 0.1752 0.6973 0.4770 0.8620 0.4671
PSD_Genes2Cognition 0.9944 0.0165 0.8704 0.6989 4.6E−04 0.4879
PseudoGencodeV19 1.0000 — 1.0000 0.5864 — 0.5864
Developmental_delay_DDD 0.7380 0.4580 0.6310 0.9987 0.4166 0.9908

For each gene set, we consider three related sets: the original gene set, enhancers predicted to interact with genes in the set, and an enhanced gene set containing both genes and the predicted
enhancers. p-values from enrichment analyses are reported; those smaller than Bonferroni threshold= 0.05/20= 0.0025 are bolded
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spectrum disorders using larger sample sizes. The WGScan
approach has been implemented in a computationally efficient R
package, and can be applied more generally to other whole-
genome sequencing studies.

Methods
Notations and model. Assume that we have a study population of n subjects. Let
Yi be the quantitative/dichotomous outcome value; Xi= (Xi1, …, Xid)T be the d
covariates which can include age, gender, principal components of genetic variation
etc.; {Gij}1≤j≤p be the p genetic variants sequenced in a given region of interest. The
model is given by

g μi
� � ¼ XT

i αþ
Xp
j¼1

Gijβj; ð2Þ

where g is a link function, g(x)= x for quantitative traits, g(x)= logit(x) for binary
traits; μi= E(Yi); α and β are coefficients for the covariates and genetic variants,
respectively. When βj= 0, there is no association between the trait and jth variant.
In the proposed approach WGScan, we are interested in simultaneous determining
the windows Φkl= {j:k ≤ j ≤ l}, where the signals reside and testing the association
between Yi and GiΦkl

, adjusting for covariates Xi.

Suppose Sj ¼
Pn

i¼1 Gij Yi � μ̂i
� �

is the score statistic of jth variant, where μ̂i is

estimated under the null model g μi
� � ¼ XT

i α. We consider two types of scan
statistics, dispersion and burden, defined as.

QDispersion;Φkl
¼

Xl

j¼k
S2j andQBurden;Φkl

¼
Xl

j¼k
Sj

� �2
: ð3Þ

It has been shown that asymptotically the dispersion statistic follows a mixture of
chi-square distributions, and the burden statistic follows a scaled chi-square
distribution15. The p-value pΦkl

of both can be calculated as described in the next
section. We aim to detect if there is any pΦkl

below a certain significance threshold
that controls family-wise error rate at level α. We define an extreme-value statistic
as

T ¼ maxk;l �log pΦkl

n o
: ð4Þ

The (1−α)%-quantile of T can be estimated by the algorithm described in the

next subsection that takes into account the correlations among �log pΦkl

n o
due to

window overlap, and possible linkage disequilibrium among variants in different
windows. Once the (1−α)%-quantile, denoted as T1−α, is determined, a significance

threshold can be set for minimum p-value mink;l pΦkl

n o
, denoted as

α� ¼ exp �T1�αð Þ. We define all windows Φkl with p-values pΦkl
< α� as significant.

It is worth noting that p-values are scale-free statistics, therefore the proposed
approach based on p-values naturally avoids the inflation of scan statistics by
purely increasing the window size, an issue discussed in Li et al.27. In practice, we
search for the optimal window with candidate window sizes 5 kb, 10 kb, 15 kb,
20 kb, 25 kb and 50 kb, with half of the window overlapping with adjacent windows
on each side.

Besides identifying individual windows containing variants associated with an
outcome of interest, we may be interested in evaluating the overall association
between a phenotype and a large candidate region, i.e., if there is any association
between the trait and variants in the candidate region. WGScan can also be
applied to this setting, and can provide an overall p-value for the region, using

p-value ¼ α
α� ´ mink;l pΦkl

n o
. Here α

α� can be considered as an estimate of the

effective number of tests, and then a Bonferroni-type correction is applied to the
minimum p-value in the region. This approach is equivalent to the original

WGScan approach, because the overall p-value α
α� ´ mink;l pΦkl

n o
< α is equivalent

to at least one window in the region being below the significance threshold, i.e.,

mink;l pΦkl

n o
< α� .

Calculation of analytical significance threshold using the Gumbel distribution.
Under the null hypothesis, each individual p-value pΦkl

follows a uniform dis-
tribution. Therefore �log pΦkl

follows exp (1), an exponential distribution with rate
parameter one. We propose to use the Gumbel distribution to approximate the

distribution of the extreme-value statistic T ¼ maxk;l � log pΦkl

n o
. The Gumbel

distribution has been used to model the maximum value of random variables
following exponential distribution in the statistical theory of extreme values28.

P T > xð Þ ¼ 1� exp �exp � x � v
ζ

� �� 	
; ð5Þ

where E(T)= v+ ζγ; var Tð Þ ¼ π2

6 ζ
2; γ ≈ 0.57721 is the Euler–Mascheroni con-

stant. We can estimate the significance threshold for p-values that accounts for the
correlation among windows as

α� ¼ exp ζ log �log 1� αð Þ½ � � vf g; ð6Þ

which is the exponential function of the negative (1−α)%-quantile of Gumbel
distribution (see Supplementary Material for details). We define all windows with

p-value pΦkl
< α�as significant. Since the p-values pΦkl

n o
are correlated, we estimate

v and ζ by a resampling-based moment-matching approach, described in the next
section. Unlike the usual permutation/perturbation-based methods, the proposed
method only uses the resampling method to estimate moments of the test statistic
so that the p-value can still be calculated analytically. We note that a threshold for
the combination of dispersion and burden tests while accounting for their corre-
lations can be easily calculated. By defining the extreme-value statistic as

T ¼ maxk;l �log pDispersion;Φkl
;�log pBurden;Φkl

n o
; ð7Þ

the proposed inference using Gumbel distribution can be directly applied.

Resampling-based moment matching approach. We propose the following
resampling algorithm to estimate the significance threshold α*.

1. Fit the null model and calculate residuals Yi � μ̂i for i= 1, …, n.
2. Permute residuals for B replicates and construct a p × B resampling score

matrix Δ, with its bth column ~Sb ¼
Pn

i¼1 Gij Ybi � μ̂bi
� �

, 1 ≤ b ≤ B.
3. Construct statistics fQb;Φkl

g1�b�B for all k and l; estimate their sample mean
μ̂Φkl ;B

, variance σ̂2Φkl ;B
and kurtosis κ̂Φkl ;B

¼ ψ̂Φkl ;B;4
=ðσ̂2Φkl ;B

Þ2 � 3 where ψ̂Φkl ;B;4

is the sample fourth central moment; then calculate the corresponding p-
values fpb;Φkl

g1�b�B using moment matching

PH0
ðQΦkl

> xÞ ¼ 1� Fððx � μ̂Φkl ;B
Þ ffiffiffiffiffiffiffi

2df
p

=σ̂Φkl ;B
þ df jχ2df Þ, where Fð�jχ2df Þ is

the distribution function of χ2df and df ¼ 12=κ̂Φkl ;B
15.

4. Calculate Tb ¼ maxk;lf�log pb;Φkl
g; 1 � b � B; estimate their sample mean,

variance and therefore compute v̂ and ζ̂ .
5. Calculate significance threshold α� ¼ exp ζ̂ log �log 1� αð Þ½ � � v̂

n o
.

It is worth noting that the permutation step only needs to be done once under
the null hypothesis where no genetic variants are involved. In addition, the
resampling method is only used to estimate the moments of the test statistic, which
requires a relatively small value for B (in practice we choose B= 5000). Therefore,
the resampling approach is computationally efficient, as illustrated in a section
below regarding computation time. For significant windows, investigators can
increase the number of replicates B (e.g., 50,000) to reduce the variation in p-values
due to resampling in step 3. We present the concordance between p-values from
two replication analyses in Supplementary Fig. 5, with varying number of
resampling replicates.

For a genome-wide scan, the estimation of significance threshold (as a function
of the genome-wide minimum p-value) requires sufficiently accurate calculation of

the p-values pb;Φkl

n o
1�b�B

, especially at extreme levels. However, the moment-

matching approach in step 3 is an approximation up to the fourth moment. We
observe that directly applying the aforementioned approach to the whole genome
underestimates the threshold (too liberal), due to the very large number of
windows (see Supplementary Fig. 6). In practice, we propose a hybrid Bonferroni-
type correction. We divide the genome into 200 -kb regions and apply the WGScan
approach to each such region to calculate α�m . We define α

α�m
as the number of

effective tests for each 200 -kb region, and estimate the significance threshold as
αP
m

α
α�m

¼ 1P
m

1
α�m
. In Supplementary Fig. 6, we show that the threshold estimated by

this resampling-based hybrid Bonferroni-type correction is consistent, in the case
of the burden test, with unified model-based inference, where we directly apply
WGScan to the whole genome but replace step 3 by a model-based inference that is
more accurate at extreme p-values (e.g., chi-square test for burden test). We only
focus on the comparison for burden tests because existing methods to calculate the
p-value of model-based dispersion test (e.g., Davies’ method) can lead to either
inflated or conservative results at extreme levels given the limited sample size of the
whole-genome data that we used to estimate the threshold15.

Meta-analysis using summary statistics. The resampling-based moment
matching approach only requires summary statistics. Therefore, WGScan can be
used for a meta-analysis without sharing of individual level data. The investigators
can implement steps 1 and 2 of the resampling algorithm in each study separately
to generate original p-dimensional score vector Sd and the resampling-based p × B
score matrix Δd from the dth study, 1 ≤ d ≤D. We construct the overall score vector
S= S1+…+ SD and resampling-based score matrix Δ= Δ1+…+ ΔD. Then
steps 3–5 of the resampling-based moment-matching approach can be directly
applied. As discussed, the resampling method is only used to estimate the moments
of the test statistic, which requires a relatively small B (e.g., 5000), resulting in a p ×
B matrix of summary statistics.

Integrative test incorporating multiple functional annotations. We have
recently shown how incorporating multiple functional annotations of genetic
variants in sequence-based association tests can lead to improved power25. The
proposed scan-statistic method is able to incorporate multiple functional

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11023-0

8 NATURE COMMUNICATIONS |         (2019) 10:3018 | https://doi.org/10.1038/s41467-019-11023-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


annotations for improved power. We define

QDispersion;r;Φkl
¼

Xl

j¼k
w2
jrS

2
j andQBurden;r;Φkl

¼
Xl

j¼k
wjrSj

� �2 ð8Þ
where wjr is the weight based on the rth functional annotation for variant j (e.g.,
tissue-specific functional predictions from FUN-LDA (ref) or GenoNet (ref)),
which still follows a mixture of chi-square distributions or a scaled chi-square

distribution. The extreme-value statistic becomes T ¼ maxr;k;l �log pr;Φkl

n o
. The

proposed inference using Gumbel distribution can be directly applied.

Software implementation and computation time. To facilitate future analyses of
whole-genome sequence data, we developed a computationally efficient R package
WGScan (https://cran.r-project.org/web/packages/WGScan). The package is
designed for two common study designs: candidate-region analysis and genome-
wide scan. We calculate the average time to analyse a 200 -kb region (~4000
variants on average) generated using the SKAT package with candidate window
sizes 5 kb, 10 kb, 15 kb, 20 kb, 25 kb and 50 kb, based on 1000 replicates. We
evaluated the utility of the WGScan package, including computational time and
peak RAM used in a cluster environment (Intel(R) Xeon(R) CPU E5–2630 v4 @
2.20 GHz or similar). It mimics the scenario in practice where parallel computing
on a cluster is often needed for the analysis of whole-genome sequencing data. We
present the results in Supplementary Table 2. The results are for quantitative traits,
but those for dichotomous traits are similar.

We observed that both the computational time and peak RAM is increasing as
the sample size increases at a rate similar to linear, which makes WGScan scalable
to future large-scale whole-genome sequencing studies. When the sample size is
5000, WGScan takes 12.90 s and 1.26 GB (peak RAM) to scan a 200 -kb region
using both dispersion and burden tests, with candidate window sizes 5 kb, 10 kb,
15 kb, 20 kb, 25 kb and 50 kb. When the sample size is 100,000, WGScan takes
112.34 s and 14.09 GB (peak RAM) to scan a 200 -kb region.

Enrichment analyses based on summary statistics. Based on the results from
the WGScan approach, it is possible to perform enrichment analyses to test
whether association signals are enriched among genes in specific gene sets, or
among functional variants in specific tissues or cell types. In this section, we
describe a method to enable such enrichment analyses based on the summary
statistics (p-values for individual windows) generated from WGScan.

Let ZΦkl
be the inverse-normal transformation of 1−p-value corresponding to

window Φkl based on a dispersion/burden test from WGScan analysis of a whole-
genome sequencing data set. To account for the confounding effect of window size,
we first regress ZΦkl

on the size (in base pairs) of window Φkl, and then use the

residuals ~ZΦkl
as new outcomes. For a specific gene set, we define RΦkl

to be the 0/1
indicator of whether window Φkl overlaps with any target gene/region in the set.
For a specific tissue or cell type, RΦkl

is a functional score corresponding to window
Φkl (e.g., maximum or mean value of functional scores for the tissue/cell type for
the variants in window Φkl). We consider the regression model

E ~ZΦkl

� �
¼ βr;0 þ βrRΦkl

; ð9Þ
where βr quantifies the effect size for the association between window significance
and functional score for tissue/cell type r. When βr > 0, windows overlapping the
gene set (in gene set analysis), or with larger functional scores (in the tissue/cell
type analysis) are more likely to contain association signals. Therefore, we test H0:
βr= 0 against H1:βr > 0 by a Z-test. Due to the correlation among windows, we
estimate βr and the standard deviation by a block jackknife with blocks consisting
of 20,000 adjacent windows. That is, we calculate βr,j from j-th jackknife replicate
where the jth 20,000 adjacent windows are removed from the sample, j= 1, …, J.

Then the Z-test statistic is β̂r
sd β̂rð Þ, where β̂r ¼ 1

J

PJ
j¼1 βr;j , and standard deviation

sd β̂r

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�1
J

PJ
j¼1 βr;j � β̂r

� �2
r

. In the analysis of the whole-genome

sequencing data from the Simon Simplex Collection (SSC), we applied this
enrichment analysis to compare associated windows (determined by p < 0.01,
0.005, 0.001 or 0.0005) with unassociated windows (p > 0.9). We used Cauchy’s
combination test to combine the resulting p-values from individual significance
thresholds, and then Fisher’s combined probability test to aggregate p-values from
different phases21.

Alternative methods to calculate the significance threshold.

1. Approach based on the Beta distribution: For n independent p-values, p1, …,
pn∼U(0, 1), the minimum p-value min p1; ¼ ; pnð Þ � Beta 1; nð Þ. When
p1, …, pn are dependent, Werling et al.8 assume min p1; ¼ ; pnð Þ � Beta 1; n̂ð Þ,
and propose to estimate the number of effective tests n̂ using a resampling
algorithm, n̂ ¼ B

m1þ¼þmB
� 1 where mb is the minimum p-value in the bth

replicate8. Then the significance threshold is 0.05/n̂. This adjustment assumes
that the correlation among p1, …, pn only affects the second shape parameter
of the beta distribution, which is not theoretically guaranteed29. The violation
of this assumption can lead to inflated type I error rate (Fig. 2).

2. Spectral decomposition: For n p-values, p1, …, pn, we first calculate the
corresponding Z scores using the inverse-normal transformation. Then we
calculate the correlation matrix of the Z scores using B resampling replicates
as described in the resampling algorithm above, and define n̂ as the number of
leading eigenvalues that account for 90–99% of the total variation (i.e., sum of
all eigenvalues). Then the significance threshold is α/n̂. This adjustment
requires specifying a threshold for the total variation explained, but the
optimal threshold is often unknown in real data analysis. A misspecified
threshold can lead to either inflated or conservative type I error rate (Fig. 2).
In addition, using this approach to estimate the number of effective tests n̂
when it is extremely large (e.g., in a genome-wide scan) requires extremely
large number of resampling replicates. Therefore, this approach is not
computationally scalable for a genome-wide scan.

The Metabochip data for lipid traits. The Metabochip data set includes data from
eight studies consisting of 12,281 individuals: 2793 from HUNT and Tromso in
Norwegian; 1529 from DIAGEN in German; 2741 from FUSION stage 2, 2108
from D2D-2007, 429 from DPS, 1439 from METSIM and 1242 from Drs EXTRA
in Finnish. DNA samples were genotyped on the Metabochip, a custom genotyping
array that includes SNPs to fine map 257 known associations for cardiometabolic
traits30. Genotyping was performed at the Center for Inherited Disease Research
(CIDR) and genotypes called with BeadStudio Genotyping Module, v.3.3.7.

The two Norwegian cohorts were analysed jointly, with a covariate for study
origin. We adjusted for gender, age, age squared, type 2 diabetes status for each
individual study except for METSIM, which is comprised only of males. We
additionally adjusted for birthplace for FUSION stage 2. The covariates adjustment
is consistent with Lee et al.17. We excluded samples and SNPs with call rates <98%
and used the complete data for each trait when there are missing outcomes. We
applied normal quantile transformation to each trait and evaluated 266 genes
located in the 99 fine-mapping regions (mean size 192,771 bps), meta-analysing the
summary statistics from the individual studies. We used beta(1, 25) weights to up-
weight rare variants, i.e., wj= beta(MAF, 1, 25), where MAF is the minor allele
frequency for variant j. For each trait, a significance threshold is estimated for
original dispersion and burden tests combined (in total two tests per window),
scanning all regions, with candidate window sizes 5 kb, 10 kb, 15 kb, 20 kb, 25 kb
and 50 kb, with half of the window overlapping with adjacent windows on
each side.

Quality control for the whole-genome sequencing data set from SSC. We focus
on variant- and genotype-level quality metrics obtained from the VCF8. We
exclude variants with QUAL (quality score) <200 or ReadPosRankSum <−1.4
(rank-sum test for relative positioning of reference to alternative alleles within
reads) or SOR (strand bias estimated by the symmetric odds ratio test) >2.5 or
GQ_MEAN (genotype mean quality) <50.0 or QD (quality by depth) <10.0 or AN
(allele number) <4152. For heterozygous genotypes, we exclude genotypes (these
values will be treated as missing) with GQ (genotype quality of individual samples)
<99 or DP (coverage) <10 or AB (allele balance) <0.22 or AB > 0.78. For homo-
zygous genotypes, we exclude genotypes with GQ (genotype quality of individual
samples) <30 or DP (coverage) <18 or AB (allele balance) <0.95. The thresholds
were selected by Werling et al.8 through assessment of sequential receiver-
operating characteristic (ROC) curves generated from the true positive and true
negative calls for each quality metric8.

Gene sets for the enrichment analyses. We selected 20 sets of genes/regions for
our enrichment analyses. The first 13 sets were previously summarised and eval-
uated by Werling et al.8, including: ASD risk genes (FDR < 0.3) obtained from
Sanders et al.31; genes coexpressed with ASD risk genes identified by Willsey
et al.32; genes associated with developmental delay from the Development Disorder
Genotype-Phenotype Database; CHD8 target genes defined as the union of lists
from two ChIP–seq studies; FMRP target genes selected from Darnell et al.37;
human postsynaptic density (PSD) proteins from the Genes2Cognition database
(http://www.genes2cognition.org/); brain expressed genes from Kang et al.38;
constrained genes defined as having a probability of loss-of-function intolerance
(pLI) score ≥ 0.9 in the ExAC database; five categories defined by GENECODE
(wgEncodeGencodeCompV19): Protein-coding, Pseudo genes, LincRNA, Anti-
sense and Processed Transcript8,31–40. We also selected targeted regulatory non-
coding elements from Short et al., including 4307 highly evolutionarily conserved
noncoding elements (CNEs), 595 experimentally validated enhancers, and 1237
putative heart enhancers41. The remaining six sets correspond to the binding sites
within the mRNA targets for wild-type and I304N mutant FMRP isoforms and its
paralogs, FXR1 and FXR242.

Web resources. Annovar: http://annovar.openbioinformatics.org/en/latest/.
Chipseeker: https://guangchuangyu.github.io/software/ChIPseeker/.
Eigen/Eigen-PC: http://www.columbia.edu/~ii2135/eigen.html/.
GenoNet: http://www.funlda.com/genonet/.
SKAT: https://www.hsph.harvard.edu/skat/.
Toppgene: https://toppgene.cchmc.org/.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11023-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3018 | https://doi.org/10.1038/s41467-019-11023-0 | www.nature.com/naturecommunications 9

https://cran.r-project.org/web/packages/WGScan
http://www.genes2cognition.org/
http://annovar.openbioinformatics.org/en/latest/
https://guangchuangyu.github.io/software/ChIPseeker/
http://www.columbia.edu/~ii2135/eigen.html/
http://www.funlda.com/genonet/
https://www.hsph.harvard.edu/skat/
https://toppgene.cchmc.org/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated during this study are included in this published article (and its
Supplementary Information files). Approved researchers can obtain the SSC population
data set described in this study (https://www.sfari.org/resource/simons-simplex-
collection/) by applying at https://base.sfari.org. All other relevant data are available from
the corresponding author on reasonable request.

Code availability
We developed a computationally efficient R package WGScan. The package is available at
the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/
packages/WGScan.
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