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Abstract: The spatiotemporal dynamics of Schistosoma japonicum, combined with temporal heterogeneity
among regions of different epidemic areal-types from a microscale viewpoint might capture the
local change dynamics and thus aid in optimizing the combinations of precise schistosomiasis
control measures. The prevalence data on schistosomiasis infection from 2007 to 2012 in the 30 most
endemic counties of Hubei Province, Central China, were appended to the village-level administrative
division polygon layer. Anselin local Moran’s I, a retrospective space–time scan statistic and a
multilevel-growth model analysis framework, was used to investigate the spatiotemporal pattern
of schistosomiasis resident infection rate (RIR) at the village level and how natural geographical
environment influence the schistosomiasis RIR over time. Two spatiotemporal high-risk clusters
and continuous high-rate clusters were identified mainly in the embankment region across flooding
areas of lakes connected with the Yangze and Hanjiang Rivers. Moreover, 12 other clusters and
outlier evolution modes were detected to be scattered across the continuous high-rate clusters.
Villages located in embankment region had the highest initial values and most rapidly reduced RIRs
over time, followed by villages located in marshland-and-lake regions and finally by villages located
in hilly region. Moreover, initial RIR values and rates of change did significantly vary (p < 0.001
and p < 0.001, respectively) irrespective of their epidemic areal-type. These local spatiotemporal
heterogeneities could contribute to the formulation of distinct control strategies based on local
transmission dynamics and be applied in other endemic areas of schistosomiasis.

Keywords: Schistosoma japonicum; spatiotemporal heterogeneity; microscale; spatial analysis; multilevel
growth model

1. Introduction

Schistosomiasis japonica is caused by Schistosoma japonicum, one of the five trematode species [1]
responsible for human and animal infections. It has considerable public health and economic
significance in the People’s Republic of China [2,3]. Knowledge of the spatiotemporal heterogeneity of
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Schistosomiasis japonica on a small scale can provide important insights into local change dynamics
and can thus aid in planning schistosomiasis control and elimination efforts. With the development of
national and local surveillance systems, long-term temporal and micro-geographic level parasitological
data are available which enable the characterization of changing patterns of disease risk in both temporal
and spatial dimensions [4]. Different spatial analytical approaches can be used, including global
Moran’s I and local Moran’s I statistics [5–9], spatial or space–time scan statistics [6–8,10–12], and the
standard deviational ellipse [9,11]. Almost all studies on spatiotemporal patterns of schistosomiasis
japonica focus on the county level because of the lack of village and township based vector data,
and few studies have focused on the micro-scale level, especially the village-level [6]. The precision of
spatial analyses is usually determined by the resolution of the underlying data (e.g., pixel size, time
interval), and data at a coarse spatial resolution would fail to capture local heterogeneity [13].

The Schistosomiasis japonica endemic areas in China are divided into three types, based on
the geographical characteristics of schistosomiasis endemic areas and the habitat environment of
Oncomelania hupensis, the sole intermediate host of S. japonicum: (1) plain regions with waterway
networks, (2) hilly and mountainous regions, and (3) marshland-and-lake regions and many subtypes
such as embankment regions, hilly regions [14]. The comprehensive control strategy and prioritization
of interventions should be varied between different endemic areas [15–17]. However, little is known
about the temporal heterogeneity of Schistosomiasis japonica in different epidemic areal-types.

This study aimed to investigate the spatiotemporal patterns of human S. japonicum infection in
most endemic counties in the Hubei Province of China at the village level. Anselin local Moran’s I
statistics and a retrospective space–time scan statistic were used to determine the spatial distribution
of S. japonicum infection over time. A multilevel-growth model was further used to explore the
relationship between S. japonicum and epidemic areal-types and time factors.

2. Materials and Methods

2.1. Study Area

Hubei Province in Central China and the middle reaches of the Yangtze River (Figure 1) have
included some of the most serious schistosomiasis outbreak regions of all time [12], and they had
the highest estimated incidence of schistosomiasis in China up to 2014 [18]. Major rivers include
the Yangtze River in the south and the Han River in the north. Though plains dominate half of
Jianghan Province, as well as Southcentral Hubei, a series of mountains and hills dominate Western,
Northeastern, and Southeastern Hubei. This study was carried out in the 30 most endemic counties
with epidemic areal-types, including embankment, marshland-and-lake, and hilly regions in Hubei
Province (Figure 1) [18,19].

2.2. Schistosomiasis Information and Geospatial Processing

The prevalence data on schistosomiasis infections in the 30 most endemic counties were
collected from repeated cross-sectional surveys conducted annually between 2007 and 2012 by
health professionals from the Hubei Institute of Schistosomiasis Control. This study targeted residents
of each village who were 6–65 years old, and over 90% of these residents were screened every
September to November using the indirect hemagglutination assay. Stool samples were subsequently
collected from over 90% of the individuals with positive serological results, and used to perform the
miracidium-hatching test [12]. Resident infection rates (RIRs) were calculated by multiplying the
positive rate of serological tests with the positive rate of fecal tests. A total of 4682, 4689, 4710, 4722,
4714, and 4945 epidemic villages were surveyed from 2007 to 2012 in the 30 counties, respectively, and
the coverage rate of epidemic villages is about 37%; all of them were appended to the village-level
administrative division polygon layer based on the names of county, town, and village. An actual
geospatial position in the administrative village layer was used to represent the “village” location
through field investigation or by consulting local anti-schistosomiasis employers if a name matching
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Figure 1. Study area and epidemic areal-types of schistosomiasis. The inset shows the location of the
30 most endemic counties in Hubei and in China. The geographical layers of Yangtze and Han Rivers
are overlaid.

2.3. Spatial Statistical Approach

We performed cluster and outlier analyses (Anselin local Moran’s I) and a retrospective space–time
scan statistic to investigate the spatiotemporal pattern of schistosomiasis RIR at village level.

Anselin local Moran’s I was used to identify spatial clusters and spatial outliers of regions
with high or low RIR values by calculating a local Moran’s I value, a z-score, a p-value, and a code
representing the cluster/outlier type for each region [20]. The z-scores and p-values represent the
statistical significance of the computed index values using a Monte Carlo permutation approach [21,22].
Five cluster/outlier types for local autocorrelation exist: (1) HH (high cluster) indicates that a village
and its neighbors had high RIR; (2) LL (low cluster) indicates that a village and its neighbors had low
RIR; (3) HL indicates that a village was a high outlier among villages with low RIR; (4) LH indicates
that a village was a low outlier among villages with high RIR; and (5) ‘not significant’ indicates no
spatial autocorrelation. To determine how spatial autocorrelation may evolve with time and location,
cluster and outlier analysis results from 2007 to 2012 were joined by a ‘-’, and then all combined types
were classified as “HH,” “HL,”“LH,” “LL,” “H to L,” “L to H,” and “Others” (detailed classification in
Supplemental Table S1). For instance, “HH-HH-HH-HH-HH-HL” means HH type from 2007 to 2011
and HL type in 2012 and is classified as “H to L.”

The space–time scan statistic using a moving cylindrical window with circular (or elliptic)
geographic base and with height corresponding to time is widely used in disease studies to
identify statistically significant high-risk spatiotemporal clusters [8,11,23,24]. SaTScan™ (version 9.4,
M. Kulldorff, Harvard Medical School, Boston and Information Management Services Inc., Silver Spring,
MD, USA.) was used to identify high-risk clusters defined by circular shapes, constrained to clusters
with both RIR values and study periods less than 50% [10]. The RIRs showed skewed distributions
and were thus normalized by log (base 10) transformation after adding the mean RIR limit to allow for
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zeros. The spatiotemporal distribution of log transformed RIR was assessed using the normal model
designed for continuous data [25]. Monte Carlo simulations (999 times) were used for significance
testing at the 0.05 level. The attributed values for these output circles included X and Y coordinates for
the centers and cluster radius.

All spatial processing and mapping were carried out in ArcGIS 10.1 (ESRI Inc., Redlands, CA, USA).

2.4. Multilevel-Growth Model

To evaluate the impact of the natural geographical environment (epidemic areal-type) on differences
in schistosomiasis RIR over time, a multilevel-growth model analysis framework was developed
with “occasions of measures” assigned to level 1 and “village data” to level 2 [26–28]. We first
coded the predictors to aid substantive interpretations as follows: time (rectilinear: Year = 0, 1 . . . ,
6 representing 2007, 2008, . . . , 2012, respectively) and epidemic areal-type (0—Embankment region,
1—Marshland-and-lake region, 2—Hilly region). A taxonomy of multilevel-growth models was
specified following methods described by Singer and Willett (2003) [28].

The unconditional means model, also referred to as an intercept-only model or a null model [29],
is expressed as:

RIRi j = γ00 +
(
U0 j + ei j

)
(1)

where RIRi j represent the village j’s schistosomiasis RIR on occasion i,U0 j and ei j represent the village-
and occasion-specific random effects, respectively. These random effects were assumed to have a
normal distribution.

The unconditional growth model, including predictor Yeari j into the unconditional means model,
is expressed as:

RIRi j = γ00 + γ10Yeari j +
(
U0 j +U1 jYeari j + ei j

)
(2)

Adding a village-level covariate, Areal_type j, indicating the schistosomiasis epidemic areal-type
of village j, leads to:

RIRi j = γ00 + γ10Yeari j + γ01Areal_type j +
(
U0 j +U1 jyeari j + ei j

)
(3)

Cross-level interactions can be assessed as:

RIRi j = γ00 + γ10yeari j + γ01Areal_type j + γ11yeari j∗Areal_typei j +
(
U0 j +U1 jyeari j + ei j

)
(4)

whereU0 j andU1 j are bivariate normally distributed with a mean of 0 and constant variance.
All analyses were conducted using SAS (PROC MIXED) version 9.3 (SAS Institute, Inc., Cary,

NC, USA).

3. Results

3.1. Spatiotemporal Pattern Analysis

Figure 2 depicts the heterogeneous geospatial distribution of RIR clusters and outliers identified
by local Moran’s I over time, corresponding mainly to villages with high-rate clusters (HH; red)
shown in the descriptive maps. Specifically, major high-risk clusters occurring between 2007 and
2012 (HH) comprised 3068 villages (Table 1), accounting for 77% of the total number of significant
(0.05 level) villages and included a large geographic area in Southcentral Hubei Province (i.e., Jingzhou,
Qianjiang, and Xiantao cities; Figure 2) and two small areas in Hanchuan and Yangxin. A few sporadic
villages among the HH villages were identified as LH. Two others unchanged types (HL and LL)
throughout the seven years ware mainly located in Caidian and Qujialing. In a small number of
cases, comprising 93 villages (Table 1) scattered across Jiangzhou, Qianjiang, Xiantao, and Hanchuang
(Figure 2), cluster/outlier types changed over time (L to H, and H to L).
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Figure 2. Cluster and outlier evolution for schistosomiasis RIR (resident infection rate) from 2007 to
2012 in the 30 most endemic counties, Hubei Province.

Table 1. Combined cluster/outlier found by the local Moran’s I analysis for schistosomiasis RIR (resident
infection rate).

Type No. of Villages Description of Types

HH 3068 a high cluster that is statistically significant (0.05 level) in all years or in some years
from 2007 to 2012

LH 631 a low outlier that is statistically significant (0.05 level) in all years or in some years
from 2007 to 2012

HL 90 a high outlier that is statistically significant (0.05 level) in some years from 2007 to 2012

LL 97 a low cluster that is statistically significant (0.05 level) in some years from 2007 to 2012

H to L 52
a high-value village or its neighbors converted into a low-value village or its neighbors,
i.e., a high cluster converted into a high outlier (HH to HL), or a high cluster converted
into a low outlier (HH to LH), or a low outlier converted into a low cluster (LH to LL)

L to H 41
a low-value village or its neighbors converted into a high value village or its neighbors,
i.e., a high outlier converted into a high cluster (HL to HH), or a low outlier converted

into a high cluster (LH to HH)

Others 8 Others (Table S1)

Space–time scan analysis identified two spatiotemporal high-risk clusters (Figure 3 and Table 2).
Primary clusters were detected within the period 2007–2009 and represented 2184 villages distributed
in 10 counties. These were mainly embankment region epidemic areal-types in the middle-south
of Hubei Province. Secondary clusters of embankment region epidemic areal-types, representing
125 villages and also throughout 2007–2009, were located in Northeastern Hanchuan. Both clusters
remained statistically significant (p < 0.001). The two spatiotemporal high-risk clusters were basically
consistent with the high cluster (HH) of cluster and outlier analysis.
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Table 2. Significant spatiotemporal clusters of schistosomiasis RIR as defined by space–time scan
statistic in the 30 most endemic counties, Hubei Province, 2007–2012.

Cluster 1 Period Cluster
Location

Cluster
Radius (km)

No.
Villages County LLR 2 p Value

1 2007–2009 29.485 N,
112.956 E 113.94 2184

Qianjian, Xiantao,
Honghu, Chibi, Jianli,

Shishou, Gong’an,
Jiangling, Shashi, Jiayu

3764.32 <0.001

2 2007–2009 30.720 N,
113.766 E 13.72 125 Hanchuan 176.65 <0.001

1 The most likely or primary clusters (1) and secondary clusters (2) were detected by the LLR. The most likely cluster
was defined as the one with the maximum LLR. 2 LLR: loglikelihood ratio test.

3.2. Multilevel-Growth Model

Overall, 4379 surveyed villages from 2007 to 2012 were eligible for model inclusion. A total of
3501 villages were located in embankment regions, 446 in hilly regions, and 432 in marshland-and-lake
regions, respectively (Figure 1). Table 3 summarizes the results of multilevel-growth models.
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Table 3. Results of fitting multilevel-growth models to schistosomiasis RIR in 4379 villages in the
30 most endemic counties, Hubei Province, China.

Unconditional
Means (Empty

Model)

Unconditional
Growth

Adding a
Village-Level

Covariate

Assessing
Cross-Level
Interactions

Fixed Effects

Initial Status (γ̂00) 1.374 2.252 2.505 3.418

Year (Rate of Change) (γ̂10) −0.351 −0.351 −0.537

Areal-type (Effect of areal-type on
initial status) (γ̂01) −0.194 −0.896

Areal-type (Effect of areal-type on rate
of Change) (γ̂11) 0.143

Random Effects

Level 1 (within village)

Residual (σ̂2) 1.275 0.337 0.337 0.337

Level 2 (between village)

Village Mean Initial Status (σ̂2
u0) 1.045 4.142 4.013 3.809

Village Mean Rate of Change (σ̂2
u1) 0.145 0.145 0.136

Rate of change covariance (σ̂2
u01) −0.769 −0.758 −0.716

Fit Statistics

−2LL 88,737.3 61,858.3 61,586.1 61,354.3

AIC 88,743.3 61,870.3 61,600.1 61,370.3

BIC 88,762.4 61,908.6 61,644.8 61,421.4

3.2.1. Unconditional Means Model

The variance components of the unconditional means model showed statistically significant
variance associated with villages (σ̂2

u0 = 1.045; p < 0.001) and statistically significant residual variance
(σ̂2 = 1.275; p < 0.001). The intraclass correlation coefficient calculated as 1.045

1.045+1.2757 = 0.45 indicated
that approximately 45% of RIR variance arose from differences between villages [30,31].

3.2.2. Unconditional Growth Model

The unconditional growth model resulted in significant fit improvement with reduced −2LL, AIC,
and BIC compared with the empty model (Table 3). The linear fixed effect of time differed significantly
and negatively from zero (γ̂10 =−0.351; p < 0.001), indicating that villages’ RIR values declined by about
0.35% per year on average, irrespective of their epidemic areal-type. Adding the fixed and random
effects for time accounted for 73.6% of the explainable variance, as calculated using the Raudenbush
and Bryk method [32].

3.2.3. Final Model

Table 3 summarizes the goodness-of-fit of the RIR models. The −2LL, AIC, and BIC for models,
including the cross-level interactions model, was smaller than the corresponding value obtained for
the other models, indicating that the assessing cross-level interaction model fitted the data better than
the other models. After exploring the possibility that time (year), areal-type, and their interactions
predicted differences in RIR values, the variance of mean initial status (σ̂2

u0 = 3.809; p < 0.001) revealed
that villages significantly varied in their initial RIR values and that the variance of rate of change
(σ̂2
u1 = 0.136; p < 0.001) indicated that village rates of change varied significantly. The estimated

covariance (σ̂2
u01 = −0.716; p < 0.001) was negative, indicating that villages with low initial RIR values

tended to have higher rates of change, with statistical significance. The mean initial RIR value (γ̂00)
was 3.418%. A significant negative effect of areal-type on initial status (γ̂01 = −0.896; p < 0.001) showed
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that these initial RIR values differed among the three epidemic areal-types, with higher initial values in
embankment regions, medium initial values in marshland-and-lake regions, and lower initial values in
hilly regions. The effect of areal-type on rate of change (γ̂11 = 0.143; p < 0.001) was positive, indicating
that RIR growth rate among epidemic areal-types significantly differed, on average, by 0.143% per year.
Specifically, villages located in embankment regions reduced their RIR most rapidly over time, followed
by villages located in marshland-and-lake regions and then by villages located in hilly regions.

4. Discussion

The heterogeneous geographic pattern of schistosomiasis RIR was found based on this spatial
statistical approach, including HH clusters detected by local Moran’s I statistics and primary clusters
detected by the space–time scan statistics. High-risk clusters for the schistosomiasis RIR were mainly
identified in flooding areas of lakes connected to the Yangze and Hanjiang Rivers, particularly in the
cities of Jingzhou, Qianjiang, and Xiantao, and in the embankment regions, which were consistent with
the cluster regions at county level [12] and provided more details. These areas have natural geographical
conditions and socioeconomic factors favorable to schistosomiasis; i.e., an eco-hydrological environment
suitable for the survival of the intermediate snail host and its multiplication [33,34]. The plain region
with waterway networks evolved from a typical lake and marshland to a schistosomiasis epidemic
region connected by rivers and lakes because of farmland reclamation from lakes and large-scale
excavation channels after the mid-1970s. Accordingly, the snail distribution evolved linearly from
sheet distributions in the bottomland along the river and lakes, and along the ditches, irrigation canals,
and rivers with conducive humidity, vegetation, elevation and flow velocity. The broad dispersion of
snails, and the frequent flooding, as well as people’s frequent contact with contaminated water due to
traditional livelihoods and lifestyles, is a challenge to effective control [35].

The results of the cluster and outlier evolution analyses for the 2007–2012 schistosomiasis RIR had
8 combination modes (including “not significant”) and various spatial distributions of combination
modes (Figure 2 and Table 1), indicating that the different risk patterns require distinct control strategies
and decision-making processes. This finding may be due to the different infectious sources and
populations of schistosomiasis infection in different endemic areas and periods [36]. Additionally
worth taking into account, aside from HH clusters and primary clusters, were secondary clusters
located in Northeast Hanchuan (Figure 3), and villages with initially low rates that became high rates
within a year (L to H, Figure 2), together with adjacent villages.

After exploring the effect of time (year), areal-type, and their interactions on RIR values, village
RIR values significantly declined by about 0.537% per year on average (Table 3), which provided
some explanation for the periods of two spatiotemporal high-risk clusters (Figure 3 and Table 2)
detected by space–time scan analysis was the first three years. We also found temporal heterogeneity of
schistosomiasis RIRs between the three epidemic areal-types. The embankment region with the widest
area had the highest RIR values in the first year, which was possibly due to more frequent human activity
and repeated infections compared to the marshland-and-lake, and hilly regions. Meanwhile, villages
located in embankment regions most rapidly reduced their RIR over time, which may be because more
attention was paid to integrated control strategies [37]. Significant differences existed in the initial RIR
values and rates of change between the three epidemic areal-types, as well as within villages located in
the same epidemic areal-type, which reminds us again that suitable comprehensive control measures
must take account of the local epidemic situation rather than depend upon a uniform strategy.

In addition, villages in all epidemic regions with higher initial RIR values and faster rates of
decline may, with time, have a sustained low prevalence of schistosomiasis. A low transmission
of schistosomiasis has been detected in the hilly and mountainous endemic regions of Sichuan [38].
Consequently, new challenges toward the elimination of schistosomiasis japonica transmission in
China may ensue because of the low sensitivity/specificity of current diagnostic tools for infections,
praziquantel resistance, and climate change [38–41].
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These analyses require more updated data for confirmation, which are not available, which
is one limitation of our study. Moreover, two spatial analysis techniques were used to investigate
spatial patterns, and although both results are broadly in agreement, no comparative study was
conducted among different statistical methods because of their large diversity and different focuses on
spatial patterns.

China continues to invest substantially in control activities aimed at eliminating schistosomiasis
by 2020 [42]. Currently, the elimination of schistosomiasis depends on the sustained implementation
of an integrated control strategy with great emphasis on the control of infectious sources [39,43,44].
For example, aspects to avoid infection in humans include: Improving sanitation by supplying
tap water and building lavatories and latrines, providing boats with fecal-matter containers, and
implementing an intensive health-education program and vaccination for long-term prevention [45].
Given all these different potential strategies, the importance of suiting the precise targeted control and
priority of interventions to the local conditions is of concern [15–17].

5. Conclusions

This study systematically and exhaustively investigated the spatiotemporal dynamics of
Schistosoma japonicum and temporal heterogeneity among regions of different epidemic areal-types
by using spatial statistical analysis and multilevel-growth models at the microscale. Its high spatial
resolution captured local heterogeneity, which could aid in regional targeting of schistosomiasis
control measures and the spatiotemporal analysis method could be applied in other endemic areas
of schistosomiasis.
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