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Mammals have coevolved with a large community of symbiotic, commensal, and some potentially
pathogenic microbes. The trillions of bacteria and hundreds of species in our guts form a relatively
stable community that resists invasion by outsiders, including pathogens. This powerful protective force
is referred to as colonization resistance. We discuss the variety of proposed or demonstrated mecha-
nisms that can mediate colonization resistance and some potential ways to manipulate them for
improved human health. Instances in which certain bacterial pathogens can overcome colonization
resistance are also discussed. (Am J Pathol 2019, 189: 1300—1310; https://doi.org/10.1016/

The bacteria and other microbes inhabiting the animal gut
(the gut microbiota) provide major beneficial functions to
the host. These include nutrition (breakdown of indigestible
polysaccharides and production of vitamins) and protection
against microbes that could harm the host. The idea that
certain good bacteria could compete with harmful ones was
first proposed by Elie Metchnikoff in the early 20th Cen-
tury. With the advent of antibiotics and germ-free animals, it
was demonstrated that the resident bacteria in the gut play a
large role in preventing pathogens from colonizing and
causing disease, in animals and humans.' This phenomenon
was later coined colonization resistance.” In addition to
defense against strict pathogens, the same concept applies to
control of indigenous but potentially dangerous pathobionts,
as well as exclusion of innocuous foreign species, such as
probiotics. There are a wide variety of mechanisms now
known to participate in colonization resistance. Many
involve direct interactions between bacterial cells, whereas
others act by modulating host physiology, especially the
immune system. In addition, host genetics, diet, and anti-
biotic use can modify the composition and function of the
microbiota and, thus, affect colonization resistance. In the
clinic, fecal microbiota transplantation is used effectively to
treat antibiotic-induced diarrhea caused by the overgrowth
of Clostridium difficile.” We will discuss the history and
new developments in understanding this phenomenon as it

relates to enteric pathogens, probiotics, prebiotics, and
improving human health.

Direct Mechanisms

Bacteria can reach densities approaching 10'" cells/g in the
mammalian large intestine” and are in constant competition
with each other for survival. Nutrients, including carbon,
nitrogen, and energy sources, as well as other essential
molecules can be limited, especially in the large intestine.
As a consequence of this highly competitive environment,
bacteria have evolved ways to suppress or kill each other.
These direct mechanisms of resistance are summarized in
Figure 1.
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Nutritional Competition

Monosaccharides, disaccharides, and most proteins ingested
by mice or humans are digested and absorbed in the small
intestine. This leaves only complex plant polysaccharides
and host-secreted mucus as food sources for the dense
community of bacteria in the large intestine. Metabolizing
these polysaccharides requires specific enzymes. Some
bacteria that predominate in the large intestine, such as
Bacteroides species, possess a vast array of genes to harvest
sugars from host and diet polysaccharides.” Others, like the
often pathogenic Enterobacteriaceae, can generally only
use simpler sugars and amino acids for their carbon, nitro-
gen, and energy needs; and they are found at low levels in
the healthy gut. When resident bacteria are acutely killed
with an antibiotic, there is a surplus of free monosaccharides
released from host glycans, such as sialic acid and fucose,
which are taken advantage of by some pathogens, like
Salmonella enterica serovar Typhimurium (S. fyphimu-
rium).® Increased sugars and free amino acids available after
antibiotic treatment may also be exploited by C. difficile, a
major human pathogen that causes pseudomembranous
colitis.” ” Constant scavenging of all available nutrients in
the normal gut may, therefore, prevent invasion and main-
tain a stable beneficial community. On the basis of in vitro
experiments, Freter et al proposed that the steady-state
abundance of different taxa in the gut was determined by
“one or a few nutritional substrates which a given strain can
utilize most efficiently.”'*PP’® This nutrient niche hypoth-
esis is supported by in vitro and in vivo experiments.'' "’
When a single host-produced sugar, fucose, is removed
from the mouse gut, the microbiota does change in compo-
sition,'* but beyond that, the microbiota’s ability to suppress
pathogens and pathobionts is altered.'” "7 On the other hand,
removal of a host-supplied sugar will also make it unavai-
lable to pathogens or pathobionts, even when nutrient
scavenging is disrupted, and therefore can improve resistance
(as in the case of sialic acid).'® Interestingly, transgenic
expression in mice of a sugar structure not normally found in
their stomach was also able to affect the phenotype of the
pathobiont Helicobacter pylori.'"” The host sugar structures
(glycosylation) in the gut can be modified by a variety of
signals, including microbial colonization,”’ immune cell
activation,'>!” and various chemicals,”' so manipulation of
the host-produced nutrients in the gut could be a way to alter
the microbiota composition or function.

Diet can have a rapid and profound impact on microbiota
composition and function and, consequently, colonization
resistance.”” Complex plant polysaccharides (fiber) in the
diet are a major food source for the anaerobic bacteria that
dominate the lower gastrointestinal tract. Removing
fermentable polysaccharides from the diet causes a shift in
overall community structure and, over time, can lead to
permanent loss of species from the gut.”> Loss of protective
species or hampering of their normal functions in the
absence of their preferred food sources could lead to
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reduced colonization resistance. For example, when
deprived of diet polysaccharides, bacteria switch feeding
preferences toward mucus glycans and proteins, degrading
them, reducing the effectiveness of this protective
barrier, and increasing the damage caused by Citrobacter
rodentium.”* Feeding a polysaccharide-free diet also
allowed easier invasion of C. difficile, which could be
rescued by supplementation with inulin, a fructose-based
polysaccharide found in many plants.”” Rice bran added
to an otherwise low-fiber diet reduced S. typhimurium
colonization.”® However, another study of several purified
polysaccharides found that most did not reduce S. typhi-
murium loads and, in fact, some had the opposite effect.”’ It
is important to take into account the exact source and
structure of polysaccharides (of which there are an almost
infinite variety), the dietary context, and the preexisting
microbiota and its capacity to respond to a given substrate.
Other plant-derived compounds in the diet, besides poly-
saccharides, could also have myriad effects on both direct
and indirect colonization resistance.”® Western diets, which
are higher in fat and simple sugars but low in complex
polysaccharides, favor the expansion of endogenous Pro-
teobacteria, such as Escherichia coli, and allow easier
introduction of a human pathobiont associated with in-
flammatory bowel disease, adherent-invasive E. coli”® As
discussed later, high-fat diets can also alter the microbiota
and colonization resistance via bile acid production, as well
as having indirect effects on the immune system. Low-
protein diets, on the contrary, can enhance protection
against C. difficile, possibly by reducing the free amino
acids available to it.”° Of course, malnutrition will have
many detrimental effects on host functions, but permanent
changes to the microbiota are also apparent in malnourished
children.”’ This could mean that there are additional
microbiota-intrinsic defects in colonization resistance in
these already vulnerable individuals. Because diet can have
innumerable effects on host physiology, separating the in-
direct effects from direct influences on the microbiota is not
a simple task.

Prebiotics are dietary nutrients, typically polysaccharides,
used to target subsets of the indigenous microbiota and
bolster their beneficial functions. Identifying prebiotics,
such as irlulin,25 that specifically enhance colonization
resistance and the mechanisms behind this could have
immense clinical benefits. Nutrient niches can even be
artificially generated in the gut via diet. Two recent studies
demonstrated that, by introducing a specific polysaccharide
in the diet (porphyran from seaweed) along with a bacterial
strain uniquely capable of using it, the strain could be stably
inserted into the gut community.*”*

If nutritional competition is responsible for steady-state
microbiota structure and exclusion of outsiders, are all func-
tional niches constantly filled in a healthy gut? This may not
always be the case in humans. In one study, subjects were fed
a probiotic, Bifidobacterium longum, and then examined for
persistence of the strain in their stool. Although probiotics

1301


http://ajp.amjpathol.org

Pickard and Nunez

Mucus

*

A

Symbionts

Diet polysaccharide

Figure 1

z [l rolysaccharide
(
>

Q o9
u/\/S\OH

gH Conjugated
" 1° bile acid

HO""

Bile salt{hydrolase

2° bile acid

Direct mechanisms. Anaerobic symbionts (top left) digest host mucus and dietary polysaccharides, releasing monosaccharides for another

symbiont to take up, excreting short-chain fatty acids (SCFAs), and acidifying the environment, which suppresses growth of a pathogen. Bacteria deconjugate
bile acids (top right), and others produce 7a-dehydroxylases that convert them to secondary bile acids, which also inhibit the pathogen. A symbiont produces
bacteriocins (green), which form pores in the pathogen, allowing leakage of cellular contents (gray). Symbionts could also theoretically target pathogens with
contact-dependent mechanisms, like the type 6 secretion system (T6SS; blue) or contact-dependent inhibition (CDI; red).

generally do not stably colonize in humans, surprisingly
approximately a third of the subjects maintained detectable
levels of the strain up to 200 days later.”* Before treatment,
the persisters generally had lower amounts of endogenous B.
longum in their gut and/or lower amounts of B. longum genes,
including some related to carbohydrate use. This suggests
that, for unknown reasons, some individuals had an open
functional niche that the strain was able to fill. Another recent
study gave subjects a mix of 11 probiotics and also found
individuals who had persistence of some strains in the large
intestinal mucus layer.”” Persistence seemed to be controlled
by differences in their microbiota because the result could be
recapitulated by transfer to mice, but the underlying mecha-
nisms that control persistence of probiotics are not yet clear.

Overall, nutritional competition seems to be a powerful
force for excluding nonnative bacteria from the gut
ecosystem, including beneficial probiotics. Fortunately, the
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nutritional landscape in the gut can be easily modified via
diet. Prebiotics, such as plant polysaccharides, may be used
to target specific endogenous beneficial species and enhance
their functions. Probiotic strains, delivered along with pre-
biotics that they can use (a combination known as a syn-
biotic), could facilitate introduction of beneficial strains to
the existing gut community.

Bactericidal/Bacteriostatic Mechanisms

Perhaps because competition for growth substrates is so
intense, gut bacteria have also developed many ways of
suppressing or killing competitors. Indeed, dominant growth
suppression may be more important than nutrient limitation
for colonization resistance in some cases.>® Bacteriocins, for
instance, are a large, heterogeneous group of peptides pro-
duced by bacteria, with diverse bacteriostatic or bactericidal
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activities.”’ Bacteriocin production is common in bacteria
used as probiotics, fermented foods, and the gut microbiota,
and many have been developed as possible replacements for
traditional antibiotics. How important is production of
antibacterial molecules for competition in the gut? Produc-
tion or susceptibility to colicins (a family of bacteriocins)
affected E. coli competition in antibiotic-treated mouse
models,*®*° but there is also evidence that they mediate
ongoing competition among E. coli strains in the natural
microbiota as well."” A bacteriocin of the common gut
resident Enterococcus faecalis gave it a competitive
advantage against other Enterococci in mice and allowed it
to repel a related pathogenic species, vancomycin-resistant
Enterococcus faecium.41 Bacteroides species, which are
highly abundant in mouse and human gut, produce many
bactericidal or bacteriostatic secreted proteins as well, some
of which have been shown to mediate intraspecies compe-
tition in vivo.*

Because of their relative ease of discovery and therapeutic
utility, most of the antibacterial factors known in the gut are
secreted, soluble compounds. However, mechanisms of
suppression that require direct cell-cell contact are increas-
ingly being appreciated as well. The contact-dependent
inhibition system was discovered in E. coli,® and homol-
ogous genes are distributed throughout the Proteobacteria
and possibly other phyla as well.** The contact-dependent
inhibition consists of two genes that compose a two-
partner secretion system (in the type 5 secretion system
family). They assemble a long filament that extends out
from the cell. This binds target cells via a specific receptor
and delivers the inhibitory activity found in the filament
protein’s effector domain. This effector domain is variable
between strains and interchangeable, and effectors have
been found with DNase, RNase, and pore-forming activities.
A cognate immunity protein is encoded along with the
system, to inactivate the effector and prevent self-inhibition.

The type 6 secretion system (T6SS) is another recently
recognized player in contact-dependent competition in the
gut. The T6SS was originally identified in several Gram-
negative species as a secretion system that was involved in
interactions with eukaryotic cells."” *® Subsequently, this
was extended to interbacterial action as well”’ and, specif-
ically, intraspecies killing.”” The T6SS system works by
spearing nearby cells and delivering effectors into their
cytoplasm. These effectors can degrade nucleotides, cell
walls, or membranes, or they have other activities. Like the
contact-dependent inhibition, the effectors are often found
with a cognate immunity protein. The T6SS genes are
widespread in Gram-negative bacteria, especially Proteo-
bacteria, and a related but distinct family exists in the Bac-
teroidales.”'”* More important, T6SS effector and immunity
genes may contribute to ongoing competition among the
abundant Bacteroides species in the mouse and human
gut.’* 7 Some pathogens can also use their T6SS to kill
resident bacteria and enable their invasion of the gut com-
munity.”®”” Another secretion system, called Esx or type 7,
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can mediate intraspecies and interspecies killing by Gram-
positive bacteria.”®”” Notably, at least one toxin family
secreted by this system is abundant among the Firmicutes,
such as Clostridia and Bacilli, in the human microbiome.>’

Contact-dependent systems of growth inhibition and
killing are increasingly being discovered in the gut micro-
biota and could likely participate in resistance to pathogens.
The modularity of effector/immunity genes common to
these systems may make them amenable to engineering.
These contact-dependent mechanisms also highlight the
value of studying the microscopic structure and spatial re-
lationships in the gut community.®’ However, the overall
role of bactericidal/bacteriostatic mechanisms in mediating
colonization resistance against pathogens, pathobionts, and
probiotics remains poorly understood.

Metabolites and Chemical Transformations

Bacteria also produce metabolic by-products or modify
compounds in the gut that can affect their growth. Short-chain
fatty acids (SCFAs) are a major product of bacterial
fermentation in the large intestine, especially downstream of
polysaccharide digestion, and they can have growth-
inhibiting effects on pathogenic bacteria, such as E. coli, S.
typhimurium, and C. difficile.®'®* Caused, in part, by SCFA
excretion, microbial metabolism generally lowers pH in the
gut, especially in the large intestine.”* Oxygen is normally
scarce in the large intestine lumen, which has been attributed
to bacterial and host metabolism, the latter driven by epithe-
lial catabolism of the SCFA butyrate.””*°° Dysbiosis, a gen-
eral deviation in community structure associated with disease
and breakdown of colonization resistance, frequently co-
incides with increased oxygen availability, expansion of
facultative anaerobes, such as pathogenic Proteobacteria,®’
and reduction in butyrate and butyrate producers. Thus, pre-
biotic polysaccharides that enhance SCFA production could
improve colonization resistance in several possible ways.
Bile acids are produced in the liver from cholesterol, stored
in the gallbladder, and secreted into the duodenum after
eating. Their amphipathic qualities help dissolve fat and fat-
soluble vitamins for absorption, but they are antibacterial to
varying degrees as well. The primary bile acids in humans are
cholic acid and chenodeoxycholic acid, which are synthe-
sized in the liver and conjugated to taurine or glycine. Once in
the gut, bile salt hydrolases, produced by many different
bacterial taxa, deconjugate them from the amino acid,
possibly to reduce their toxicity or to obtain the taurine or
glycine itself. Once deconjugated, the primary bile acids can
be converted into a variety of secondary bile acids by en-
zymes produced by rare bacterial species in the gut.”® 7o
Dehydroxylation, for example, can convert cholic acid to
deoxycholic acid and chenodeoxycholic acid to lithocholic
acid. Both of these secondary bile acids can suppress growth
of C. difficile.”” At the same time, the conjugated primary bile
acid taurocholic acid promotes C. difficile spore germina-
tion.” Thus, microbial transformation of bile acids may
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partially explain susceptibility to C. difficile.” """ Bile acids

are also modulated by diet: excessive taurocholic acid,
induced by a high-fat diet, promoted expansion of a patho-
biont, Bilophila wadsworthia, leading to worsened colitis in
that model.”* Although impacts on fat absorption and meta-
bolism must be considered, modulating the levels of bile acids
via diet, specific bacten'a,(’g’73 or drugs could be a means to
enhance colonization resistance.

Indirect Mechanisms and Modulation of Host
Physiology

Although the fierce ongoing competition between bacteria
in the gut is largely responsible for maintaining a healthy,

beneficial, and stable community and effectively repelling
invaders, the host organism also has a role to play. The host
can shape the structure and activity of the microbiota,
thereby affecting its functions, including its level of colo-
nization resistance. At the same time, the host immune
system and other aspects of its biology are heavily influ-
enced by the microbiota (Figure 2).

Innate Defense Mechanisms

Factors that can prevent or promote growth of microbes and,
thus, select which bacteria can colonize mucosal surfaces,
like the gut, are evidently ancient. The hydra, for example,
an extremely simple type of aquatic animal, nonetheless
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Figure 2  Indirect mechanisms. Dimeric IgA, produced by a B cell in the lamina propria, is transcytosed by the poly-Ig receptor into the lumen, where it
binds a bacterium’s flagella. Farnesoid X receptor (FXR) and TGR5 on epithelial cells and macrophages up-requlate defenses or modulate inflammation,
respectively, in response to bile acids. The short-chain fatty acid butyrate, produced by anaerobic Clostridia, promotes oxygen respiration in an epithelial cell,
reducing the oxygen concentration at the epithelial surface. Toll-like receptors (TLRs) on epithelial cells, macrophages, and dendritic cells (DCs) can sense
microbial molecules and signal through myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-f (TRIF)
adaptors. Macrophages make IL-1fB and DCs make IL-23 cytokines in response to TLR stimulation, which induces type 17 helper T cells (Th17s) and innate-like
lymphocytes (ILCs) to secrete IL-22. This acts on epithelial cells, causing them to produce regenerating islet-derived protein 3 (Reg3f) (red) and lipocalin-2
(green), which attack a pathogen in the lumen and sequester iron (red circles) from it, respectively. On the right side, protective symbionts, like Clostridia,
have been depleted (eg, by antibiotics), resulting in increased oxygen in the lumen. Salmonella enterica serovar Typhimurium (S. typhimurium) is resistant to
Reg3p and can capture iron from lipocalin-2. Meanwhile Citrobacter rodentium uses its type 3 secretion system to inject effectors into an epithelial cell and
cause hyperplasia, further increasing oxygen levels and supporting its replication.
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selects and maintains a species-specific group of bacterial
symbionts. This is accomplished, in part, through production
of different antibacterial compounds.’* Transferring micro-
biota between more complex animals (eg, zebra fish and
mice) has confirmed that the host significantly shapes the
bacterial community in the gut.”” Many mammalian genes
are regulated by microbial colonization, including antibacte-
rial factors.”” Some of these genes are regulated through
sensing pathways of the innate immune system: toll-like re-
ceptors (TLRs), which signal through the adaptor myeloid
differentiation primary response 88 (MyD88) or TIR-
domain-containing adapter—inducing interferon- (TRIF), or
nucleotide-binding oligomerization domain—containing pro-
tein (NOD)-like receptors, which sense microbial molecules
in the cytosol and assemble inflammasomes.”’ These re-
ceptors sense conserved microbial molecules, such as cell
wall or outer membrane components, which are present in
both symbionts and pathogens. TLRs and NOD-like re-
ceptors, as well as other microbial pattern sensors, can be
expressed by epithelial cells and hematopoietic cells, such as
macrophages and dendritic cells. Steady-state sensing of the
microbiota through TLRs does occur and regulates many
genes in the gut as the microbiota develops.”® Although
many of these are antimicrobial genes, the impact of TLR
signaling on the steady-state composition of the microbiota
seems to be minimal in well-controlled experiments.’®
However, the system can be used to artificially boost resis-
tance. Systemic injection of TLR ligands, for instance, acti-
vates a signaling pathway that culminates in production of
antimicrobial peptides and protects against vancomycin-
resistant E. faecium.”” Dendritic cells in the intestinal lam-
ina propria are activated through their TLRs to produce
IL-23. This causes production of another cytokine, IL-22,
which is crucial for epithelial defense and repair in the
gut,*” and can be produced by innate-like lymphocytes or
type 17 helper T cells. The IL-22 induces antimicrobial
peptides, particularly regenerating islet-derived protein 3f3
(Reg3p) and Reg3y, in epithelial cells, resulting in reduced
lumen colonization and invasion of vancomycin-resistant E.
faecium.” However, no protective role for MyD88/TRIF
signaling or IL-22 was observed in colonization resistance
against S. typhimurium.*' In fact, effectors induced by IL-22
may give S. typhimurium an advantage over other bacteria in
the gut.®” Further studies are needed to understand the
physiological role of IL-22 and antimicrobial peptides in the
regulation of pathogen colonization resistance.

Bacterial metabolites can also have a multitude of effects on
host physiology and, especially, immune system function
through many different signaling pathways.*> SCFAs, prod-
ucts of polysaccharide digestion, can affect both innate
inflammation as well as B- and T-cell differentiation. Bile acids
that have been modified by bacteria can activate antimicrobial
genes in the ileum via the farnesoid X receptor or modulate
inflammation in immune cells through another receptor,
TGRS5.* The aryl hydrocarbon receptor senses microbial and
diet-derived molecules and can regulate epithelial, dendritic
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cell, T-cell, and innate-like lymphocyte function.*’ These are
only a few known examples of the large variety of microbiota-
derived metabolites that can potentially affect the host animal.

B Cells, Igs, and Adaptive Immunity

The adaptive immune system may add another layer of
specificity to control of the microbiota. Humans secrete
several grams of IgA daily into the gut. Most of the bacterial
cells in the small intestine are coated with IgA, with less
coating in the large intestine and feces.***” IgA production
is driven by the microbiota, being lower overall in germ-free
mice but induced by introduction of certain bacteria or
bacterial products.*>® Most of the secreted IgA in the
steady state is produced by B cells independently of T-cell
help and is relatively low affinity but polyreactive, in that a
single antibody can bind to more than one bacterial species
or even phylum.****°° This microbiota-stimulated,
secreted IgA could theoretically mediate colonization
resistance in two ways: by direct binding to a pathogen/
pathobiont or by modulating the composition or function of
the resident microbiota.

Indeed, IgA may preferentially target dangerous bacteria
in the normal gut community (ie, pathobionts) because
transferring the IgA-coated population from humans with
inflammatory bowel disease to mice worsened disease in a
colitis model.”’ IgA also targets flagellar proteins in the
normal microbiota, down-regulating their expression and
reducing motility/invasion.”” These antibodies can cross-
react with pathogens, such as S. typhimurium, and so
serve as a preformed line of defense. Indeed, the amount of
preexisting IgA that bound S. typhimurium differed between
two common inbred mouse strains, and higher amounts
correlated with better survival after oral infection, suggest-
ing that this preexisting pathogen-reactive antibody could
support colonization resistance.””

Although IgA is actively transported into the gut lumen,
IgG antibodies do not normally cross the barrier unless it is
damaged. However, there is IgG in the serum that reacts
against gut bacteria.”"”” This antibody may be stimulated
by and help to control the normal low-level translocation of
bacteria from the gut. If the epithelial barrier is breached by
a pathogen or damaged, the premade IgG is ready to help
control infection.”

How large a role secreted IgA plays in shaping the normal
gut microbiota remains controversial. Mice that lack
secreted IgA for various reasons have been reported to have
widely varying amounts of dysbiosis.”>’’ Similarly, mice
that lack the polymeric Ig receptor and cannot transport IgA
or IgM into the gut lumen were found to be either more or
less susceptible to S. typhimurium infection than wild-type
mice.”®”” The reason for these conflicting results is
unclear, but they are likely explained by underlying
microbiota differences.

Aside from changing community composition, could IgA
that coats symbiotic bacteria modulate their protective

1305


http://ajp.amjpathol.org

Pickard and Nunez

function? IgA against the symbiont Bacteroides thetaio-
taomicron down-regulated its expression of the target
epitope and reduced its fitness in the gut.'”’ Even binding of
a nonspecific IgA, likely via glycosylation on the constant
region, can modulate B. thetaiotaomicron gene expression
in the gut.'”" Although antibody binding is usually thought
of as having an exclusionary function, IgA surprisingly
promotes the survival of some symbionts in humans and
mice, perhaps by retaining them in a favorable physical
HiChe.l()z‘lO}

Selective IgA deficiency in humans is relatively common
(approximately 0.1% to 1%), and although it often goes
unnoticed, it does increase the overall risk of infection
(especially respiratory and gastrointestinal tract) and auto-
immunity, including celiac disease and inflammatory bowel
disease,'**'" which are tentatively linked to pathogen or
pathobiont infections, respectively. In the absence of IgA,
IgM can also be secreted in comparable quantities and bind
to similar bacterial populations but may not compensate
fuuy.xaf_lm

Although mostly dispensable for steady-state IgA, T cells
can affect colonization resistance via cytokine production.
Type 17 helper T cells, for instance, are produced in
response to some resident bacteria, including segmented
filamentous bacteria, a unique species that attaches directly
to intestinal epithelial cells.'"® IL-1B production by macro-
phages, induced by the microbiota via TLRs, stimulates type
17 helper T-cell development.'®” The type 17 helper T cells
produce IL-22, which induces antibacterial and tissue repair
genes in the epithelium and results in improved resistance to
C. rodentium.'”

Indirect mechanisms of colonization resistance, which are
induced in the host by the microbiota, are exceedingly
difficult to dissect away from the influence of the bacteria
directly. Although it is clear that the host organism has some
ability to shape its microbiota, through primitive innate
mechanisms as well as more specific adaptive ones, it seems
that we are largely bystanders when it comes to colonization
resistance.

Pathogen Evasion of Colonization Resistance

Colonization resistance is generally effective: for example,
large doses (>10'" is not uncommon) of different probiotics
are regularly ingested by humans and usually do not
establish in the gut. The dose of S. typhimurium needed to
successfully infect mice decreases by many orders of
magnitude after treatment with an antibiotic." Clostridium
difficile colitis in humans is also strongly associated with
prior antibiotic use.'” Despite this, some pathogens seem to
have developed ways to partially circumvent colonization
resistance. One is C. rodentium, a mouse-specific pathogen
that infects the large intestine, causes colonic hyperplasia,
and is then cleared within 3 weeks (in most mouse strains).
The dose required for a successful infection with C.
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rodentium is fairly low when spreading naturally between
mice.'” Most important, once an infection is established,
the levels of C. rodentium shed into the large intestine
lumen and feces quickly increase to 10°/g, much higher than
any endogenous Proteobacteria. How does it achieve this?

Citrobacter rodentium is similar to the human diarrhea-
causing pathogens enteropathogenic and enterohemorrhagic
E. coli. All three pathogens exhibit a similar specialized
lifestyle in the gut: direct attachment to the epithelium and
formation of lesions (giving them the name attaching/
effacing pathogens). This attaching/effacing behavior is
made possible by a cluster of virulence genes that the strains
share, called the locus of enterocyte effacement. The locus of
enterocyte effacement comprises a type 3 secretion system
and associated effectors, as well as an essential surface
protein, intimin. The ability of C. rodentium to live and
replicate at the epithelial surface likely lets it avoid compe-
tition with most bacteria in the large intestine lumen and,
therefore, the main force of colonization resistance.

The epithelial cell surface is already higher in oxygen than
the lumen, which excludes the obligate anaerobes that make
up most of the microbiota. Citrobacter rodentium further
increases oxygenation by triggering epithelial hyperplasia
via type 3 secretion system—injected effectors.''’ Although
it does not possess enzymes to digest mucus glycans, there
may be other unique nutrient sources in this epithelial niche
that C. rodentium exploits. Once the host initiates an IgG
antibody response against locus of enterocyte effacement
virulence factors, including surface intimin, opsonized
virulent C. rodentium are removed by luminal neutrophils
while avirulent bacteria are forced away from the protected
niche at the epithelial surface and into the lumen. Without
the advantage of their virulence factors, they are unable to
compete with the microbiota and are cleared from the gut.""’
This clearance is probably caused, in part, by nutrient
competition with other bacteria in the lumen.'"'

Salmonella typhimurium exhibits a different lifestyle in
mice than attaching/effacing pathogens. Unlike the diarrheal
infection it causes in humans, S. typhimurium in mice is
largely focused on invasion across the epithelium and into
systemic organs, causing a typhoid-like disease without
intestinal inflammation. However, if colonization resistance
is ablated with antibiotics, it deploys several strategies to
compete with the microbiota in the gut. Like C. rodentium,
it uses type 3 secretion systems to target host epithelial and
immune cells and induces inflammation and oxygenation of
the cecum. This results in new energy and nutrient sources
that it can exploit better than resident microbes.’®''*!"% Tt
has also evolved resistance to some host antimicrobial
factors (eg, Reg3B''* and lipocalin-2).'"” Similar to C.
rodentium, its eventual clearance from the gut requires a
fully functional microbiota.''® Whether humans exhibit a
different disease from S. typhimurium because of differences
in basic physiology or the microbiota is still unclear,
although interestingly the microbiota from a healthy human
did not protect mice as effectively as their native bacteria.'"’
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Conclusions and Future Perspectives

Colonization resistance is a powerful phenomenon that
arises from the extremely complex interactions of thousands
of strains of bacteria in the gut with each other and with the
host animal. Understanding the mechanisms of colonization
resistance (Figures 1 and 2) is crucial to preventing and
treating human disease. Approximately half a million chil-
dren die each year from diarrheal diseases, for example. The
infant microbiota is not fully developed and is intrinsically
defective in colonization resistance ability.®' Maturation of
the microbiota to a protective adult state in mice occurs
around the time that solid food is starting to be introduced.
This suggests that dietary interventions could be a way to
boost the development of colonization resistance in infants.
Synbiotic combinations of protective bacteria and prebiotics
that support them could be even more powerful, if safe and
effective strains can be isolated. Infants also have immature
immune systems, and so they are defective in indirect
mechanisms of colonization resistance, such as antibody
production. This gap is filled by maternal antibodies trans-
ferred across the placenta and in breast milk but could be
enhanced by maternal immunization.

The arsenal of weapons that bacteria use to compete with
each other has historically been and continues to be a source
of useful compounds. Discovering new types of antibacterials
is especially important now as resistance to common antibi-
otics continues to increase, and the adverse effects of broad-
spectrum antibiotics on the microbiota are increasingly
appreciated. Discovering antibacterials from the gut micro-
biome that are more specific and with fewer adverse effects is
another advantage of understanding colonization resistance.

Transfers of the total microbiota (fecal microbiota trans-
plantation) are more effective than antibiotics at treating C.
difficile infection,” and they are being explored for other
diseases as well. This presents an interesting opportunity to
try to predict and understand why certain species from the
donor can successfully colonize the recipient.''® Fecal
microbiota transplantations could reveal mechanisms con-
trolling normal microbiota stability and exclusion of
nonnative strains.

Colonization resistance is not only a fascinating and
complex phenomenon that incorporates aspects of ecology,
microbiology, biochemistry, and immunology, but is also
incredibly relevant to promoting human health and treating
a wide range of diseases, from infection to autoimmunity to
metabolic disorders.
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