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Abstract

The phenotypic changes of microglia in brain diseases are particularly diverse and their

role in disease progression, beneficial, or detrimental, is still elusive. High-throughput

molecular approaches such as single-cell RNA-sequencing can now resolve the high

heterogeneity in microglia population for a specific physiological condition, however,

the relation between the different microglial signatures and their surrounding brain

microenvironment is barely understood. Thus, better tools to characterize the pheno-

typic variations of microglia in situ are needed, particularly for human brain postmor-

tem samples analysis. To address this challenge, we developed MIC-MAC, a Microglia

and Immune Cells Morphologies Analyser and Classifier pipeline that semiautomatically

segments, extracts, and classifies all microglia and immune cells labeled in large three-

dimensional (3D) confocal image stacks of mouse and human brain samples. Our

imaging-based approach enables automatic 3D-morphology characterization and classi-

fication of thousands of individual microglia in situ and revealed species- and disease-

specific morphological phenotypes in mouse aging, human Alzheimer's disease, and

dementia with Lewy Bodie's samples. MIC-MAC is a precision diagnostic tool that

allows a rapid, unbiased, and large-scale analysis of microglia morphological states in

mouse models and patient brain samples.
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1 | INTRODUCTION

Microglia, the resident immune cells of the central nervous system

(CNS), are not only at the frontline of brain defense mechanisms

(Ramirez-Exposito & Martinez-Martos, 1998) but also adopt diverse

functions during CNS development in the establishment of neuronal cir-

cuitry, synaptic plasticity, and brain maintenance. However, in certain

conditions, their activation may be maladaptive, detrimental to neurons,

and promote neurodegeneration (Ayata et al., 2018; Hansen, Hanson, &

Sheng, 2018). The spectrum of microglia functionalities is reflected by a

large phenotypic diversity that has been recently highlighted by high-

throughput RNA sequencing of dissociated single cells from mouse

models or human brain samples. Their heterogeneity can be influenced

by the physiological or pathological context (Friedman et al., 2018;

Mathys et al., 2017) including species specificity, neurological disease

states, and regional distribution (Galatro et al., 2017; Gosselin et al.,

2017; Grabert et al., 2016; Soreq et al., 2017; Sousa, Biber, & Michelucci,

2017). While single cell RNA sequencing gives a comprehensive molecu-

lar characterization of a population of cells, it does not provide the spa-

tial information that is required to fully understand mechanisms of brain

homeostasis and disease progression. Changes in the molecular program

of microglia and corresponding morphological transformations serve

as a read-out of microglial functional changes and their ability to

interact within brain microenvironments (Bachstetter et al., 2015;

Fernández-Arjona, Grondona, Granados-Durán, Fernández-Llebrez, &

López-�Avalos, 2017; Verdonk et al., 2016). In their surveying state,

microglia exhibits a rather ramified morphology with dynamic processes

that screen their environment for pathogens or cellular insults. When

the CNS is attacked or cells and synapses are damaged, microglia reacts

with immune responses that trigger retraction of their processes and

transformation toward an amoeboid form. Notably, between the two

ends of this morphology spectrum lies a variety of intermediate transi-

tional morphologies which may reflect disease-specific functional cell

states. The precise role of these transitional states and their spatial

organization in the injured or diseased brain remains unclear.

Current neuropathological analysis of microglia morphologies in

fixed brain samples are typically performed using two-dimensional

(2D) images. However, this type of approach considerably (a) restricts

the number of geometrical parameters to be quantified, (b) leads to

oversimplification of structural changes, and finally (c) limits statistical

relevance because of the small number of cells analyzed. Recently

established histological methods allow now resolving the three-

dimensional (3D) structures of microglia in large mammalian brain sam-

ples (Chung et al., 2013; Grabow, Yoder, & Mote, 2000; Hama et al.,

2015; Ke, Fujimoto, & Imai, 2013; Lai et al., 2018). A few recent

corresponding computational approaches exist to analyze 3D morphol-

ogies (Falk et al., 2019; Heindl et al., 2018) but are either not designed

for an unbiased high-throughput analysis or not specialized on microglia

morphologies in more complex human postmortem samples. To address

this gap, we developed a computational pipeline for Microglia and

Immune Cell Morphological Analysis and Classification (MIC-MAC;

https://micmac.lcsb.uni.lu/ and Supporting Information Figure S1) that

captures morphological heterogeneity of microglia at single cell level in

large 3D high-resolution confocal stacks from mouse and human brain

sections immunolabeled for cell-type specific morphological markers.

2 | MATERIALS AND METHODS

2.1 | Human brain samples

All experiments involving human tissues were conducted in accor-

dance with the guidelines approved by the Ethics Board of the

Douglas-Bell Brain Bank (Douglas Mental Health University Institute,

Montréal, QC, Canada) and the Ethics Panel of University of Luxem-

bourg. All anonymized autopsy brain samples were obtained from the

Douglas-Bell Brain Bank. Hippocampal samples were dissected from

cases of neuropathologically confirmed Alzheimer's Disease (AD) and

Dementia with Lewy Bodies (DLB), as well as from age-matched con-

trols (CTLs). CTLs had no history of dementia and no neuropathologi-

cal abnormalities including the complete absence of Amyloid beta

plaques and neurofibrillary tangles. Human brain samples were pre-

served in 10% formalin until processing as indicated in Table 1.

2.2 | Mouse brain samples

Mouse experiments were approved by the Institute Facility Animal

Care Committees of the Douglas Mental Health University and

followed guidelines of the Canadian Council on Animal Care. Ten wild-

type mice, littermate control of CRND8Tg mice with the genetic back-

ground Hybrid C3H/He-C57BL/6 (Chishti et al., 2001), with five ani-

mals of age 1 month and five mice of 12 months, were anesthetized

with isoflurane in a chamber and sacrificed by decapitation. Mouse

brains were extracted and fixed overnight in 4% paraformaldehyde at

4�C and subsequently washed in phosphate buffered saline (PBS).

2.3 | Preparation of mouse and human brain slices

Briefly, human brain samples and mouse brains were rinsed in PBS

and incubated in 30% sucrose solution in PBS for 36 hr approximately

at 4�C. Mouse and human samples were then embedded in M-1

embedding matrix (Thermo Scientific, Waltham, MA), and cut into

50 μm thick coronal slices on a sliding freezing microtome and kept

at −20�C in a cryoprotectant solution containing ethylene glycol

(30%) and glycerol (30%) in 0.05 M phosphate buffer (PB, pH 7.4) until

processed for immunofluorescence.

2.4 | Immunohistochemistry

Immunostaining was performed as previously described (Bouvier et al.,

2016; Quesseveur, Fouquier d'Hérouël, Murai, & Bouvier, 2019) with

the modification that human brain sections were first irradiated with an

ultraviolet lamp (Ushio, 30 W) for 18–24 hr in PBS solution to reduce

residual autofluorescence background. In brief, 50 μm thick brain sec-

tions were rinsed three times for 10 min in PBS followed by a 30-min

permeabilization step with 0.3% Triton-X 100 in PBS. Subsequently,
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free-floating sections were incubated for 2 hr with blocking solution

(0.3% Triton-X 100 and 2% horse serum in PBS), followed by incuba-

tion with Rabbit anti-Iba1 (Wako [019-19741]) in blocking solution for

72 hr at 4�C. Afterward, sections were washed three times for 10 min

in PBS, and subsequently incubated in 0.3% Triton-X 100/PBS at room

temperature (RT) for 2 hr with Donkey anti-Rabbit Alexa Fluor 488 or

555, respectively (Jackson ImmunoResearch Laboratories, West Grove,

PA and Invitrogen, Molecular Probes, Eugene, OR). Slices were washed

twice for 10 min in 0.1 M PB (pH 7.4) and some samples incubated

with a 300 nM solution of 40,6-diamidino-2-phenylindole (DAPI) to

label nuclei (10 min; RT). Sections were finally washed twice for 10 min

in 0.1 M PB (pH 7.4) prior to mounting on glass slides using ProLong

Gold Antifade reagent (Invitrogen).

2.5 | Image acquisition

3D confocal tile scans were captured on a confocal Zeiss Laser Scan-

ning Microscope 710 with a 20× air objective and stitched using

either the function of the Zeiss Zen or FIJI software (https://fiji.sc).

Representative volumes of the CA1 subfield representing all layers of

the cornu Ammonis, including the alveus-stratum oriens to the stra-

tum moleculare, were selected in coronal mouse and human sections

(Figure 1a,b). Average volumes for mouse and human CA1 3D stacks

are 0.0074 and 0.044 mm3, respectively.

2.6 | Image preprocessing

To decrease staining variation caused by the thickness of the slices

and background noise in the confocal data, each stack was submitted

to the “normalize layers” and “background subtraction” (500 μm) tools

from Imaris 9.0 (Bitplane). Shot noise was alleviated with a 3D median

filter of size 2 × 2 × 2 voxels using Fiji (https://fiji.sc).

2.7 | Iterative image segmentation

For precise morphology reconstruction of immunostained Iba1+ cells,

we developed a hybrid technique based on two masks obtained by

complementary segmentation approaches (Figure 2a) that allow both

the extraction of the structures' finest details like fine branches and the

preservation of its core composition by avoiding splitting branches. We

first ran a supervised segmentation with Ilastik (http://ilastik.org), an

open source machine learning software that creates a coherent mask of

the staining with strong smoothing. The computational pipeline of MIC-

MAC implemented in MATLAB (version 8.5, R2017a, MathWorks,

Natick, MA) complements this mask by a sharp and more detailed ren-

dering using a set of filters, thresholding, and operations that can lead

to fragmentation of the core structure but captures fine details. These

complementary masks are subsequently thresholded, dilated, eroded,

and combined by the MATLAB Segmentation GUI eventually leading to

the segmentation mask of structures. However, this one-step segmen-

tation approach was often insufficient to dissociate all individual cells

structures, which sometimes merge due to close cell boundaries. To

avoid discarding valid cells, we additionally implemented an iterative

erosion process to cleave individual cellular structures from bundles

present in the final segmentation mask (Figure 2b) as described in Algo-

rithm 1 in Figure S2. The final result of the entire segmentation pipeline

is a library of 3D in silico reconstructions of Iba1+ cells containing cell

boundaries and coordinates within the original image stack.

2.8 | Feature extraction

In order to examine the morphological properties of the extracted 3D

structures, we implemented a new method for capturing the intrinsic

complexity of their morphologies by two sets of features. First, the

so-called graph-based features were obtained using an underlying

graph defined by nodes that comprise regions of the cell where pro-

jections split and edges that describe node connections. This informa-

tion is captured by the adjacency matrix A where aij = 1 if nodes i and

j are connected or aij = 0 otherwise, and by the weighting matrix

W where wij can take any positive value describing the length of the

edge connecting node i and j. For the graph construction, we first

used an established skeletonization method (Kerschnitzki et al., 2013)

to create a 3D array S of 0 s and 1 s where 1 indicates voxels that

shape the skeleton. On this skeleton, we then run Algorithm 2

TABLE 1 Characteristics of human samples

Sample Diagnostic Gender Age Postmortem delay (hr) Fixed in

DH948 DLB M 76 21.8 1994

DH975 DLB F 77 19.5 1995

DH1012 DLB M 69 9.5 1996

DH488 CTL F 86 5.8 1989

DH808 CTL F 80 17.5 1992

DH1073 AD M 85 35.5 1998

DH1117 CTL F 82 32.6 1999

DH1352 AD F 83 15.0 2003

DH1631 AD M 87 10.8 2008

DH1725 AD F 77 24.3 2010
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F IGURE 1 MIC-MAC workflow. (a,b) Image acquisition and sampling: Representative volumes of CA1 subfield in mouse (a) and human
(b) samples, including all layers of the cornu Ammonis from stratum oriens to stratum moleculare, were acquired with a high-resolution confocal
microscope. All cells labeled with the anti-Iba1 antibody included in the 3D stack were subsequently analyzed by MIC-MAC. (c) Computational
workflow: MIC-MAC has been implemented as a MATLAB GUI (Figure S1). First, MIC-MAC reliably segments individual cells from large confocal
image stacks by combining supervised (Ilastik) and unsupervised (MATLAB) techniques into an iterative extraction approach. Subsequently, each
structure is characterized by morphological and graph-based features. After feature reduction by PCA, MIC-MAC clusters the obtained structures
into homogenous subgroups and allows visual validation and statistical analysis including comparisons between different conditions. Scale bars:
100 μm. STR.O: stratum oriens; STR.P: stratum pyramidale; STR.R: stratum radiatum; STR.M: stratum moleculare [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 2 Hybrid segmentation combined with iterative erosion extraction retrieves all Iba1+ cell morphologies in large 3D confocal stacks.
(a) Pipeline for the hybrid segmentation showing the primary Ilastik and MATLAB masks and the final segmentation mask for a human age-
matched control sample (DH808). (b) Exemplified iterative segmentation of a human CA1 hippocampus sample of an age-matched control subject
(DH808 in Table 1, Section 2). Based on Iba1 staining (white), MIC-MAC segments 73% of individual Iba1+ cells after one iteration (magenta) and
up to 99% after six iterations (color-coded) of the implemented erosion procedure by resolving overlapping cell bundles. Scale bars: 20 μm (a) and
100 μm (b) [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure S3) that computes the matrices A and W. From these matrices,

we subsequently derived all graph-based measures by functions con-

tained in the Octave Networks Toolbox (Bounova, 2015).

Second, we obtained a set of features capturing geometrical prop-

erties of the structures. To compute these, a central node was defined

for each structure by predicting the location of the cell nucleus. This

estimation used a subset of graphical features of each node including

the degree (number of other nodes connected to the measured one),

betweenness (centrality measure that accounts for the number of the

shortest paths between two other nodes that cross the current node),

closeness (inverse sum of the distance of the node to all other nodes in

the network), and eccentricity (maximum distance to any other nodes).

Particularly, the central node is defined as the one that has maximum

values for the first three features and minimal eccentricity. If several

nodes equally satisfied this criterion, we chose the one with the maxi-

mum value of betweenness and of closeness if there is still more than

one. The obtained central node was used for the computation of fur-

ther geometrical features such as sphericity or polarity. Additionally, we

considered other geometrical properties such as the volume or the

lengths of the bounding box (Table S1). After extraction and combina-

tion of these two types of features, each individual structure is charac-

terized by a set of D = 62 features as described in Table S1. For a total

of N structures, we therefore obtain a feature matrix F with dimensions

N × D. All methodologies described in this section can be run through

the MIC-MAC “Feature Extraction” GUI (Figure S1).

2.9 | Dimensionality reduction and cluster analysis

To facilitate subsequent processing, we first reduced the number of

structures, that is, the number of rows in matrix F, by filtering the first

set of artifacts with a volume below 180 μm3 leading to a reduced fea-

ture matrix with N0 rows. Next, we reduced the number of columns D in

the feature matrix by principal component analysis (PCA). Once the

number of principal components is set to represent 95% of variability,

for example, D0, we transform the data by multiplying it by the reduced

matrix of coefficients Cred, of dimensions D × D0, finally leading to the

transformed feature matrix FTrf, of dimensions N0 × D0. Given FTrf,

we then apply cluster analysis by using k-means (Lloyd, 1982). First, the

number of clusters is estimated by knee-plot analysis that depicts the

mean squared fitting error (within-cluster sum) over the number of clus-

ters k. The considered heuristic criteria choose k as the minimum num-

ber of clusters that lies to the right of the “knee,” but is not yet in the

plateau region (Figure S4) and justified by posterior visual validation.

After defining k, we run k-means repeatedly and assigned each structure

to a cluster by majority voting to increase the robustness of structure

classification. All steps described above can be executed through the

MIC-MAC “Dimensionality reduction and Clustering” GUI (Figure S1).

2.10 | Validation of data

After k-means clustering, we plot random subsets of 3D renders for

each cluster using the tool “Plot 3D renders” of the MIC-MAC “Analysis”

GUI (Figure S1). This allows the visual inspection of the homogeneity of

the cluster and testing if the cluster assembles real cells or grouped arti-

facts caused by immunostaining background or the segmentation pro-

cess. Additionally, by using the “Generate overlays for validation” tool

of the MIC-MAC “Analysis” GUI, we automatically generated images

that can be overlaid onto the original image of these structures in a

cluster-specific color-coded manner to further support the validation of

the selected clusters. After the visual inspection, clusters containing

artifacts were removed from the database. Furthermore, using the

median volume of these artifactual structures as reference, a new mini-

mum volume threshold for valid structures of 260 μm3 was defined.

Subsequently, dimensionality reduction was rerun leading to a new

reduced feature matrix FTrf, and followed by further cluster analysis on

these transformed data. This iterative process can be repeated until the

clusters are validated as homogenous groups of in silico structures

accurately representing Iba1+ cells in the tissue.

2.11 | Statistical comparison

Given the cluster assignments, we compared different samples and

conditions in terms of cluster prevalence. In order to normalize this

measure, that is, the number of structures per sample and cluster, we

considered two approaches. First, we normalized the cell number by

the total volume of the corresponding image stack leading to an extrap-

olated density of structures per mm3. For comparisons between groups

of samples with significantly different mean structure densities, we

considered an alternative normalization as the ratio between the

number of structures per cluster and sample by the total number of

structures extracted from that sample. This approach leads to the per-

centage of specific cellular morphologies per sample. For both mea-

sures and considering pairwise comparisons like human versus mice or

DLB versus control, we subsequently compared the distributions of

these values for all samples analyzed by two sample t test. The reported

p values are corrected for multiple comparison using Bonferroni correc-

tion if not stated otherwise. These comparisons are run using the

“Statistical comparison” tool into MIC-MAC “Analysis” GUI.

2.12 | Similarity plot

To visualize how different clusters relate to each other in terms of mor-

phological characteristics, we implemented a similarity analysis. First,

for a specific cluster c, we computed the median values for each feature

of all structures assigned to c from the reduced feature matrix FTrf. This

led to a vector fc of length D0 for each of the identified clusters. Based

on these vectors, we computed a similarity matrix between clusters

using the Euclidean distance. After defining a threshold of 50% for the

maximal distance, we finally obtained the similarity plot. This plot indi-

cates morphology changes between clusters, and their interrelations.

Additionally, we used the vector fc to find the prototypical structures

that described the median shape of the objects assigned to cluster c by

computing the Euclidean distance of all structures in cluster c to the

vector fc, and then plotted those with the smallest distances. Both tools

are called from the “Prototypical & Similarity plot” option of the MIC-

MAC “Analysis” GUI.
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2.13 | Morphological feature ranking

While the PCA transformed features support fast classification and simi-

larity analysis, it can be interesting to identify most discriminating original

features for the various morphologies grouped into different clusters.

For ranking the features, we implemented Algorithm 3 (Figure S5) that

provides a list of the most important features in descending order which

was used to select most relevant features to visualize.

2.14 | Implementation

MIC-MAC is implemented in MATLAB and each step of the pipeline

can be controlled by a graphical user interface (GUI) enabling also

noncomputational scientist to perform high-throughput analyses. The

workflow (Figure S1) starts with the segmentation process for which

the user chooses the original imaging data and the previously gener-

ated Ilastik mask to be loaded into the GUI. The provided segmenta-

tion algorithm is using a single CPU to enable the usage without any

high-performance computing (HPC) structure but due to the typically

large imaging data, we have also implemented a HPC version (see the

MIC-MAC webpage https://micmac.lcsb.uni.lu for more details). After

segmentation, the Feature Extraction GUI allows to select the

segmented images and run the feature extraction algorithms including

the graph generation. Once these steps are accomplished for each

sample individually, the extracted features of different samples can be

merged by the Feature Merging GUI. This architecture allows for

adding additional samples to a study without the need for rerunning

the computational expensive segmentation and feature extraction

processes. Once the features of all samples of interest are merged,

the dimensionality reduction GUI performs PCA and automatic clus-

tering based on user-specified parameters. Finally, the analysis GUI

offers different options including the generation of overlays for vali-

dation, statistical comparison between conditions and similarity analy-

sis. (For more details, see the MIC-MAC webpage https://micmac.

lcsb.uni.lu/.)

3 | RESULTS

3.1 | MIC-MAC, an iterative segmentation pipeline
generating accurate three-dimensional in silico
reconstructions of diverse populations of microglia

The implemented MATLAB GUIs (Figure S1) perform (a) semi-automated

and reliable segmentation of all marker-positive cells within the volume,

F IGURE 3 Visual cluster validation.
(a) After feature extraction, MIC-MAC
classifies cells into distinct morphology
clusters and generates automatically
images color-coded by cluster assignment
that are overlaid on the original stack. From
these overlays, clusters of artifacts (cyan)
can be distinguished from valid structures
(green and magenta) as shown in the
enlarged subfields and rendered structures.
Scale bars: 100 μm (a), 40 μm (b)
[Color figure can be viewed at
wileyonlinelibrary.com]

1502 SALAMANCA ET AL.

https://micmac.lcsb.uni.lu
https://micmac.lcsb.uni.lu/
https://micmac.lcsb.uni.lu/
http://wileyonlinelibrary.com


(b) automated extraction of geometrical and graph-based features for

each reconstructed cell, (c) filtering of artifactual structures, and (d)

automated quantification and classification of thousands of resulting

cell reconstructions (Figure 1). We illustrate the strengths of MIC-MAC

by identifying species and brain diseases specific enrichment of

microglia morphologies from 3D confocal image stacks of the hippo-

campal subfield CA1 of aging mice (1 month [n = 5] vs. 12 months

old [n = 5] mice) and of human postmortem samples obtained

from Alzheimer's disease (AD; n = 4) or Dementia with Lewy Body

(DLB; n = 3) patients, and from age-matched control (n = 3) subjects

(Section 2; Table 1). These samples were immunostained for ionized

calcium binding adaptor molecule 1 (Iba1), a commonly used morpho-

logical marker for microglia and immune cells, and large volumes were

imaged by high-resolution confocal microscopy.

In the brain, microglia form a dense branching network and manual

and automatic segmentation of 3D samples is challenging due to

overlapping and adjacent complex microglial subcellular structures.

MIC-MAC resolves this issue by a hybrid segmentation strategy com-

plementing a smooth mask generated by Ilastik (http://ilastik.org/) with

stringent pixel classification implemented in MATLAB (Figure 2a). To

extract individual cells from overlapping structures, MIC-MAC applies

an automated iterative erosion procedure that sequentially separates

cell aggregates and overlapping processes (Figure 2b, Algorithm 1 in

Figure S2). This approach preserves the core structure of microglia,

extracts finer geometrical details and segmented successfully over 99%

of Iba1+ cells after six iterations in all samples (Figure 2, Movie S1).

Each in silico reconstruction of a microglial cell is then registered in a

library with its spatial coordinates and its erosion-corrected volume.

3.2 | MIC-MAC classifies microglia based on
62 geometrical and graph-based features by cluster
analysis

For classification of the resulting 3D in silico structures, MIC-MAC

automatically extracts a set of morphological features based on (a)

geometrical characteristics directly determined from the segmented

shapes such as volume, polarity, and compactness but also from

(b) graph-based properties such as node degree, centrality, and diame-

ter determined from graph representations of each structure generated

by skeletonization of Iba1+ cells (Algorithm 2 in Figure S3). The resulting

62 morphological features (Table S1) captured even subtle characteris-

tics of each reconstruction such as arborization complexity. After

F IGURE 4 MIC-MAC identifies species-specific microglia morphologies. (a) Selected features of validated cell morphologies from all samples.
For each of the validated 11,142 cells, MIC-MAC determined 62 features (Table S1) that are used for classification and condition comparison.
(Each dot corresponds to an individual cell and boxplots indicate medians, quantiles, and standard deviations). (b) Density of Iba1+ cells in CA1
hippocampus of mouse and human samples. (c) Mouse versus human comparison reveals distinct morphological composition of Iba1+ cells within
the CA1 hippocampus (each dot represents one sample with up to hundreds of Iba1+ cells). In particular, cell structures assigned to cluster 5 were
exclusively found in human samples and structures of cluster 6 were enriched in mouse conditions (p value <.05 after Bonferroni correction).
Additional trends for decreased prevalence of cluster 2 cell structures and for increased cluster 10 morphologies were detected in mouse samples
compared to human conditions (indicated p values without Bonferroni correction) [Color figure can be viewed at wileyonlinelibrary.com]
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removing small artifacts by volume thresholding, the features of the

remaining structures were reduced by PCA with the first 21 principal

components explaining 95% of the feature variance and used for classi-

fication. Subsequent k-means cluster analysis considered the 16 clusters

as suggested by knee-plot analysis (Figure S4). Visual inspection of

automatically generated overlays of representative structures for

each cluster with the original 3D image stack (Figure 3a) identified

six clusters containing regrouped artifacts introduced by detached

pieces of cells as exemplified by the cyan cluster in Figure 3b. After

two iterations of k-means clustering, we obtained overall 11,142 val-

idated structures from mouse and human samples grouped into

10 distinct clusters of homogenous 3D reconstructions representing

Iba1+ cell morphologies with specific properties (Figure 4a).

3.3 | MIC-MAC identifies distinct morphological
characteristics of microglia/immune brain cells in
mouse aging and human brain neurodegenerative
diseases samples

To investigate whether species- or brain disease-specific morphol-

ogies can be resolved, we implemented a MATLAB module for statis-

tical comparison in MIC-MAC. In agreement with previous studies

(Torres-Platas et al., 2014), we found that the CA1 microglia/immune

cells composition and densities of human and mouse samples were

rather similar with 24,038 ± 3,167 and 21,667 ± 6,399 cells/mm3 for

mouse and human, respectively (Figure 4b). Nevertheless, interspecies

statistical comparison revealed a significant increase of Iba1+ cells

associated with cluster 6 in mouse compared to human samples

(p < .05) and cells associated with cluster 5 were found almost exclu-

sively in human samples pointing to a unique human morphology sub-

type (Figure 4c). The color-coded clusters were then overlaid in the

original 3D stacks but neither cluster 6 in mouse samples (Figure 5)

nor cluster 5 in human samples (Figure 6) exhibited a specific distribu-

tion within the hippocampus. Mouse aging from young adult stage to

adulthood did not significantly impact the general density (ρ = 24,523

± 2,911 cells/mm3 for 1 M vs. ρ = 23,554 ± 3,676 cells/mm3 for

12 M), and despite some trends in the morphological composition of

the CA1 hippocampus Iba1+ population with a higher ratio of cluster

4 at 12 M compared to 1 M, the overall composition was rather simi-

lar (Figure 7a). In contrast, MIC-MAC revealed significant differences

in the distribution of microglia morphological subgroups in human

samples. The comparison of relative structure abundance per cluster

for AD (ρ = 24,518 ± 6,140 cells/mm3) and DLB (ρ = 19,622 ± 4,738

cells/mm3) samples with controls (ρ = 19,912 ± 8,840 cells/mm3)

exhibited two distinct arrangements (Figure 7b) with cluster 1 signifi-

cantly enriched, and trends for decreased cluster 4 and increased

F IGURE 5 Visual validation of
spatial cluster distribution in
mouse CA1 subfield samples.
Spatial distribution of color-coded
structures from clusters 1, 4, 6, and
9 in a CA1 subfield of a 1 month
(left) and 12 months (right) old WT
mouse, respectively. Orientation:
STR.O, up. Scale bars: 100 μm
[Color figure can be viewed at
wileyonlinelibrary.com]
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cluster 10 prevalence in AD condition. Surprisingly, DLB samples did

not show significant microglial morphology changes compared with

control or AD conditions (Figure 7b).

Given the dynamical nature of microglia responses, we used the

large number of segmented cells per cluster to understand how mor-

phological modifications may interrelate to each other by calculating a

similarity matrix from the medians of all cluster features considered.

The corresponding similarity plot displays the morphological relation

between the clusters by the virtual distances between them (Figure 8a)

where each cluster is represented by a prototypical structure. Interest-

ingly, the similarity plot suggests a potential progression path from a

very-ramified (cluster 7) to an amoeboid-like form (cluster 1) but with

several transitional states where clusters 3 and 5 are localized at an end-

node and could represent more profound alterations or functional speci-

ficity. We finally analyzed the impact of morphological features on the

clustering and ranked them by a feature importance algorithm identifying

most relevant variations of key features for cluster definition such as link

density, mean edge length, volume, and spreadness (Figure 8b).

4 | DISCUSSION

4.1 | MIC-MAC, a complete toolbox to extract,
classify and compare in situ morphologies of microglia
and immune cells

Morphology is an easily accessible parameter to distinguish between

homeostatic and activated states of microglia in culture and in situ.

However, the characterization of microglia morphologies in situ often

relies on 2D images analyses that do not allow measuring the full spec-

trum of their physical properties and physiological context. This con-

ducts to an oversimplification of morphological phenotypes and

prevents an adequate characterization of microglia functions. Although

F IGURE 6 Visual validation of spatial cluster distribution in human CA1 subfield samples. Distribution of color-coded structures assigned to the
two most extreme morphologies classified by cluster 1 (blue) and cluster 7 (green) as well as to cluster 5 (cyan) exclusively present in human samples
and cluster 10 (orange) for an age-matched control (DH488), a DLB (DH948), and an AD (DH1073) samples. Orientation: STR.O, up. Scale bars: 100 μm
[Color figure can be viewed at wileyonlinelibrary.com]
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microglia morphology may not reflect all functionalities, a meticulous

description of morphological subgroups can support a rapid assessment

of the physiological state of the cell and the surrounding tissue.

For this purpose, we have designed MIC-MAC that allows for an

accurate high-throughput reconstruction by tens of thousands of 3D

microglial morphologies, from large sections of mouse but also of

human brain samples, their classification in morphologically homoge-

nous subgroups, and their statistical comparison. MIC-MAC consists

of a pipeline that facilitates and improves qualitatively and quantita-

tively all steps of image analysis and classification. First, the hybrid

segmentation permits an accurate reconstruction of all forms of

microglia encountered in situ and an almost complete extraction of all

morphologies even of cells partially overlapping through our iterative

extraction process. The 3D characterization of each individual cell

retrieved with MIC-MAC is extremely precise and allows for skeleton-

izing and subsequent graph analysis. For each in silico reconstruction,

62 morphological and graph-based properties are simultaneously mea-

sured and analyzed in order to reveal fine details of microglia physical

changes and consecutively allows for an accurate partitioning of

subtypes in clusters. Our user-friendly GUI based computational

F IGURE 7 MIC-MAC identifies disease-specific microglia morphologies in human samples. (a) K-means analysis of the morphological clusters
in 1 month and 12 months old WT mice. The morphological cluster composition does not change significantly in mouse CA1 between 1 month
and 12 months of age. (b) AD induces prevalence of specific Iba1+ cell morphology. AD samples exhibited a significant increase of cluster
1 morphologies compared to age-matched control conditions (p value < .05 with Bonferroni correction) and trends for decreased cluster 4 and
increased cluster 10 prevalence (indicated p values without Bonferroni correction) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 MIC-MAC predict morphology dynamics. (a) The large number of features and characterized cells allow predicting dynamic relations
between the individual clusters by the distance of cells in the feature space (Section 2). The resulting similarity plot suggests a transition path between
the most extreme morphologies assigned to cluster 1 and 7 with distinct intermediate states. (b) Most distinct features between clusters ranked by the
feature importance algorithm (Figure S5) define morphological specificity. Scale bar: 40 μm [Color figure can be viewed at wileyonlinelibrary.com]

1506 SALAMANCA ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


implementation of MIC-MAC (https://micmac.lcsb.uni.lu) will support

researchers to analyze their samples by a nonbiased approach and

with an unmatched precision.

4.2 | Microglia and immune brain cells diversity in
mouse and human, in health and disease

The relevance of studying microglia functions in brain diseases and

neurodegeneration is now well established (Bouvier & Murai, 2015;

Sousa et al., 2017). However, due to their heterogenous population,

the protective or neurotoxic role of microglia is still controversially

discussed (Salter & Stevens, 2017). Single-cell RNA sequencing stud-

ies have highlighted microglia phenotypic diversity in different condi-

tions (Gonçalves et al., 2010; Sousa et al., 2018), identified regional

and species differences and disease-specific expression signatures but

their isolation into individual cells for analysis does not allow investi-

gating microglia interaction in their physiological environment. MIC-

MAC can offer a complementary approach to further understand the

role of microglia in human brain diseases. Indeed, MIC-MAC pinpoints

back cluster assignments of each cell in the original stack images by

color coding what allows for visualization of subtype distributions.

This approach also enables visual validations to discard artifactual ele-

ments from the analysis. Applying our high-throughput MIC-MAC

pipeline to mouse and human in situ brain samples, we have analyzed

11,142 validated structures from 20 different samples. We have

observed 10 distinct subgroups of microglia morphologies that go

beyond the traditional binary M1–M2 characterization. In agreement

with previous studies, we found that the CA1 microglia/immune cells

composition of human and mouse samples seems to be relatively simi-

lar (Torres-Platas et al., 2014). Nevertheless, we observed a significant

difference between human and mouse based on the presence of cells

classified by clusters 5 and 6 which are found exclusively in human

samples or are significantly enriched in mice, respectively. Cluster

5 structures were found in the control (age-matched), AD and DLB

samples, but with no specific spatial distribution within the CA1

parenchyma. At this stage, we have no indication that this human-

specific microglia morphology is associated with a peculiar function

(Friedman et al., 2018; Galatro et al., 2017; Gosselin et al., 2017;

Smith & Dragunow, 2014). Our analysis of the morphology of Iba1+

cells in human samples also revealed more drastic changes in AD than

in DLB when compared to age-matched control. In particular, the

number of cells associated with cluster 1 formed by smaller amoeboid

structures is found significantly increased in AD. Although we

applied MIC-MAC to a relatively small number of samples, the high-

throughput analysis with more than 10,000 cells allowed us obtaining

significant differences between species and conditions despite inter-

individual variability. To further substantiate our findings including the

trends for AD samples (Figure 7b) and for a more comprehensive

comparison between AD and DLB conditions, a larger number of ana-

lyzed samples reflecting different severity stages would be beneficial.

From the present data, we can only extrapolate that microglia may

react differently to the distinct pathological inclusions found in the

brain parenchyma. Indeed, microglia are known to react with strong

functional changes to extracellular amyloid plaques (Keren-Shaul

et al., 2017) but less is known about their response to Lewy bodies.

In conclusion, MIC-MAC upgrades morphological analyses of

microglia in situ to an unprecedented level of detail and resolution.

MIC-MAC can unveil new sets of data that will help to characterize

microglia functions in brain disease progression and can serve as an

efficient tool of postmortem diagnostic of microglia changes, in mouse

models and human brain autopsy samples. Ultimately MIC-MAC will

support the future characterization of how morphologies of microglia

correlated with their functions.
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