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Abstract

Objective: To determine the relationship between objectively measured physical activity (PA) 

and the gut microbiome among community-dwelling older men.

Design: Cross-sectional study.

Setting: Osteoporotic Fractures in Men (MrOS) cohort participants at Visit 4 (2014–16).

Participants: Eligible men (n=373, mean age 84 y) included participants with 5-day activity 

assessment with at least 90% wear time and analyzed stool samples.

Measurements: PA was measured with the SenseWear Pro3 Armband and stool samples 

analyzed for 16S v4 rRNA marker genes using Illumina MiSeq technology. Armband data 

together with sex, height, and weight were used to estimate total steps, total energy expenditure, 

and level of activity. 16S data was analyzed using standard UPARSE workflow. Shannon and 

Inverse Simpson indices were measures of (within-participant) α-diversity. Weighted and 

unweighted Unifrac were measures of (between-participant) β-diversity. We used linear regression 

analysis, principal coordinate analysis, zero-inflated Gaussian models to assess association 
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between PA and α-diversity, β-diversity, and specific taxa, respectively, with adjustments for age, 

race, BMI, clinical center, library size, and number of chronic conditions

Results: PA was not associated with α-diversity. There was a slight association between PA and 

β-diversity (in particular the second principal coordinate). Compared to those who were less 

active, those who had higher step counts had higher relative abundance of Cetobacterium and 

lower relative abundance of taxa from the genera Coprobacillus, Adlercreutzia, 
Erysipelotrichaceae CC-115 after multivariable adjustment including age, BMI, and chronic 

conditions. There was no consistent pattern by phylum.

Conclusion: There was a modest association between levels of PA and specific gut microbes 

among community-dwelling older men. The observed associations are consistent with the 

hypothesis that underlying health status and composition of the host microbiome are related.

Keywords

Physical Activity; Gut microbiome; Older men; Step count; Activity monitor

INTRODUCTION

The human microbiome is the collection of microorganisms (e.g., bacteria, viruses, fungi, 

and parasites) that inhabit the human body, most prominently in the gut. The composition of 

the gut microbiome is influenced by many host and environmental factors, particularly diet, 

as the microbiome is essential to nutrient digestion, synthesis, and absorption (1–4). It is also 

hypothesized that the microbiome is part of a causal pathway linking physical activity (PA) 

and chronic disease (5;6). Evidence from animal studies suggests that PA is an important 

modulating factor on gut microbial communities. Active vs. sedentary rodents had greater 

microbiome diversity (7–9) as well as a higher prevalence of bacteria associated with better 

general and metabolic health (10;11). Certain associations between PA and the gut 

microbiome were not consistent in experimental rodent studies, e.g. some studies found no 

relationship between exercise and phylum abundance (12), some studies found that 

Firmicutes was more prevalent in the high exercise group (13;14), and some studies had the 

opposite finding (7;8). Furthermore, rodent studies use restricted (locked wheel), forced 

exercise, and controlled feeding protocols that are not readily generalizable to humans.

There have been a few studies examining PA and the gut microbiome in humans. One study 

found that the microbiome of professional athletes had a greater diversity than those of 

controls(15), and further differences were also noted in the associated functional profiles 

(16). Another cross-sectional study of premenopausal women found that women meeting the 

World Health Organization recommendation for PA had a greater abundance of bacterial 

species commonly associated with better health status compared with sedentary women 

(17). Finally, a small longitudinal study among habitually sedentary men and women found 

that exercise altered the fecal microbiome(18). Previous studies on PA have been limited to 

younger adults, who exhibited a high variation in PA. Age related changes in diet, activity, 

multimorbidity and medication use may impact associations between the gut microbiome 

and PA.
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Our aim in this study is to determine the relationship between objectively measured PA and 

the gut microbiome among community-dwelling older men while adjusting for possible 

confounding factors.

METHODS

From 2000 to 2002, the Osteoporotic Fractures in Men (MrOS) study enrolled 5994 

ambulatory community-dwelling men, aged 65 years and older, living in one of six U.S. 

metropolitan areas. Those with a history of bilateral hip replacement or the inability to walk 

without the assistance of another person were not eligible to participate(19;20). The 

institutional review board at each participating institution approved the study protocol and 

written informed consent was obtained from all participants. Further information about the 

MrOS cohort can be found at the MrOS Online website (http://mrosdata.sfcc-cpmc.net). All 

surviving active MrOS participants were invited to participate in a Year 14 visit with 1841 

complete clinic visits occurring from May 2014 and May 2016. An ancillary microbiome 

study invited 1328 men starting in 2015 and 982 participants agreed to provide a stool 

sample. Sample collection was concurrent with Visit 4 except for those whose visit had 

already taken place. Participants were queried on antibiotic use (30 days prior to sample 

collection). A random subsample of specimens (n=599) from these participants were sent to 

the Alkek Center for Metagenomics and Microbiome Research (CMMR), Baylor College of 

Medicine in Houston, TX, for microbiome analysis. The analytic sample for the present 

analysis included those 373 men with 16S sequencing, objective PA measures based on 5 

days and 90% wear time and who reported no use of antibiotics within the past month and 

no use of probiotics, see Figure 1.

Objective Physical Activity

Men were instructed to wear the multi-sensor SenseWear® Pro3 Armband (Body Media, 

Inc., Pittsburgh, PA) on their right arm at all times, including during sleep, for a typical 7-

day period following Visit 4 and to remove it only for brief periods for bathing and water 

activities. The monitor uses a combination of five sensors (2-axis accelerometer, a heat flow 

sensor, galvanic skin response, skin temperature sensors, and ambient temperature sensors) 

to collect physiological data (including wear time) in 1-minute epochs. The data collection 

begins at 12 am (midnight) on the first day the participant is given the armband, and ends 

with the completion of the last 24-hour period at midnight, with times before and after 

excluded from the data analysis. We included only participants who completed at least 5 

days with 90% wear time. These data served as inputs in proprietary algorithms (Innerview 

Professional 5.1 software, Body Media, Inc; Pittsburgh, PA) along with height, weight, 

handedness and smoking status to estimate total step counts per day and total energy 

expenditure (TEE) in kilocalories per day (kcal/d). The resting metabolic rate (RMR) was 

estimated using the Harris Benedict equations. Non-wear time was detected by the galvanic 

and temperature skin sensors. The TEE included both wear time energy (from arm band) and 

non-wear time energy which was imputed from the RMR and the TEE from the wear time. 

The sleep interval was determined using proprietary algorithms. PA was also expressed as 

mean metabolic equivalent of task (METs). Minutes per day while awake spent in sedentary 

(METs ≤ 1.5), light (METs > 1.5, <3), and at least moderate (METs ≥3) activity were 
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quantified. A validation study comparing the SenseWear® Pro Armband with the criterion 

method of doubly labeled water showed acceptable levels of agreement with total energy 

expenditure and strong correlation with measure of active energy expenditure as calculated 

using a standard equation based on criterion measure of total energy (21). A validation study 

in older adults demonstrated good concordance between SenseWear® Pro Armband and 

pedometer measured steps(22). There was a good correlation between minute-by-minute 

METS measured by the armband and minute-by-minute oxygen consumption in a small 

study of those with chronic obstructive pulmonary disease (23). Sleep time was reliably 

measured in a study that also performed polysomnography in patients with sleep apnea and 

controls(24). Self-reported PA was assessed using the Physical Activity Scale for the Elderly 

(PASE) (25). Our primary exposure variable was step count, while other measure of 

objective activity and self-reported activity were secondary exposure variables.

Other measures

Information on demographics, lifestyle, and medical and family history was obtained by 

questionnaire and interview by trained clinical staff. Race/ethnicity (non-Hispanic white vs. 

other) was self-identified. Participants were classified into ever smoker (100+ cigarettes) vs. 

never smokers. Self-reported alcohol intake was divided into three categories; less than 1 

drink/week, 1–5 drink/week, 6+ drinks/week. BMI was calculated as kg/m2. Chronic 

conditions were self-reported at Visit 4 and included myocardial infarction, stroke, 

congestive heart failure, diabetes, cancer, COPD, rheumatoid arthritis, osteoarthritis, 

depression, visual impairment, Parkinson’s disease, and Alzheimer’s disease. A comorbidity 

index was created summing the total number of self-reported chronic conditions together 

with fall history and history of hip fracture(26). Participants were asked to bring all current 

(any use within the past 30 days) prescription medications with them to the clinic. All 

medications recorded by the clinics were entered into an electronic medications inventory 

(San Francisco Coordinating Center, San Francisco, CA). Each medication was matched to 

its Ingredient(s) based on the Iowa Drug Information Service (IDIS) Drug Vocabulary 

(College of Pharmacy, University of Iowa, Iowa City, IA)(27).

The Block 98.2 MrOS FFQ (NutritionQuest, Berkeley, CA) was completed by participants 

at home following Visit 4 (28). The questionnaire included 69 individual food item questions 

and 13 additional questions about food preparation and low-fat foods that were used to 

refine nutrient calculations. The FFQ included nine categories of frequency responses for 

foods and beverages and four categories of portion size responses and a one-page 

supplement to the FFQ was included that inquired about the frequency of consumption and 

portion sizes (using the same categories) for nine of the most commonly consumed probiotic 

foods (e.g., yogurt and probiotic drinks). The derivation of dietary patterns in MrOS 

participants has been described previously (29). Briefly, food groups were constructed using 

individual food variables from the Visit 4 FFQ based on nutrient similarities, culinary use, 

and previous studies. A two-factor solution was retained based on eigenvalues and final 

factor loadings were calculated through varimax rotation. Factor 1 loaded heavily on 

processed meats, refined grains, potatoes, eggs, sweets, and salty snacks and was designated 

the Western pattern, similar to derivations in other studies. Factor 2 had high factor loadings 

Langsetmo et al. Page 4

J Nutr Health Aging. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for fruits, vegetables, nuts, fish, and chicken and turkey without skin and was designated the 

prudent pattern, similar to derivations in other studies.

Microbiome sample collection and data processing

Fecal samples were collected at the homes of study participants following Visit 4 using the 

Omnigene Gut collection kit (OMR-200, DNA Genotek, Ottawa, Canada). The kit is 

designed for home collection with easy to use protocol and includes non-toxic stabilizing 

reagent, thus stool DNA is preserved at ambient temperature for up to 60 days. Samples 

were returned directly to the Portland coordinating center for initial processing to ensure 

proper collection and then storage at −80 C. Repeat samples were requested for those (2%) 

which did not pass the initial quality control check, thus all samples analyzed met protocol 

standards. A random subset of collected samples were indexed and shipped overnight with 

dry-ice to the Alkek CMMR for characterization of the gut microbiome (taxonomic profiles) 

by 16S ribosomal RNA (rRNA) gene sequencing as detailed previously(30). Briefly, 

genomic bacterial DNA was extracted from fecal samples using the MO BIO PowerSoil 

DNA Isolation Kit (MO BIO Laboratories, Inc, Carlsbad, CA). The 16S v4 rDNA 

hypervariable region was then amplified using primers 515F and 806R by polymerase chain 

reaction and sequenced on the MiSeq platform using the 2×250 bp paired-end protocol 

(Illumina, San Diego, CA). The read pairs were demultiplexed based on their unique 

molecular barcodes and overlapping reads were merged using Usearch v9.0.2132 

(i86linux64).

UParse/Greengenes: The 599 samples for this project were run through the standard 

UPARSE 16S sequence workflow with 97% clustering and minimum cluster size of 2 to 

create operational taxonomic units (OTU). Filtered reads were used to generate the OTUs. 

Reads not passing quality control were kept and used in the step assigning reads to OTUs. 

Reads were truncated to a max length of 200 bases and filtered for quality control using a 

MAXEE score of 1 resulting in a total of 27,791,779 reads. The Greengenes 16S rRNA 

Gene Database version 13.8 (greengenes.lbl.gov) was used for taxonomy prediction down to 

the lowest level possible so that the unfiltered data included 1913 OTUs of which 163 were 

classified down to the genus level. The dataset was filtered to only include OTUs with a 

minimum of 3 reads in at least 3 samples. The filtered OTU data consisted of 1434 OTUs 

classified to 13 phyla, 24 classes, 37 orders, 61 families, and 114 genera. Finally, the OTU 

data was resampled to have minimum sample depth of 12,783 reads (corresponding to the 

minimum library size) and then filtered again to include OTUs with a minimum of 3 reads in 

at least 3 samples. The rarefied filtered data consisted of 1196 OTUs.

Statistical methods

Diversity measures were estimated based on identified OTUs in the unfiltered data. There 

are two types of diversity: α-diversity which is a measure the diversity of the microbiome 

within a given individual and β-diversity which is a measure of the similarity (or 

dissimilarity) of the microbiomes in different individuals. We used the Shannon index and 

the Inverse Simpson index as measures of α-diversity (richness/evenness). The association 

of bacterial α-diversity and subject phenotypes was assessed using linear regression models 

and adjusted for age, race, BMI, clinical center, number of chronic conditions, and library 
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size. To look at β-diversity, we used weighted and unweighted Unifrac as a distance measure 

on the rarefied and log-transformed abundance data (31). Unifrac incorporates phylogenetic 

differences between organisms in addition to presence/absence (unweighted) and count 

(weighted) information. β-diversity was summarized using weighted and unweighted 

principal coordinates analysis (PCoA). PERMANOVA, as implemented by the function 

adonis in the vegan package(32), was used to test for associations between activity 

phenotypes and β-diversity. The algorithm uses reduction of dimensionality and iteratively 

tests associations between blocks of related features (33;34).

To determine the associations between activity phenotypes and specific taxa we first 

aggregated OTUs by genus level(35). The resulting taxa will have higher prevalence and 

relative abundance, while still retaining the specificity of genus level assignments. In 

addition, consideration of genus-level agglomeration reduces the multiplicity of models, 

therefore impacting power dilution due to correction for multiple testing. The taxa were then 

included as outcomes if they had a prevalence greater than 10% and a mean relative 

abundance of at least 10−4, resulting in 78 candidate taxa. To determine the relationship 

between activity phenotype and individual taxa we used a mixture model based on a zero-

inflated Gaussian distribution (metagenomeSeq) (36). We included all basic demographic 

variables in the fully adjusted models but screened other potential confounders for inclusion. 

We did not include variables (e.g. smoking, alcohol use, diet) that were not associated with 

step count, our primary exposure variable. Full models were adjusted for age, race, BMI, 

clinical center, number of chronic medical conditions, and library size. Finally we present 

the results based on an initial screen including taxa with unadjusted p<0.05 in the fully 

adjusted models. Including such taxa is important for hypothesis generation as well as 

comparisons with other studies. We then computed adjusted p-values for the fully adjusted 

models using the Benjamini-Hochberg false discovery method using the full set of 78 taxa as 

described above (genus-level aggregation filtered by prevalence/abundance). Including the 

results of such adjustment allows for better interpretation and should be used for design of 

studies which depend on taxa identified in the present study. Analysis was done using Stata 

15 and R (3.4.4) with phyloseq (1.22.3), vegan (2.5.2), and metagenomeseq (1.20.1) 

packages.

RESULTS:

There were 373 men (87.9% non-Hispanic white) in the analytic sample (Figure 1, Table 1), 

with mean (range) age 84.0 (78–98) years and mean (SD) BMI 26.9 (3.8) kg/m2. The mean 

(SD) daily step count in the study cohort was 4735 (3002) steps/day with corresponding 

mean (SD) total energy expenditure of 2210 (400) kcal/day. There was a broad range of step 

counts with interquartile range from 2520 to 6447 steps and full range from 30 to 18,688 

steps. The characteristics of the analytic sample stratified by step count quartile are shown in 

Table 1. Those with higher total step count (by quartile) were younger, had lower BMI, and 

had fewer chronic medical conditions than those with lower step count. Other measures of 

PA varied consistently by step count quartile. In contrast, education, smoking, diet, and α-

diversity (Shannon, Inverse Simpson) did not vary by step count quartile.
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In this group of older men, the dominant phyla were Bacteroidetes, Firmicutes, 

Proteobacteria, and Verrucomicrobia with mean relative abundance of 46.9%, 41.8%, 6.4%, 

3.1% respectively, and thus <2% were from other phyla. The dominant OTUs when 

combined at the genus level (with mean relative abundance of at least 1%) were Bacteroides 
(33.4%), Faecalibacterium (8.2%), o. Clostridiales (8.0%), f. Ruminococcaceae (7.0%), f. 
Lachnospiraceae (5.1%), Ruminococcus (3.9%), Parabacteroides (3.9%), Prevotella (3.8%), 

Akkermansia (3.1%), f. Rikenellaceae (2.7%), f. Enterobacteria (2.6%), Erwinia (1.5%), 

Blautia (1.3%), Lachnospira (1.2%), Oscillospira (1.2%), and Sutterella (1.1%).

Figure 2 shows α-diversity measures by clinical center, race, and BMI. Higher levels of α-

diversity were observed in participants who were non-Hispanic white vs. other race/ethnic 

group and also among those with low/normal BMI (vs. overweight/obese). There were no 

associations observed between any of the PA constructs (self-reported or objective) and 

either α-diversity measure (Table 2). These results were consistently null in crude and 

multivariable analyses.

In contrast to α-diversity findings, step count and self-reported PA were consistently 

associated with β-diversity as determined by unweighted Unifrac (Figure 3). Men with 

higher step counts and higher self-reported PA had higher levels of the second principal 

component factor assessed by unweighted Unifrac. The association between step count and 

β-diversity was not significant after adjustment for covariates, while the association between 

self-reported PA and β-diversity remained statistically significant. There was also a marginal 

association between self-reported PA and weighted Unifrac, however, this association was 

not present for step count (Figure 3) or other objective PA measures (data not shown).

When considering taxa-specific associations, measures of PA were related to differences in 

specific groups of bacteria (OTUs and genera) after multivariable adjustment. Compared to 

individuals with lower step counts, those who had higher step counts also had higher relative 

abundances of taxa from the genera Cetobacterium and lower relative abundance of taxa 

from the genera Coprobacillus, Adlercreutzia, Erysipelotrichaceae CC-115 (at FDR adjusted 

p ≤ 0.05). The point estimates for beta coefficients were quite modest, ranging between 

−0.37 and 0.45 and corresponding to fold-changes ranging between 0.77 and 1.36. Those 

with higher step counts also had a higher relative abundance of Faecalibacterium, 

Streptophyta, Prevotella, Clostridium, Lachnospira, Peptococcaceae, Paraprevotellaceae, 
Lachnospiraceae, and lower relative abundance of Alistipes, Clostridia SHA-98, 
Anaerotruncus, Eggerthella, Megasphaera (albeit at unadjusted p ≤ 0.05). There was no 

consistent pattern with respect to direction of association and phylum membership. In 

particular there were positive and negative associations for PA and individual taxa that were 

members of Bacteroidetes and Firmicutes. In secondary analysis we considered both self-

reported PA and other objective measures of PA. Figure 4 shows the association between all 

PA measures and the taxa associated with step count. The magnitude and direction of the 

association between PA measures and taxa was roughly concordant. The beta coefficients for 

TEE and minutes of PA were largely consistent in magnitude and direction with those for 

step count. The beta coefficients for non-sedentary minutes and self-reported PA also 

tracked with those for step count but were somewhat discordant, most notably for taxa with 

fold changes closer to 1 (e.g. Streptophyta). Some differences in fold change magnitude but 
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not direction were noted for PA measures and Paraprevotellaceae with estimated fold 

changes ranging from 1.21 to 1.72.

DISCUSSION

We found that measures of PA among community-dwelling older men were related to 

specific taxa (genera and other OTUs) in the gut microbiome. Compared to those who were 

less active, those who had higher step counts had higher relative abundance of 

Cetobacterium and lower relative abundance of taxa from the genera Coprobacillus, 
Adlercreutzia, Erysipelotrichaceae CC-115. These results were observed after multivariable 

adjustment including age and chronic conditions, no confounding by sex (men only), and 

FDR correction. Possible associations not meeting FDR threshold were observed for other 

sentinel taxa, such as Prevotella, Faecalibacterium, Lachnospira, and Clostridium. Measures 

of PA were also related to β-diversity as measured by unweighted Unifrac, a method that 

considers presence/absence but not relative abundance and is therefore more sensitive to taxa 

with lower prevalence and abundance, i.e. taxa that are not part of the core gut microbiome. 

Measures of PA were not related to α-diversity and only weakly related to weighted beta 

diversity, thus suggesting that activity has only a limited effect on variation among core taxa. 

The associations between PA and taxa were generally concordant regardless of the PA 

measure.

Previous human studies assessing the relationship between PA and the gut microbiome have 

been conducted on select populations of younger adults. To our knowledge this is the first 

study to consider relationships between PA and gut microbiota in a large cohort of older 

men. This is likely important as other reports have found global shifts in predominant phyla 

that are associated with age. In particular, a cross-sectional study including age range over 

the life span showed increased prevalence of Bacteroidetes and Proteobacteria and decreased 

prevalence of Firmicutes and Actinobacteria among the very old vs. middle aged Japanese 

adults(37). The relative abundance by phyla in the present study was most similar to the 

oldest age strata (86–98) in the Japanese study, an age strata similar to the present study.

There are some shifts in taxa abundance that occur with age and therefore associations may 

be unique to a younger or older cohort, but it is also likely that some taxa are present 

throughout the life-span and that PA may have similar associations with these taxa. One 

cross-sectional study of 86 men found clear and consistent differences between the 

microbiome of 40 professional athletes versus the microbiome of 46 age and sex matched 

controls (23 low BMI and 23 high BMI)(15). In particular, α-diversity was higher among 

athletes compared to controls, but did not differ between high and low BMI control groups. 

Notably, the top six differences in relative abundance between athletes and high BMI control 

group were in the Firmicutes, Ruminococcaceae, S24–7, Succinivibrionaceae, RC9 gut 
group and Succinivibrio groups, none of which were differentially abundant by step count in 

the current study. There were 40 taxa that were more prevalent in athletes in comparison 

with the low BMI group, of which the top six fold changes were for Prevotellaceae, 
Erysipelotrichaceae, S24–7, Succinivibrionaceae, Prevotella and Succinivibrio groups, none 

of which were differentially abundant by step count in the present study at nominal level. 

The comparison of professional athletes vs. either control group is not likely to be 
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generalizable, particular for comparisons within a group of older men. We note however that 

exact replication may also fail due to data processing and naming of taxa, for example 

Erysipelotrichaceae includes Coprobacillus and CC-115 and therefore the present finding 

may well partially confirm previous results.

A second study based on the same select group of male athletes and controls found that the 

differences at the taxa level, some of which occur in the present study, were also associated 

with differences in the functional capacity and associated pathways (e.g. amino acid 

biosynthesis and degradation, carbohydrate metabolism, vitamin biosynthesis)(16). Notably, 

the altered functional capacity of the microbiome among athletes was further evident in a 

higher production of short-chain fatty acids. While there were very clear differences between 

athletes and controls, the differences may not be wholly attributable to PA per se, since the 

dietary intake and requirements of athletes is also necessarily different from the control 

group. In another cross-sectional study of younger women, Bressa et al found that women 

with higher vs lower PA had a higher relative abundance of Faecalibacterium prausnitzii 
measured by quantitative PCR, a finding consistent with the present study(17). Bressa et al 

also found between group differences for 11 OTUs when analyzed at the genus level, but 

none of these findings were replicated in the present study. We note however that some 

discrepancies might be due to slightly different taxonomic names, e.g. Bressa found that PA 

was related to higher relative abundance of Paraprevotella while the present study found that 

PA was related to higher relative abundance of Paraprevotellaceae, an OTU only identified 

down to the level of family. Bressa et al used the same Greengenes reference database, 

however the clustering of OTUs is sample dependent thus the combination of clustering and 

matching may result in different names (terminal taxa) for a given sequence. Other findings 

from Bressa et al were that weighted β-diversity differed between active vs sedentary 

women but that α-diversity and unweighted β-diversity did not differ between groups.

A recent longitudinal study(18) assessed the changes in microbiome over a 6 week period 

among lean and obese sedentary men and women exposed to 3-week intervention of 

moderate to vigorous activity with a 3 week washout period following the intervention. 

While there was no formal control group, the experimental design included dietary control 

(i.e. specified diet prior to sample collection) while other factors could be controlled for 

using repeated measures among individuals. The exercise intervention successfully altered 

PA level, cardio-respiratory fitness, and body composition. There were concurrent 

longitudinal changes in weighted β-diversity which varied slightly by body mass index. 

Since Bressa et al was a longitudinal study, changes in microbial composition could be 

matched with changes in metabolic profile. Notably, those who were lean had an increase in 

both fecal short-chain fatty acids (SCFAs), particularly butyrate, and a concurrent increase in 

related microbial taxa (Lachnospiraceae, Clostridiales, Roseburia, Lachnospira, 
Faecalibacterium) which then reversed after exercise wash-out period and return to sedentary 

activity. This small longitudinal study also suggests a possible effect modification by body 

size for the association between PA and the host microbiome. For those who were obese, 

improvement in cardio-respiratory fitness was associated with increases in Lachnospira, 
Veillonella, Paraprevotella, and Barnesiella, and decreases in Ruminococcus, Eggerthella, 
Dorea, Coprobacillus, Bifidobacterium, and f. Bifidobacteriaceae but without the concurrent 

association with fecal butyrate. In our study higher PA was associated with a greater 
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prevalence of Faecalibacterium and Lachnospira (unadjusted p ≤ 0.05). Butyrate is the 

preferred energy source of colon epithelial cells stimulating normal growth and 

apoptosis(38). Butyrate is also implicated in mucin production and protein expression thus 

preserving the integrity of the gut barrier(39). Short chain fatty acids (SCFA) are also 

implicated in the modulation of the immune response including IL-6, IL-8, TNF-α, and NF-

KB(40;41). Our cross-sectional findings are partially consistent with the longitudinal 

findings of Allen et al, suggesting that the hypothesized mechanisms relating PA and SCFA 

producing bacteria might also be present in this cohort of older men. Since the present study 

is cross-sectional, we cannot determine a causal relationship between microbiome and 

activity, and thus the positive association between relative abundance of Faecalibacterium, 

Lachnospira, Prevotella, Clostridium and activity could be attributable to underlying health 

state that is influenced by both exposure variables, although we did adjusted for underlying 

multimorbidity.

The strengths of the present study are the large sample of community-dwelling older men 

who have a stool sample and the comprehensive assessment of risk factors including 

objective measures of PA. The advanced age of the study participants enables a 

comprehensive assessment of the microbiome in late life. However, our study has 

limitations. There was no control of either diet or physical activity. Our study has a cross-

sectional observational design, and this lack of temporal association limits inference on 

causality. In addition, we cannot completely exclude the possibility of selection bias and 

residual confounding. The generalizability of the present study is limited to healthy 

community-dwelling very old men (mean age 84 years). We note that Claesson et al found 

notable differences between community-dwelling and nursing home residents(4) leaving 

open effect modification by residential status. The cohort was also mostly non-Hispanic 

white with notable differences in α-diversity by race/ethnicity, thus leaving open potential 

effect modification by race/ethnicity. While the present study is larger than many of the 

previous studies relating PA and the microbiome there are still issues concerning sample 

size. The study population was a select and generally healthy group of older men and most 

participants fell within a limited range of light and moderated PA. Thus future study is 

needed to determine associations between PA and microbiome parameters, with larger 

samples and/or more variation in phenotype. The present study was limited to 16S profiling, 

and thus limiting the interpretation, with further study necessary to identify taxa down to 

genus and species and to determine functional repertoire including SCFA production.

In conclusion, there was a modest association between levels of PA and specific gut 

microbes among community-dwelling older men. The observed associations are consistent 

with the hypothesis that underlying health status and composition of the host microbiome 

are related, however the directionality of this association is uncertain and needs to be further 

elucidated by longitudinal studies.
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Figure 1. Study Flow Diagram
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Figure 2. Distributions and Predictors of α-Diversity Measures
Panel A: Distribution of Shannon Index, box plots with median and IQR by center (p=0.17), 

race (p=0.01), and body mass index (p=0.09)

Panel B: Distribution of Inverse Simpson Index, box plots with median and IQR by center 

(p=0.13), race (p=0.05), and body mass index (p=0.03)
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Figure 3. The Associations between Quartiles of Steps and Quartiles of Self-reported PA (PASE 
score) and β-Diversity Principal Coordinate Analysis
(a) Steps and weighted Unifrac: 0.185 (crude), 0.164 (adjusted)

(b) Steps and unweighted Unifrac: 0.029 (crude), 0.087 (adjusted)

(c) Self-reported PA (PASE) and weighted Unifrac: 0.052 (crude), 0.077 (adjusted)

(d) Self-reported PA (PASE) and unweighted Unifrac: 0.003 (crude), 0.007 (adjusted)

Multivariate models adjusted for age, race, BMI, clinical center, library size, and # of 

chronic conditions (fall history, hip fracture, myocardial infarction, stroke, congestive heart 

failure, diabetes, cancer, COPD, rheumatoid arthritis, osteoarthritis, depression, visual 

impairment, Parkinson’s disease, and Alzheimer’s disease).
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Figure 4. The Association between PA variables and Taxa (Genus-level agglomeration)
All coefficients estimated per SD increase: Step count=3002 steps, Total energy 

expenditure=400 kcal, Active time=59 min, Non-sedentary time=112 min, PASE score=67. 

Multivariate models adjusted for age, race, BMI, clinical center, library size, and # of 

chronic conditions (fall history, hip fracture, myocardial infarction, stroke, congestive heart 

failure, diabetes, cancer, COPD, rheumatoid arthritis, osteoarthritis, depression, visual 

impairment, Parkinson’s disease, and Alzheimer’s disease).
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Table 1:

Baseline characteristics of study cohort stratified by quartile of step counts

Mean (SD) or N / % Cohort
N=373

Quartile 1
N=94

Quartile 2
N=93

Quartile 3
N=93

Quartile 4
N=93

Age 84.0
(3.9)

85.6
(4.4)

84.8
(4.2)

83.2
(3.1)

82.3
(3.0)

Body Mass Index 26.9
(3.8)

27.7
(4.1)

27.4
(4.0)

26.7
(3.3)

25.7
(3.3)

Self-reported PA
(PASE score)

127.0
(67.4)

88.9
(59.7)

113.4
(55.4)

147.9
(63.1)

158.5
(67.8)

Total energy expenditure
(kcal)

2211
(400)

1962
(289)

2089
(316)

2293
(332)

2499
(427)

Sedentary time
(min)

851.2
(112.4)

900.2
(109.3)

880.1
(90.3)

838.7
(97.6)

785.4
(116.0)

Active time
(min)

71.6
(59.3)

24.0
(16.8)

48.9
(29.4)

82.0
(41.4)

132.0
(68.7)

Non-Hispanic White 328
(87.9)

89
(94.7)

80
(86.0)

81
(87.1)

78
(83.9)

College education 226
60.6%

54
57.5%

53
57.0%

64
68.8%

55
59.1%

Regular alcohol intake
(1–5 drinks/week)

96
25.7%

22
23.4%

25
26.9%

25
26.9%

24
25.8%

Regular alcohol intake
(6+ drinks/week)

84
22.5%

11
11.7%

27
29.0%

25
26.9%

21
22.6%

Ever smoker 209
56.0%

53
56.4%

57
61.3%

53
57.0%

46
49.5%

Comorbidity score 1.98
(1.37)

2.45
(1.55)

1.94
(1.36)

1.97
(1.22)

1.58
(1.20)

Statin Use 213
57.1%

58
61.7%

49
52.6%

55
59.1%

51
54.8%

Western Dietary score −0.06
(1.05)

0.05
(1.09)

0.02
(1.09)

−0.15
(0.87)

−0.17
(1.15)

Prudent Dietary score 0.01
(1.04)

0.02
(1.18)

−0.02
(0.93)

−0.02
(0.89)

0.05
(1.16)

Shannon Diversity 3.4
(0.6)

3.5
(0.6)

3.4
(0.6)

3.4
(0.6)

3.4
(0.6)

Inverse Simpson 16.3
(9.9)

15.8
(9.4)

17.4
(11.5)

15.5
(8.6)

16.5
(9.8)

Bold font indicates association between quartile and variable with p ≤ 0.05

Italic font indicates association between quartile and variable with p <0.001, consistent with correlation of PA measures. Missing variables: alcohol 
use (n=2), dietary variables (n=7).

Q1:30–2499 steps, Q2:2520–4226 steps, Q3: 4339–6447 steps, Q4:6455–18688 steps
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Table 2:

Association between Physical Activity (per SD change) and α -Diversity

Shannon Inverse Simpson

Crude Multivariate Crude Multivariate

Step count 0.00
(−0.06, 0.06)

−0.02
(−0.08, 0.05)

−0.09
(−1.10, 0.92)

−0.57
(−1.68, 0.55)

Total energy
Expenditure

−0.01
(−0.07, 0.05)

−0.02
(−0.09, 0.04)

−0.52
(−1.53, 0.49)

−0.78
(−1.90, 0.35)

Active time 0.03
(−0.04, 0.09)

0.00
(−0.07, 0.06)

0.22
(−0.79, 1.23)

−0.35
(−1.44, 0.74)

Non-sedentary time 0.03
(−0.03, 0.09)

0.01
(−0.06, 0.07)

0.32
(−0.69, 1.32)

0.01
(−1.05, 1.04)

Self-reported PA
(PASE score)

0.03
(−0.03, 0.09)

0.03
(−0.03, 0.10)

−0.07
(−1.08, 0.94)

−0.26
(−1.31, 0.80)

*
all coefficients expressed per SD increase in predictor variables: TEE=400 kcal, step count=3002 steps, PASE score=67, active time 59 min, non-

sedentary time=112 min. The outcomes variables (Shannon Index, and Inverse Simpson Index) were not standardized. Multivariate models adjusted 
for age, race, BMI, clinical center, library size, and # of chronic conditions (fall history, hip fracture, myocardial infarction, stroke, congestive heart 
failure, diabetes, cancer, COPD, rheumatoid arthritis, osteoarthritis, depression, visual impairment, Parkinson’s disease, and Alzheimer’s disease).
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Table 3:

The Association between Step Count and Taxa (Genus-level agglomeration)

(Phylum) OUT Sequence Prevalence Abundance Beta p-value FDR
p-value

(F) Erysipelotrichaceae CC-115 807548 35.9% 0.00018 −0.37 0.00 0.04

(F) Megasphaera 4410265 22.3% 0.00034 −0.34 0.02 0.11

(F) Coprobacillus 415427 57.4% 0.00014 −0.29 0.00 0.04

(A) Adlercreutzia 631764 63.3% 0.00016 −0.25 0.00 0.05

(F) Anaerotruncus 315223 88.5% 0.00050 −0.25 0.01 0.09

(A) Eggerthella 682726 47.7% 0.00012 −0.24 0.01 0.07

(B) Alistipes 107044 65.4% 0.00066 −0.24 0.04 0.21

(F) Clostridia SHA-98 836693 55.5% 0.00011 −0.20 0.01 0.07

(F) Lachnospiraceae 975306 100.0% 0.05142 0.12 0.03 0.21

(F) Clostridium 558420 99.5% 0.00619 0.24 0.05 0.23

(C) Streptophyta 262379 44.5% 0.00017 0.24 0.01 0.07

(F) Lachnospira 843553 99.7% 0.01246 0.25 0.04 0.21

(B) Paraprevotellaceae 157377 12.3% 0.00028 0.28 0.04 0.21

(F) Peptococcaceae 110317 49.3% 0.00024 0.28 0.01 0.11

(F) Faecalibacterium 368219 100.0% 0.08248 0.35 0.01 0.09

(Fus) Cetobacterium 828162 12.1% 0.00101 0.45 0.00 0.00

(B) Prevotella 568118 100.0% 0.03760 0.50 0.02 0.11

*
all coefficients expressed per SD increase step count=3002 steps.

Table sorted by beta coefficient, with negative value and positive values indicating direction of association (zero = no association). Names are given 
by initial of phylum [(A) Actinobacteria, (B) Bacteroidetes, (C) Cyanobacteria, (F) Firmicutes, (Fus) Fusobacteria] and lowest taxonomy down to 
genus. Multivariate models adjusted for age, race, BMI, clinical center, library size, and # of chronic conditions (fall history, hip fracture, 
myocardial infarction, stroke, congestive heart failure, diabetes, cancer, COPD, rheumatoid arthritis, osteoarthritis, depression, visual impairment, 
Parkinson’s disease, and Alzheimer’s disease).
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