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When and Why Noise Correlations Are Important in Neural
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Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding
whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computa-
tional models, brain-machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the
readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire
independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and
overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise
correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we
determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the
distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without
knowledge of noise correlations in many more situations than previously thought.

Introduction

A fundamental problem in neuroscience is to determine the sim-
plest way to decode all the information encoded by neural popu-
lations. To decode all the information, it suffices to know the
probabilistic mapping between the stimulus and the population
activity (Oram et al., 1998; Knill and Pouget, 2004). When neu-
rons are noise correlated (i.e., for each stimulus, their activities
are correlated), the mapping must be built by measuring the joint
activity of all neurons in the population; the construction de-
mands large amounts of data and becomes experimentally and
computationally intractable as the number of neurons increases
(Nirenberg and Latham, 2003; Quian Quiroga and Panzeri,
2009). However, when neurons are noise independent, the map-
ping can be built by measuring the activity of each neuron in the
population one at a time, drastically reducing the amount of data
required for the construction. If we assume that neurons are
noise independent even when they are not, can we still decode all
of the encoded information?

To answer this question, previous studies have estimated the
inefficiency of decoders that were constructed assuming that
neurons are noise independent (Nirenberg and Latham, 2003;
Latham and Nirenberg, 2005; Ince et al., 2010; Oizumi et al.,
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2010). Whenever all of these noise-independent (NI) decoders
are inefficient, noise correlations are considered crucial for de-
coding. Otherwise, noise correlations are judged dispensable (Ni-
renberg et al., 2001; Averbeck et al., 2006). However, the
conclusions drawn from these studies are still controversial. For
pairs of neurons, the information lost by NI decoders was found
to be <10% (Nirenberg et al., 2001; Graf et al., 2011; Pita-
Almenar et al., 2011) and noise correlations were considered un-
important. However, pairs of neurons do not capture the
complexity of large neural populations. Recent theoretical and
experimental studies have revealed cases in which the informa-
tion loss grows with the number of neurons (Averbeck et al.,
2006; Klam et al., 2008; Ince et al., 2010; Oizumi et al., 2010),
suggesting that noise correlations can indeed be important in
neural decoding. Unfortunately, as we show here, the estimators
used in these studies miscalculate the inefficiency of NI decoders
in a context-dependent manner.

The exact estimation of the inefficiency of NI decoders is fun-
damental for assessing whether noise correlations are important
in neural decoding and whether the losses are tolerable in practi-
cal applications. To that end, we here represent all NI decoders as
sequences of transformations, separating the effect of the bare
assumption that neurons are noise independent (the NI assump-
tion) from the specific criteria used to select the decoded stimu-
lus. We then quantify the information loss and the increment in
the decoding error induced solely by the NI assumption and
prove that the best NI decoder can achieve these bounds.

Equally important is determining how the neural code is
transformed as a consequence of the NI assumption. We identify
which response features are informative, which ones constitute
noise, and which response features are preserved by the NI as-
sumption and the subsequent transformations in the decoding
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process. Altogether, we provide a complete framework for assess-
ing when and why information is lost by NI decoders.

Materials and Methods

Encoding, decoding, and neural information. The encoding process is the
transduction of sensory stimuli S into responses R = [R}, ..., Ry] of a
population of N neurons (R,, is the response of the ' neuron). A priori,
different stimuli S occur with probabilities P(S). Responses R are elicited
with probabilities P(R|S). Posterior to the observation of R, the stimulus
probability becomes P(S|R). When the probability distributions P(S)
and P(S|R) are different, the population response R contains information
about S (i.e., R may be used to infer S with higher precision than chance
level). In units of bits, the mutual information I(S;R) is quantified as
I(S;R) = Ef[log, P(S)] —

R(S) s

H(S)

E [log, P(S|R)] (1)
QSR ,

H(S|R)

where ];:[X] represents the weighted mean of X with weights Y. The total

entropy H(S) and the noise entropy H(S|R) quantify the average uncer-
tainty of S prior and posterior to the observation of R, respectively. The
mutual information I(S;R) represents the average reduction in the un-
certainty of S due to the observation of R.

The decoding process is the transformation of the population response
Rinto an estimation SP¢ of the stimulus S. For all decoders, the decoded
information 1(S;SP*) is upper bounded by the encoded information
I(S;R). This bound is a consequence of the data-processing inequality,
which states that no transformation of the population response R can
increase the amount of information about the stimulus S (Cover and
Thomas, 1991; Quian Quiroga and Panzeri, 2009). The coding theorem
(Shannon, 1948; Cover and Thomas, 1991) ensures that this bound is
tight and can be achieved by decoding extended sequences of stimuli and
responses. However, biological constraints (e.g., fast behavioral re-
sponses) may severely restrict the length of the sequences, thus reducing
the decoded information below the bound. The information lost by a
given decoding algorithm is defined as

Alp, = I(S;R) — I(5:5”) = 0. (2)
When A}, is greater than zero, some information (AI},,.) about the
stimulus S, encoded in the population response R, is lost during the
decoding process. In other words, the decoder has ignored some infor-
mation (Al,,.) that may have improved the stimulus estimation. If Al,,.
is zero, the decoding process is optimal; that is, it decodes all of the
encoded information. Further discussion on the meaning of A, can be
found in Eyherabide and Samengo (2010) and references therein.

The family of NI decoders. NI decoders are here defined as probabilistic
decoders (i.e., decoders that infer the stimulus from the conditional
probability distribution of the response) constructed under the NI as-
sumption (the assumption that neurons are noise independent). Math-
ematically, the NI assumption states that the probability P(R|S,) of the
population response R = [R,, ..., Ry] (N is the number of neurons in
the population) elicited by the stimulus S, can be inferred from the
probability P(R,|S,) of each neuron in the population as follows:

P(R[S,) = Py(R[S)) = [[P(Rn\sk). (3)

Here, Py, (R|S,) is called the NI likelihood. By multiplying the probabil-
ities of individual neurons P(R |S;), NI decoders neglect all noise corre-
lations among neurons. Once the NI assumption is made, several NI
decoders can be constructed as follows:

SNI(R) = fNIL[PNI(R‘Sl)> ceo PNI(R|SK)]' (4)

using different algorithms ' for extracting the decoded stimulus S™
from the NI likelihoods (K is the number of stimuli). This construction is
here called the canonical NI decoder.

The best-known construction of NI decoders is here called classical NI
decoder, which is based on the NI posterior probabilities:
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Py(R[S,) P(S,)
2 P(RISy) P(S;)

k

PNI(Sk|R) = (5)

obtained from Equation 3 by applying Bayes’ rule. Different classical NI
decoders can be constructed by using different algorithms ™" for infer-
ring the decoded stimulus S from the NI posteriors as follows:

SN(R) = N[Py(SiIR), . . ., PSR, (6)

the most common choice being the maximum-posterior criterion (Ni-
renberg and Latham, 2003; Latham and Nirenberg, 2005; Oizumi et al.,
2010):

SY(R) = arg max{Py(Si[R), . . ., Pi(Si{R)}. 7
Sk
Although classical NI decoders are by far the most popular, they are just
asubset of all canonical NI decoders; that is, they are a restricted choice of
all possible probabilistic decoders based on the NI assumption. Classical
NI decoders based on the maximum-posterior criterion have often been
claimed to be optimal within the family of NI decoders. This is indeed
true if neurons are truly noise independent. Otherwise, optimality is not
guaranteed, as we show in this study.
Estimators of the minimum information loss induced by NI decoders.
Previous studies have proposed to estimate the minimum information
loss AINi" induced by NI decoders using different criteria, namely:

A" = Al = I(S;R) — 1(S;SM) (8a)
AR = AT = I(S;R) — I(S:SY .., S¥Y) (8b)
ALY = AL}, = D[P(SR) || Py(S[R)] (8¢)
A" = AIRF = minAINF(9). (8d)

)

In criterion 8a (Quian Quiroga and Panzeri, 2009; Ince et al., 2010), the
information loss Al; measures the difference between the encoded in-
formation and the information decoded by a specific implementation of
the NI decoder chosen by the researcher. In criterion 8b (Ince et al.,
2010), S;" (1 = k = K) depends on the population response R and
represents the k" most likely stimulus if neurons were noise indepen-
dent. Therefore, AIk; measures the difference between the encoded in-
formation and the information extracted by a decoder that ranks the set
of stimuli with respect to their NI posterior probability. In criterion 8¢
(Nirenberg and Latham, 2003; Latham and Nirenberg, 2005), D repre-
sents the conditional Kullback-Leibler divergence and therefore, AIY,
measures the departure of Py;(S|R) from P(S|R). In criterion 8d (Latham
and Nirenberg, 2005; Oizumi et al., 2010):

AINi(0) = DP(SR) || Px(S[R,6)] (9a)

N
PrSIR.0) = P(S)[ [[PR )T, (9b)
where 6 is a real number the value of which is chosen to minimize
AIRE(0). The quantity AIRF measures the information loss induced by a
classical NI decoder when operating on long sequences of responses.
Both AIR, (criterion 8c) and AI5F (criterion 8d) are intended to provide
information-theoretical estimators that do not require building specific
NI decoders.
Decoding error. The decoding error is here defined as the average cost
of mistakenly estimating the stimulus S that elicited a population re-
sponse R, namely:

gDec = E [g(s) SDH)]: (10)

P(S,8Dec)

where £(5,5P%) is the non-negative cost of inferring S°* when the en-
coded stimulus was S (Duda et al., 2000; Bishop, 2006).

The minimum decoding error for all possible decoders based on a
specific representation R of the population response is given by the
following:
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Figure1. Previous estimations of AIX"" are tighter orlooser depending on the context. A-C, Examples of the simultaneous activity of two neurons elicited by two stimuli: S, (black) and S, (gray).

A, B, Two population responses per stimulus. Responses to S, are negatively correlated and responses to S, are positively correlated. C, Populations responses have Gaussian distributions with mean
values w, = [4,4] and p, = [6,6], variance equal to 1, and correlation coefficients p, and p, (for stimulus S, and S,, respectively). D—F, Surrogate NI population responses (see Materials and
Methods). Because of the NI assumption, response distributions associated with different stimuli overlap. However, here we show that overlaps do not necessarily imply that information is lost (see
text). For each example, AIx-" was estimated using four estimators: Al AT, AIS,, and AIXF (criteria 8a—8d). G-L, Variations of the estimations with: the stimulus probabilities (G-1),
the response probabilities given S, (J, K), and the correlation coefficient p, (L). Only parameters specified in the x-axis are varied; the remaining parameters are constant. None of the estimators
consistently lies below the others for all stimulus and response probabilities. Therefore, none of them constitutes a universal limit to the inefficiency of NI decoders and, depending on the context,
they all overestimate, to a lesser or greater extent, the importance of noise correlations in neural decoding. Remaining parameters are as follows: in G, P(M, L|S1) =0.5andP(H, H|SZ) =0.5;inH,
P(H,L|S;) = 0.8and P(H,H|S,) = 0.5;inl, p, = —0.9and p, = 0.7;inJ, P(M,L|S1) = 0.5and P(S,) = 0.25;in K, P(H,L|S,) = 0.5and P(S,) = 0.5;in L, P(S ;) = 0.2and p, = —0.9.

) ) To train the decoder, surrogate NI population responses Ry are drawn
E""(R,S) = E [mln{ E [£(, SDH)]}] (11)  from the set {Ry,} with probabilities given by Equation 3.

P(R)L spee L P(S|R)

where the minimization runs over all decoded stimuli (Bishop, 2006; Results
Hastie et al., 2009). This minimum is achievable by a decoder defined as ~ Shortcomings of previous measures of information loss

follows: The importance of noise correlations in neural decoding has been
assessed by comparing the encoded information with the infor-

SPe = arg min{ E [g(s,g)]}_ (12)  mation extracted by NI decoders, which can be constructed in

5 LPesiR) many different ways. The minimum difference between these two

The specific decoders that achieve the minimum decoding error depend quantities 1s thf/l_m.lnlmum information loss AII\A;III ! lnduce.d by NI
on the shape of & (Simoncelli, 2009). For example, the decoding-error decoders. If AI;" is greater than zero, then noise correlations are
probability (also known as fraction incorrect or error rate), can be ob- important: By neglecting t}_lem, information is lost. The mini-
tained by setting £(S,5") equal to zero if S and S”* coincide or to unity ~ mum information loss AIx," has been estimated in several ways.

otherwise. The decoder that achieves the minimum decoding-error  In this section, we compare the four most widely used estimators

probability is given by the following: and show that they all tend to overestimate the importance of
S = arg min {P(S|R)} (13) noise correlations in neural decoding. The results are illustrated
s ' with three examples in Figure 1. Previous studies have concluded

Decoders based on surrogate responses. Previous studies have also that, in these examples, noise correlations are important for de-
proposed to study the importance of noise correlations using coc'hng. We demonstrate, however, that these concluspns are not
decoders that were optimized for decoding the surrogate popu- valid in general: they may or may not hold depending on the
lation activity that would be elicited if neurons were truly noise stimulus and response probabilities and on the amount of corre-
independent (Nirenberg et al., 2001; Berens et al., 2012). For each lation in the TESpONSES. In the ﬁr.st two examples (Fig. 14,B),
stimulus, this set of surrogate NI population responses {Ry,} is ~ 1€SPOnses to st1mulus. S‘ are negatively correlate.:d and responses
computed as the Cartesian product of the sets {R, }, the elements to stimulus S, are positively correlated. In the third example (Fig.

of which are the individual responses of the n” neuron: IC),‘contmuo'us responses are analyzed an'd the amount of cor-
relation or anticorrelation of responses to stimulus S, is not fixed,

{Ra} = {R,} X ... X{Ry}. (14)  but rather depends on the value of a given parameter.
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Previous studies have estimated AI¥™ as the actual informa-
tion loss Al (criterion 8a; Fig. 1G-L, blue line) induced by a
specific implementation of the NI decoder chosen by the re-
searcher. The most common choice is here called the classical NI
decoder (Eq. 7), which, for each population response, decodes
the stimulus with the highest NI posterior probability Py;(S|R)
(Wu et al., 2001; Nirenberg and Latham, 2003; Latham and Ni-
renberg, 2005; Ince et al., 2010). For example, in Figure 1A, the
classical NI decoder always estimates the correct stimulus except
for response [R,, R,] = [ M, M]. Whenever

PNI(SZ|M) M) <PNI(SI|M) M)) (15)

the classical NI decoder infers that the response [ M, M] was elic-
ited by stimulus S, whereas an optimal decoder constructed with
knowledge of noise correlations always decodes the stimulus S,.
Hence, Al is greater than zero. However, if Equation 15 does
not hold, the stimuli decoded by these two decoders always coin-
cide and thus Aly; is zero. When varying the stimulus and re-
sponse probabilities in a continuous manner as in Figure 1, Gand
], the transition between these two different situations is reflected
as a discontinuity in the representation of Al resulting in a
broken line. Whenever the classical NI decoder is optimal (i.e.,
Al is zero), noise correlations are irrelevant for decoding. The
converse, however, is not necessarily true. The classical NI de-
coder is only one among many ways of constructing a NI decoder.
Other NI decoders may be more efficient or even optimal. In the
latter case, noise correlations are irrelevant regardless of the value

of Al
For example, a NI decoder can be constructed just like the
classical NI decoder but with the stimulus prior probabilities
b(s) differing from those P(S) set in the experiment (Oram et al.,
1998). It may be puzzling to see that such a NI decoder con-
structed with unrealistic prior probabilities may operate more
efficiently than the classical NI decoder constructed with the real
priors. Indeed, altering an optimal decoder constructed with the
real probabilities P(R|S) cannot increase the information and
might actually reduce it. However, there is no reason to believe
that, when altering a suboptimal decoder constructed with unre-
alistic (NI) probabilities, the information may not increase. Of
course, only carefully chosen alterations can do the job. In Figure
1G, a classical NI decoder with P(S,) fixed at a value between 0
and 0.5 is capable of decoding the stimulus without error (i.e., Eq.
15 is never fulfilled) regardless of the true stimulus probabilities.
In an attempt to avoid the arbitrariness of the choice of an NI
decoder (Averbeck et al., 2006; Quian Quiroga and Panzeri,
2009), Nirenberg et al. (2001) proposed measuring Ala;" as the
divergence AIY), between the probability distributions of the stim-
ulus given the response computed with and without the NI as-
sumption (criterion 8¢; Fig. 1G-L, red line). This method aims at
estimating the information loss without decoding explicitly the
population response, but unfortunately, it may severely overesti-
mate AIN:". For the example shown in Figure 14, AL}, becomes:
ALY, =

— P(M, M;S,) logz PNI(SZ|M> M), (16)

and thus AT}, is always greater than zero, even though we showed
that the classical NI decoder is optimal for a wide range of stim-
ulus and response probabilities. The overestimation problem was
first shown by Schneidman et al. (2003), who also showed that,
strangely, ALy, can even exceed the encoded information (Fig.
1H, top right). Indeed, if AL}, is zero, then Al is zero and noise
correlations are unimportant, but the converse is not necessarily
true. Last, Ince et al. (2010) showed that, in rat somatosensory

Eyherabide and Samengo e Noise Correlations in Neural Decoding

cortex, the size of the overestimation increases with the number
of neurons in the population.

Oizumi et al. (2010) proposed to solve the overestimation
problem by computing another quantity, here called AT} (crite-
rion 8d; Fig. 1G-L, black line), which measures the performance
of a classical NI decoder when decoding long sequences of re-
sponses (Latham and Nirenberg, 2005). Unfortunately, AI{; also
overestimates AIN'" in a context-dependent manner. Consider
the example shown in Figure 1A. The estimation of AL} involves
a minimization problem (Eq. 8d), leading to:

AIPL = 0 if Py(M, M|31) # Py(M, M|Sz)
NE AIIJ(])I if Py(M, M|51) = Pu(M, M|Sz) )

(17)

By comparing Equations 17 and 15, we find that whenever
Pai(M, M|S,) = Pry(M, M|S,) and P(S,) > P(S,), the classical NI
decoder is optimal despite Al > 0. The same occurs for the
other examples shown in Figure 1, where AIF may be larger or
smaller than AI; depending on the stimulus and response prob-
abilities. Therefore, AILF does not constitute a limit to the ineffi-
ciency of NI decoders.

Recently, Ince et al. (2010) proposed another alternative, es-
timating AIY;" as the information loss Al induced by a NI de-
coder that associates each response with a list of stimuli ordered
according to how likely they would be if neurons were noise
independent (criterion 8b; Fig. 1G-L, blue line). In Figure 1, Alﬁg
coincides with A, (the same occurs in any experiment involving
two stimuli) and thus exhibits the same drawbacks. In general,
AIY; represents a tighter bound than Al (Ince et al., 2010).
However, as discussed in the next sections, it still overestimates
ALY" for reasons analogous to those of Aly;.

The estimators mentioned above are based on probabilistic NI
decoders, that is, decoders that infer the stimulus from the prob-
ability of the population responses computed with the NI as-
sumption (Eq. 3). Previous studies have also proposed another
alternative: to base the estimation of AIN;" on decoders (generally
linear) in which parameters are optimized for decoding surrogate
NI population responses; that is, artificial responses that are gen-
erated under the NI assumption (Nirenberg et al., 2001; Averbeck
and Lee, 2006; Quian Quiroga and Panzeri, 2009; Berens et al.,
2012; see Materials and Methods and Fig. 1D—F). By comparing
these two alternatives, however, we find that they may lead to
opposite conclusions: noise correlations may turn out to be irrel-
evant in one of them and essential in the other (Fig. 2). Most
importantly, using the second approach, one may conclude that
noise correlations are essential even though neurons are actually
noise independent (Fig. 2B). At first glance, one might think of
thisissue as an overestimation problem that, as in the case of A,
could be avoided if one considered all possible decoding algo-
rithms, not just the linear. Unfortunately, without constrain-
ing the type of decoding algorithms and optimization criteria,
this estimator trivially underestimates AIY" and yields the
conclusion that noise correlations are always irrelevant for
neural decoding.

To prove this, notice first that the set of surrogate NI popula-
tion responses {Ry;} can be constructed by adding to the set of
population responses {R} all those responses that would occur
only if neurons were noise independent. Therefore, any decoding
algorithm that maps {Ry;} into the set of stimuli {S} can be writ-
ten as follows:
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Figure 2.  Comparison of different strategies to construct decoders that ignore noise corre-
lations. Each panel shows the simultaneous responses of two neurons R, and R, elicited by two
stimuli S, and S,. In both examples, stimuli and responses are equally likely. 4, Linear decoders
trained with surrogate NI population responses (dashed line) extract all the encoded informa-
tion, whereas no probabilistic NI decoder can do so. Specifically, a probabilistic NI decoder is
inefficient for a range of probabilities P(R, R,S,) complying with the two following conditions:
PQ2,2|5,)2 = P(1,3]5,) P3,1|S,) and 3, 3[S,) 2 = P(2,4]S,) P(4,2]S.). B, Although neurons are
noise independent, no linear decoder is capable of extracting all of the encoded information.

T PRy otherwise (18)
Among all possible mappings from {Ry;} to {S}, there always
exists at least one for which f* coincides with an optimal crite-
rion to decode the population responses R.

Previous studies have hypothesized that the NI assumption
increases the number of real responses lying in the overlap be-
tween the surrogate NI responses associated with different stim-
uli (compare Fig. 1A-C with Fig. 1D-F), thereby introducing
ambiguity in the NI decoding process and losing information.
This conclusion, however, is not always true. The decoding rule
may well evaluate the magnitude of each NI posterior probability
(Eq. 6) and, with this information, always decode the same stim-
ulus as a decoder constructed with knowledge of noise correla-
tions (Bishop, 2006). For example, in Figure 1A, the population
response [R, R,] = [M, M] is only elicited by stimulus S,. How-
ever, if neurons were noise independent, [M, M] would be elic-
ited by both S, and S, (Fig. 1D). Nevertheless, the classical NI
decoder operates optimally for a wide range of stimulus and re-
sponse probabilities (Fig. 1G,]). The presence of real responses in
the overlap between the surrogate NI responses associated with
each stimulus constitutes a necessary, but not a sufficient, condi-
tion for a NI decoder to be lossy.

In summary, we have shown that, without appropriate con-
straints, previous approaches using surrogate NI population re-
sponses may not be suitable for the analysis of the importance of
noise correlations in neural decoding. Other approaches based
on probabilistic NI decoders do not exhibit this problem because
the construction of the NI decoder is purely based on the NI
assumption. However, the estimators used in these approaches
tend to overestimate the minimum inefficiency of probabilistic
NI decoders in a context-dependent manner and none of them
constitutes a universal bound. Unfortunately, the overestimation
problem cannot be solved by simply taking the minimum estima-
tion, though this strategy is better than relying on one estimator
alone. In the next section, we show how to evaluate the exact
value of the minimum information loss.

SDec — {leEC(RNI) ifRNI S {R}

Exact measure of the minimum information loss

Previous estimators fail to tightly bound the minimum informa-
tion loss of NI decoders. The reasons for the failure depend on the
estimator, as shown in the previous section. In the case of Al
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the failure is due to the fact that the optimal decoder is not
searched among all possible NI decoders but, at best, among
subsets of limited size. However, the failure can be avoided by
extending the search to all possible NI decoders. To that end, in
this section, we first introduce the notion of canonical NI decod-
ers: the set of all decoders that comply with the NI assumption
(Eq. 3). Using a fundamental theorem in information theory, the
coding theorem, we then determine exactly the amount of infor-
mation lost by the best canonical NI decoder. This information
loss is smaller than the bounds analyzed in the previous section
(Fig. 1).

All probabilistic NI decoders, here called canonical NI
decoders (Eq. 4), can be described as a 2-stage process (Fig. 3).
Without loss of generality, consider the population response
R = [R,, ..., Ry] (where N is the number of neurons) elicited by a
stimulus Sy, (1 = k = K, where K is the number of stimuli). In the first
stage, the population response R is internally represented as a vector
R™T of NI likelihoods (defined in Eq. 3), given by the following:

RN = [PNI(R|SI)J s PNI(R|SK)]' (19)

This step, and only this step, embodies the NI assumption. The
second stage represents the transformation of RN into the de-
coded stimulus SN and embodies the estimation criterion used to
decode the stimulus.

As stated by the data-processing inequality (see Materials and
Methods), each transformation in the sequence cannot increase
the information about the stimulus and may potentially induce
an information loss. The information lost in each stage of the
decoding process can be determined using standard methods
previously developed for the analysis of neural codes (Borst and
Theunissen, 1999; Panzeri et al., 2007; Eyherabide and Samengo,
2010). In particular, the actual information loss Al; induced by
canonical NI decoders can be separated as follows:

AL
Aly = I(S;R) — I(SR™) + I(S;RMY) — I(S;5M).
~— O
ALY

(20)

Here, Ay, " is the information loss induced by the NI assumption
(first stage) and AIL; is the information loss induced by the esti-
mation process (second stage).

The NI assumption (first stage) is common to all NI decoders,
and therefore AINIE constitutes a lower bound to the information
loss induced by all NI decoders. Mathematically, Equation 20
decomposes the actual information loss Al; into two non-
negative terms, thereby proving that AIy" is a lower bound of
Al Nevertheless, AI);" could still underestimate the minimum
information loss induced by all NI decoders. To prove that ATy~
is tight, we need to prove that a NI decoder exists for which Al
coincides with AIN/, as we do next.

Different estimation criteria induce different information
losses Alx;. However, the coding theorem (Shannon, 1948;
Cover and Thomas, 1991) demonstrates the existence of a decod-
ing procedure that, operating on long sequences of responses,
can make ALY negligible, thus extracting all the information
I(S;RN™) that is preserved after the NI assumption. Because the
NI assumption is common to all NI decoders, I (S; RN consti-
tutes the maximum amount of information that can be extracted
by any canonical NI decoder, and the difference:

AN = AINF = I(S;R) — I(S;RMY) = 0, (21)
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constitutes the minimum information Encoding Decoding

loss induced by any decoder embodying e

the NI assumption; that is, the single fun- Population Noise-independent Decoded

damental ded to evaluate th ulati ise-i |i>
amentatproperty neecec to evauate the response (R) likelihoods (RN"') stimulus

relevance of correlations (Nirenberg and
Latham, 2003).

We have invoked the coding theorem
to demonstrate Equation 21. This theo-
rem was demonstrated by Shannon

\ \ \

(1948) and promoted the development of
information theory as a full discipline. In
the context of our work, the theorem ap-
plies to the mapping S — R — RN,
which can be abbreviated as S — RN,

SNI

Stimulus
estimation
v

NI assumption

This mapping, in the notation of Shan-
non, constitutes a channel that transforms
each S into RN™, Repeated uses of the
channel transform sequences of Q stimuli
[Sp>e .. »So) into sequences [RY™,..., Ry™].
Shannon’s proof involved actual decoders
that mapped sequences of Q responses
RN into sequences of Q-decoded stimuli
SM. By making Q sufficiently large, he
showed that there is at least one decoder
for which the information transmission
rate I(S, S™) can be made as close as de-
sired to I(S, RN™) with negligible decod-
ingerror, thus yielding Equation 21. Two things, however, should
be noticed. First, Shannon did not display his decoder explicit-
ly—and neither do we. He simply demonstrated its existence.
Second, in order for the theorem to hold, long sequences of stim-
uli and responses may be required. This requirement may be
undesirable when studying the neural code under behavioral
contexts, so later we introduce the minimum decoding error to
circumvent this inconvenience.

To illustrate how Equations 20 and 21 improve the analysis
of the role of noise correlations in neural decoding, consider
the examples shown in Figure 4. Each panel shows how the
population response is transformed throughout the decoding
process by the canonical NI decoder. These examples were
analyzed in Figure 1, in which we showed that, for a wide range
of stimulus and response probabilities, all previous estimators
indicated that noise correlations are important. However, as
we show next, these estimators include not only the informa-
tion loss induced by the NI assumption, but also the informa-
tion loss induced by underlying assumptions constraining the
estimation criteria, thus overestimating the importance of
noise correlations.

In the example shown in Figure 4A (previously analyzed in
Fig. 1A), AINI" is zero regardless of the values of the stimulus and
response probabilities. Indeed, after the first stage (where the NI
assumption takes place) population responses elicited by differ-
ent stimuli remain different (i.e., they are associated with differ-
ent RN, Fig. 4A, middle), as we formally show after the next
section. Therefore, the losses reported by previous estimators
necessarily occur during the estimation stage. However, among
all mappings between the representation RN™ and the stimulus,
there is at least one capable of correctly estimating the stimulus.
Therefore, all the encoded information can be extracted without
any loss and noise correlations are irrelevant for decoding. No-
tice, nevertheless, that finding an optimal estimation criterion
explicitly is unnecessary. As we showed above, the minimum

Encoded
information
I(S;R)

Figure 3.

involves the Nl assumption, transforming the population response Rinto a vector
the stimulus estimation, transforming RN into the decoded stimulus S". At each stage, information may be lost.

Pni(R|Sk)

A 4

Decoded
information
1(S;S"y
Information loss

AIES

Information loss
N

The canonical NI decoder is modeled as a sequence of transformations of the population response. The first stage

RML of NI likelihoods. The second stage involves

inefficiency of NI decoders, and the importance of noise correla-
tions in neural decoding, can both be assessed by using AIy;- even
before considering any estimation criterion.

Of course, information may be lost before the stimulus
estimation takes place due to the NI assumption. Consider the
examples shown in Figure 4, B and C (previously analyzed in
Fig. 1B). When both P(H,L|S,) and P(H,H|S,) are set to 0.5
(Fig. 4B), AIN;" is equal to the encoded information. Noise
correlations are thus crucial for decoding. Indeed, after the NI
assumption, all population responses become indistinguish-
able (Fig. 4B, middle) and no estimation criterion is capable of
extracting any information about the stimulus (Gawne and
Richmond, 1993). These carefully chosen response probabili-
ties, however, constitute an isolated case. For other values of
the response probabilities (Fig. 4C), all population responses
are represented differently after the NI assumption (as we
formally show after the next section), and therefore AIN;" is
zero. Therefore, except for the isolated case of Figure 4B, noise
correlations are irrelevant for decoding.

When and why information is lost throughout the

decoding process

In the previous section, we first modeled the NI decoder as a
sequence of transformations of the population response (Fig. 3)
and then quantified the average information loss induced by each
stage of the NI-decoding process (Eq. 20) over all population
responses (see Materials and Methods). However, information
losses need not be evenly distributed among responses. In this
section, we determine which are the specific responses that in-
duce losses and the amount and type of information that is lost.
We demonstrate that losses may only appear in those responses in
which the decoding mapping is not injective. To localize the loss,
we analyze how each successive transformation in the decoding
process merges distinct representations of two or more responses
into a single one so that their distinction is lost. The approach is
similar to previous studies of the neural code (Eyherabide and
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Samengo, 2010, and references therein), revealing what sort of
information about the stimulus is preserved or lost and which
response features encode such information.

After each transformation in the decoding process, two or
more population responses whose distinction is informative may
be represented in identical manner so their distinction is no lon-
ger available for subsequent transformations. Whenever that
happens, information is lost. To assess whether the distinction
between two (or more) population responses R, and Ry is infor-
mative or constitutes noise, we first construct a representation R
that treats those responses as if they were the same, but keeps the
distinction between all other responses and then we compare the
encoded information with and without the distinction (Eyhera-
bide and Samengo, 2010)

Al = IR;S) — I(R;S) = 0. (22)
Whenever Al . is zero, the distinction between R, and R; pro-
vides no additional information and only constitutes noise. For
example, in Figure 4B, this is the case for population responses
[R,R,] = [L,H] and [ H,L] or responses [L,L] and [ H,H]. No-
tice that, when responses vary in a continuum, single responses
are typically associated with a probability density. In that case, a
representation R that treats two single responses R, and Ry as
equivalent induces no information loss. In the continuous case,
an information loss occurs only when R treats a set of population
responses as equivalent and, in addition, the probability of the set
is nonzero.

The condition for the distinction between responses to be
informative (Eq. 22) can also be written as a direct comparison
between the real posterior probabilities P(S|R). The distinction
between two (or more) population responses R, and Ry consti-
tutes noise if and only if:

P(Si|R,) = P(S{Ry), (23)
for all stimuli S, (this comes directly from Eq. 22). Otherwise,
their distinction is informative, and ignoring it induces an
information loss Aly . Examples of informative variations and
noise when population responses are represented as continuous
variables are given in the last section of Results.

We can now formally state when and why noise correlations
are important in neural decoding. During the decoding process,
the population response R is first transformed into RN imme-
diately after the NI assumption takes place (Fig. 3). This transfor-
mation induces an information loss when (and only when) the
three following conditions are fulfilled:

(24a) The mapping R — RN is not injective, and, as a con-
sequence, there are two or more responses {R;, . . . R}
mapped onto the same RN™,

(24b) Equation 23 is not fulfilled for at least two responses
complying with condition 24a and one stimulus S, and

(24c) The probability of the set of population responses ful-
filling both conditions 24a and 24b is nonzero.

Noise correlations are important for decoding specifically
those responses satisfying these three conditions: the cause of the
loss (the “why”) relies on the fact that the NI assumption no
longer allows the decoder to take into account the differences in
their information content. The losses can be linked to specific
stimulus and response features by interpreting RN™ as a reduced
representation of the population response (Eyherabide and
Samengo, 2010). In such a paradigm, population responses are
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represented as a vector of response features, each conveying in-
formation about specific stimulus features. Only some of those
response features (and their information content) are preserved
after the NI assumption (first stage). The analysis of the preserved
and lost features allows one to determine the effect of the NI
assumption on the neural code.

With conditions 24a, 24b, and 24¢ in mind, we can provide an
approximate estimation of the likelihood that correlations be rele-
vant. For discrete responses, noise correlations are often irrelevant
because condition 24a is often violated. This condition requires that
atleast two different responses, R, and R, be mapped onto the same
vector, RN, This is unlikely, though, because the mapping from R
to RN goes from a discrete set to a continuous space (Eq. 19). For
continuous responses, the mapping from R to RN goes from a
continuous space of dimension N (where N is the number of neu-
rons) to a continuous space of dimension K (where K is the number
of stimuli). Intuitively, one would therefore expect that correlations
would be relevant more often in the case of continuous responses
than in the case of discrete responses and that the importance of
correlations should tend to increase with N and decrease with K.

This approximate estimation, however, should not be taken as
a hard rule. One can construct an infinite number of counterex-
amples in which noise correlations are crucial for discrete re-
sponses (Figs. 2, 4) or in which the importance of noise
correlations, for discrete and continuous responses, decreases
with N and increases with K, exactly opposite to the approximate
estimation mentioned above. Nevertheless, one can prove that,
for examples with a finite number of discrete responses, these
counterexamples, though infinite in number, constitute a set of
measure zero in the space of all possible examples, at least when
using a counting measure (i.e., a measure that simply counts the
number of cases regardless of how likely they occur in nature;
Tao, 2011). Unfortunately, for examples with continuous re-
sponses or with an infinite number of discrete responses, such
proof remains elusive.

Furthermore, one should observe that, in experimental
conditions, neither responses nor response probabilities can
be measured with infinite precision. Experimental errors and
limited sampling may both produce broad distributions of
responses, each associated with distributions of response
probabilities. Mathematically, each population response R is
associated not with a probability P(R|S), as would occur if
probabilities could be estimated with infinite precision, but
with a distribution of probabilities Q[P(R|S)] for each stimu-
lus S. The distribution Q[P(R|S)] can be estimated either using
Bayesian approaches or resampling methods (Bishop, 2006;
Hastie et al., 2009). In other words, due to experimental errors
and limited sampling, P(R|S) becomes a random variable with
probability Q[P(R|S)]. Furthermore, the mapping from R to
RN (Eq. 19) becomes a probabilistic one-to-many mapping
as opposed to the deterministic one-to-one mapping that
would be obtained if response probabilities were measured
with infinite precision. The change in the nature of the map-
ping R = R™"* should be taken into account when evaluating
AIVF, resulting in a distribution of information losses rather
than in a unique deterministic value. Moreover, the equalities
in conditions 24a and 24b should be interpreted in statistical
terms (i.e., equalities should be assessed through hypothesis
testing). In these circumstances, NI decoders become lossy
more frequently than predicted by the approximate prediction
above. Therefore, the relevance of correlations and the cer-
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tainty with which such relevance is as-
sessed depend on the quality of the
measured data.

Finally, notice that, in many applica-
tions, discrete responses arise as quanti- _
zations of continuous responses. It
would be desirable to recover, for in-

A

creasingly small bins, the results ob-
tained with the original continuous

responses. The typical procedure is to
assign a single probability to each bin as,

Population
response (R)
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for example, the mean value of the orig-
inal continuous probability distribution
inside the bin. This approach leads to a
purely discrete model that represents
poorly the importance of noise correlations
in the underlying continuous responses. To :

o

]
1 Pni(R|S4)

solve this problem, a different quantization

H
procedure should be used. One possibility -
consists in associating each bin RB‘T‘ with a
probability distribution P(RNR®™), rep- _

resenting the spread of the conditional re-
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sponse probabilities of the continuous case

and thereby including some uncertainty in
the value of R™™, The probabilistic map-
ping between R®™ and R™M" connects two
continuous spaces and the results obtained
with such quantization procedure becomes
consistent with those obtained with the 1

'
1 Pni(R|S1)

original continuous responses.

Impact of the choice of NI decoder

PnI(RIS2) |

Within the family of canonical NI decod- 1
ers (Fig. 3), specific NI decoders differ in So

S

i
|

the estimation criteria used to decode the .

M

stimulus. For example, in classical NI de- L
coders, the estimation process involves
the calculation of the probability of each
stimulus given the population response
(using Bayes’ rule) as if neurons were
noise independent, and then the selection
of the most likely stimulus. In this section,
we show in detail why this estimation
strategy need not be optimal when applied
after the NI assumption.

Classical NI decoders can be modeled
as a three-stage process (Fig. 5A). In the
first stage, the population response R is transformed into a vector
of NI likelihoods RN™ (Eq. 19). In the second stage, R™™ is
further transformed into a vector of NI posterior probabilities as
follows:

Figure4.

RN = [PNI(SI|R)) B PNI(Sk|R)]a (25)
through Bayes’ rule (Eq. 5). The final stage is the estimation of the
stimulus from RN through the maximum-posterior criterion
(Wu et al., 2001; Nirenberg and Latham, 2003; Latham and Ni-
renberg, 2005; Ince et al., 2010; Eq. 7).

In this model, Bayes’ rule acts as a deterministic mapping
that transforms the vector of N1 likelihoods RN™ into another
vector of NI posteriors, RN'?. This mapping can be injective or
not. If it is injective, then Bayes’ rule is obviously lossless.
Otherwise, it may cause an information loss, as we show below

H

o

’
Pni(R|S4)

Examples of population activities decoded using the canonical NI decoder. The arrows show the transformation
of population responses into vectors of NI likelihoods (R™) induced by the NI assumption (left to middle) and optimal
estimation algorithms (middle toright). In 4, P(S,) is set t0 0.75, and P(M, L|S,) and P(H, H
¢, stimuliare equally likely and P(H, L|S,) and P(H, H
the distinction between responses elicited by different stimuli is preserved (middle panel). Therefore, AIN" is zero and
noise correlations are unimportant for decoding. B, After the NI assumption, all responses are identical. No information
about the stimulus remains and noise correlations are crucial for decoding. ¢, However, whenever population responses are not
equally likely given each stimulus, the NI assumption preserves all the encoded information and noise correlations are unimportant for
decoding. The case shown in B, in which noise correlations are important, therefore constitutes an isolated example.

S,) areboth setto 0.5.In Band
S,)arebothsetto0.5in Bandto 0.66in C. A, After the Nl assumption,

when discussing the example of Figure 5C. Notice, however
that, when using the real stimulus-response probabilities de-
scribing the data, Bayes’ rule is always lossless because the
responses that are confounded constitute noise, as shown in
the previous section.

The actual information loss Al; induced by the classical NI
decoder can be separated as follows:

I(S;RNIL) — [(S;RNIP)
——
NIB
ATy,

NIP
ALy,

I(S;RNIP) — [(S;SNT)
—
E.
AR

Aly = AIVE + (26)

This equation shows that the actual information loss
induced by the classical NI decoder contains three different
contributions:

(1) the information loss AN
(Eq. 21);

induced by the NI assumption
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Figure 5. The impact of the choice of a NI decoder. A, The classical NI decoder is modeled as a three-stage process involving: the NI assumption (first stage), in which the population
response is transformed into a vector of NI likelihoods (R M); Bayes’ rule (second stage), in which RN is transformed into a vector of NI posteriors (R N'P); and the estimation criterion
(third stage), in which the decoded stimulus is inferred from R NIP Each stage may induce an information loss. B, €, Population responses of Figure 4, A and (, decoded with the classical
NI decoder. B, Both R™" and R™" keep responses elicited by different stimuli segregated and therefore all information is preserved. However, the stimulus cannot always be correctly
inferred by simply choosing the one corresponding to the maximum NI posterior (argmax criterion, dotted line, and arrows; right). Nevertheless, there is an estimation criterion capable
of correctly estimating the stimulus (continuous lines and arrows; right). €, Although the NI assumption preserves all the encoded information, after Bayes' rule, responses associated
with different stimuli are merged, and thus some (but not all) information is lost (ATN/? is greater than zero). As a result, no estimation criterion is capable of perfectly decoding the
stimulus. However, other NI decoders may still be optimal for decoding (Fig. 4C).

(2) the information loss AIY;® induced by Bayes’ rule; and (previously analyzed in Fig. 4A). P(S,) is set to 0.75 and both

(3) the information loss AI}] induced by the chosen  P(M,L|S;) and P(H,H|S,) are set to 0.5. Throughout the NI-
stimulus-estimation criterion (in this case, the maximum  decoding process, the population responses R = [R, R,] are first
posterior). transformed through Equation 19 into the representations

To understand how choosing the NI decoder affects the de- ~ RN™ = [Py,(R|S,), Pr;(R|S,)] and then through Equation 25 into
coded information, consider the example shown in Figure 5B R™® = [Py,(S,|R), Py,(S,|R)], resulting in:
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R — RNIL N RNIP
(L, M] —[0.25,0] —[1,0]
[M, L] —[0.25,0] —[1,0]

[M, M]—[0.25, 0.25]—[0.75, 0.25]
[H, H] —[0,0.25] —]0,1]

These transformations are also shown in Figure 5B. The first stage
only merges the population responses [L,M] and [M,L], but
their distinction only constitutes noise (Aly_, g is zero; Eq. 22),
and thus no information is lost (i.e., AIN' is zero). The second
stage is an injective mapping so it also does not affect the decoded
information (A IN? is zero).

Using Equations 19 and 25 in an analogous manner, we can
generalize the previous results to arbitrary values of the stim-
ulus and response probabilities: Responses associated with
different stimuli are always represented in a different manner,
both after the first stage and after the second stage. As a result,
any information loss (Fig. 1G,J) is due to the estimation cri-
terion. Nevertheless, among all possible estimation criteria,
there is at least one capable of extracting all the information
remaining in RN which is equal to the encoded information.
This optimal estimation criterion, however, differs from the
maximume-posterior criterion (Fig. 5B, right).

Another example is analyzed in Figure 5C (previously ana-
lyzed in Fig. 4C), in which losses are distributed differently
throughout the decoding process. Stimuli are equally likely and
both P(H,L|S,) and P( H, H|S,) are set to 0.66. Throughout the NI
decoding process, the population responses R = [R;,R,] are first
transformed (recall Egs. 19 and 25) as follows:

R N RNIL — RNIP

[L,L] —[0.22,0.11]— [0.66, 0.33]
(L, H] —[0.11, 0.22]— [0.33, 0.66]
[H, L] —[0.44, 0.22]— [0.66, 0.33]
[H, H]—[0.22, 0.44]—[0.33, 0.66]

These transformations are also shown in Figure 5C. The first
transformation merges no population responses. Therefore, the
distinction between population responses is preserved after the
NI assumption and AINS" is zero. The second transformation,
however, merges response [L,H] with [H,H] and [H,L] with
[L,L]. Unlike RN™, the representation RN carries less informa-
tion about the stimulus than the encoded information and AIY;”
is greater than zero (Fig. 6A). Therefore, although there exists a
canonical NI decoder capable of decoding without error (Fig.
4QC), classical NI decoders are unable to extract all of the informa-
tion preserved after the NI assumption.

For other values of stimulus and response probabilities, al-
most always a canonical NI decoder exists capable of decoding
without error (Fig. 4C), except in the isolated case shown in Fig-
ure 4B. However, classical NI decoders may still be incapable of
extracting all the information preserved after the NI assumption.
Unlike RN, population responses associated with different
stimuli are not always mapped after Bayes’ rule onto different
R, There are two cases in which responses are merged: (1)
when P(L,H|S,) = P(H,H|S,), in which case response [L,H] is
merged with [L,L] and [H,L] with [H,H]; and (2) when
P(L,H|S,) = P(L,L|S,), in which case response [ L, H] is merged
with [ H,H] and [ H, L] with [ L, L] (this case is shown in Fig. 5C).
Therefore, the representation RN'™ carries less information about
the stimulus than the encoded information and ARV} is greater
than zero (Fig. 6A). These cases constitute examples in which NI
decoders can be optimal, but for achieving optimality, the esti-
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Figure 6. Difference between assessing the role of noise correlations using mutual informa-

tion or decoding error. The population response shown in Figure 5Cis decoded using the clas-
sical NI decoder. Response probabilities are set according to P(H,L\S1) = P(L,L|SZ). For
different stimulus probabilities P(S;), A shows the variation of the minimum information loss
AIN? relative to the encoded information /(R;S), and B shows the variation of the increment in
the minimum decoding error AEN:" relative to the minimum decoding error £7(R;S). The
decoding error is here measured as decoding-error probability. The curves for P(S,) = p are
identical to the curves for P(S,) = 1 — p (0 = p = 1). A, Unlike the case shown in Figure 48,
here, information is only partially lost and the loss depends on the stimulus and response
probabilities. The maximum loss, however, only occurs when P(H, L|S;) reaches 0.5 regardless
of the stimulus probability. B, Unlike ATN;", AENL” approaches its maximum value when
P(H,L|S,) is greater or equal to P(S,).

mation must be based purely on the NI assumption (i.e., on
RML),

Using Equations 21, 23, and 26 we can now prove why esti-
mators based on Al (criterion 8a) and AI%; (criterion 8b) over-
estimate the minimum information loss AIX". Both methods
have two occasions to include unnecessary losses. The first occa-
sion appears when transforming RN into RN (Bayes’ rule).
When neurons are truly noise independent, AIN:" and AIN{ co-
incide; otherwise, as a result of Bayes’ rule, some responses for
which a distinction is informative may be merged (Fig. 5C), and
therefore AIN;® > AINE. The second occasion appears when
passing from RN to the decoded stimulus S™. In the case of
Al the estimation criterion usually coincides with the maxi-
mum posterior, which, as shown above, may be suboptimal when
used under the NI assumption. In the case of ATk, RN is trans-
formed into a ranking of stimuli. This stage, although more finely
grained than the purely maximum-posterior criterion, may still
lump distinct representations RN into one single ranking and
thereby perhaps lose information.

Minimum decoding error

The analysis of the effects of ignoring noise correlations in
neural decoding was here performed using mutual informa-
tion (Cover and Thomas, 1991; Borst and Theunissen, 1999).
This quantity sets a limit to the decoding performance (e.g., in
the number of stimulus categories that can be distinguished
with negligible error probability), but this limit may only be
achievable when decoding long sequences of population re-
sponses (i.e., comprising several consecutive population re-
sponses, also known as block coding; Cover and Thomas,
1991). Long sequences of responses inevitably have a long
duration. To produce timely behavioral reactions, however,
neural systems must process information in short time win-
dows (tens or hundreds of milliseconds) (Hari and Kujala,
2009; Panzeri et al., 2010). Long sequences of responses may
therefore be inconsistent with the fast behavioral responses
observed in nature. In addition, mutual information may not
adequately represent the cost of wrongly estimating the stim-
ulus (Nirenberg and Latham, 2003). To overcome these issues,



Eyherabide and Samengo e Noise Correlations in Neural Decoding

in this section, we also bound the inefficiency of NI decoders
using the minimum decoding error.

The minimum decoding error £"(S;R) (Eq. 11) can be defined
using different cost functions (Simoncelli, 2009), allowing one to assess
the importance of noise correlations when decoding is performed on a
single-response basis. Like mutual information, it is non-negative and
depends on the representation R of the population response. Further-
more, £/"(S;R) also follows the data-processing inequality (Cover and
Thomas, 1991; Quian Quiroga and Panzeri, 2009), but it actually in-
creases with transformations of R. Let R = g(R) be one of such transfor-
mations (deterministic or stochastic); then:

EM(R; S) = €"(R; 9). (27)
To prove this, recall that l;[X] represents the weighted mean of X

with weights Y. We derive Equation 27 as follows:

EMn(R,S) = E min{ E [£L(S, SD"‘)]H (28a)
P(R)L sPec | P(S|R)
= E| E [min{ E [&(S, SD“)]}H (28b)
P(R)LP(RIR) L SP¢ | P(S|R)
= E min{ E { E [&(S, SD“)]]H (28¢)
P(R)L SP« | p(R|R) [ P(SIR)
= &"(R; S). (28d)

Because of these similarities, the mathematical framework and
the interpretations obtained from the minimum decoding error
are almost identical to those of mutual information, taking care
of the change in the sign of the data-processing inequality (as
shown below). However, when applied to experimental data, the
results obtained using mutual information or minimum decod-
ing error may differ both quantitatively and qualitatively depend-
ing on the case under study (as shown in the next section).

The increment in the decoding error A&y, induced by a ca-
nonical NI decoder (Fig. 3) with respect to the minimum decod-
ing error &1"(R;S) (that would be achievable if noise correlations
were taken into account) is given as follows:

Agm =& — ng(R§ S);

where &y, is the actual decoding error induced by the specific
implementation of the canonical NI decoder. Analogously to
Equation 20, A&, can be separated as follows:

(29)

£np— EMin(§;RNIL)
——
Y

EMin(g; RNIL) £Min(S;R)

AgNI = (30)

AENT" and AL represent the increment in the minimum decod-
ing error induced by the NI assumption and the estimation cri-
terion, respectively. Among all mappings between RN™ and the

decoded stimulus S™, there is one for which:
SN = arg min{ E [Z(S, S)]} (31)
5 LP(S|RNIL)

Such a decoder induces no additional increment in the minimum de-
coding error (Eq. 12). Therefore, A&y constitutes the minimum incre-
ment in the minimum decoding error attainable by at least one
canonical NI decoder (i.e., those purely based on the NI assumption).
Whenever A&V is zero, the NI assumption does not increase the mini-
mum decoding error and noise correlations can be safely ignored.
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Similarly to Equation 26, the increment in the decoding error in-
duced by classical NI decoders (Fig. 5A) can be written as follows:

g‘/lin(S;RNIP) — ng(S;RNIL) §Nl* ng(S;RNIP)

Aéy = § Nt A %53 + A&
A&

(32)

where A& was defined in Equation 30. Here, A&\’ represents the
increment in the minimum decoding error due to Bayes’ rule. A&y, is
the minimum increment in the minimum decoding error attainable by
all classical NI decoders and may be greater or equal to A&y, (Eq. 27).

Any increment in the minimum decoding error occurs be-
cause, during the decoding process, some population responses
are treated as identical. The importance of the distinction be-
tween two (or more) population responses, R, and Ry, can be
tested by first constructing a representation R that treats them as
identical (but keeps the distinction between all other responses)
and then computing as follows:

A éR—)l-{ =

Whenever A& . is zero, the distinction between R, and Ry does
not increment the minimum decoding error and can be safely
ignored. Otherwise, A& .z shows the increment in the minimum
decoding error due to ignoring their distinction.

As an example, consider the population response shown in
Figure 4, B and C. When responses are equally likely (Fig. 4B),

AEE reaches its maximum value as follows:

AENTE = min{ E [£(S,57*)T}.

shec p(S)

EMin(R; §) — M"(R; S) = 0. (33)

(34)

Indeed, after the NI assumption, all population responses are repre-
sented in the same way and the NI decoder performs at chance level.
However, in all cases in which responses are not equally likely (Fig.
4C), AEY™ is zero. In other words, if responses are not equally likely,
a canonical NI decoder exists that is capable of decoding the stimulus
with the same accuracy as if noise correlations were taken into ac-
count (such a decoder is shown in Fig. 4C). Classical NI decoders
operate substantially worse (Fig. 5C) because population responses
become indistinguishable before the estimation process and thus
perform at chance level for a wide range of response probabilities
(Fig. 6B). Even though some information still remains in RN (Fig,
6A), it cannot be extracted using single responses.

Although, in general, AIN/ and AEY" are not related determinis-
tically (Thomson and Kristan, 2005), here we show some useful
relations between these two quantities in specific cases as follows:

(35a) If AINi" is zero, then AENT" is zero. Proof: If AIN;" =
then I(S;RIRM") = 0 and hence R can be wrltten as a
transformation (deterministic or stochastic) of RN,
Following the data-processing inequality (Eq. 27),
AgN[L

(35b Corollary. 1f AENE > 0, then AIN: >

(35¢) If §Mi"(RNIT“,S) is zero, then AINE and Afﬁ\,],u are zero.
Proof: If £"(RN™,S) = 0, the data-processing inequal-
ity ensures that AEY]" = 0.In the absence of errors, such

NI decoder extracts all the encoded information, and
thus AIY]" =

(35d) If AINE is equal to the encoded information I(S;R),
then &4(RNL,S) is given by Equation 34. Proof: In this
case, S and R™M" are independent. The result follows
from introducing independence into Equation 11.

=
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Impact of ignoring noise correlations when decoding population responses with Gaussian distributions. In both examples, black and gray ellipses represent the contour curves of the

response distributions elicited by two stimuli, S, and S, respectively. Stimuli are equally likely. Response parameters are as follows: w,, = 5 + (—1)* (A0 and w,, = 5 + \/5
(1= n)*(D-F); o, =1,p,= —0.5,and p, = 0.5 (Eq.42). A, D, Optimal decoding strategy (minimization of the decoding-error probability) when correlations are known (Eq. 13). White regions
are decoded as S, and gray regions as S,. B, E, Optimal decoding strategy when correlations are ignored (Eq. 31). The arrows show the transformation of the population response R throughout the
decoding process, as described in Figure 3. Population responses (left) are first transformed into vectors of NI likelihoods R ™' (Eq. 19; middle). The distinction between regions filled with different
gray levels s preserved. B, Optimal NI decoder maps the white region in the middle panel onto S, and the gray region onto S,, thus decoding population responses in the same way as in A. E, The first
transformation merges population responses that are decoded differently in D (compare the regions), thus incrementing the minimum decoding error. The optimal NI decoder maps white and
light-gray regions in the middle panel onto S, and gray and dark-gray regions onto S,. In both Band , the optimal estimation criterion differs from the maximum likelihood (or maximum posterior)
criterion, which maps regions above and below the diagonal (middle, dashed line) into S, and S, respectively. C, F, Analysis of the responses R that can be merged, after the Nl assumption, without
information loss. Left, Contour curves of the NI likelihoods Py, (R|S) (black) and Py, (R]S,) (gray). Black dots represent two responses that, for each stimulus, have the same N likelihoods (and are thus
mapped onto the same RM'Y). Right, Contour curves of P(S,|R) (black) and P(S,|R) (gray) passing through the responses denoted in the left panel (continuous and dashed lines, respectively). €, The
NI 'assumption merges pairs of responses R that are symmetric with respect to the diagonal (left, dashed line). Because these pairs also have the same posterior probabilities (right), Equation 23 is
fulfilled and no information is lost. F, The NI assumption merges pairs of responses R that are symmetric with respect to the line R, = 5 (left, dashed line). These pairs have different posterior

probabilities (right). Therefore, Equation 23 is not fulfilled and some information is lost.

The analysis can also be generalized to other measures of
transmitted information, such as those defined by Victor and
Nirenberg (2008), with the condition that they comply with the
data-processing inequality (Cover and Thomas, 1991). More-
over, it can be extended to other probabilistic mismatched decod-
ers, that is, to decoders constructed using stimulus-response
probability distributions that differ from the real ones (Quian
Quiroga and Panzeri, 2009; Oizumi et al., 2010). One simply
replaces the NI likelihoods with those corresponding to the prob-
abilistic model under consideration. Decoding in the real brain
may be subjected to additional constraints imposed by biophys-
ics, connection length, metabolic cost, or robustness, which can-
not simply be represented by a generalized measure of
information. Our approach can be extended to these cases by
computing the difference between the information transmitted
by the optimal NI decoder that additionally satisfies these con-
straints with that of optimal decoders constructed with knowl-
edge of noise correlations that operate under the same
constraints.

Role of noise correlations in biologically plausible models

So far, we have discussed the role of noise correlations in exam-
ples in which the response space is discrete. In those examples, the
minimum information loss and the minimum decoding error
lead to the same conclusions about the role of noise correlations.
However, more interesting models from the biological point of
view generally involve responses varying in a continuum. In this

section, we apply our theoretical framework to continuum exten-
sions of the discrete examples mentioned above and, on the way,
compare what can be learned about the role of noise correlations
when using the minimum information loss (AIy") and the min-
imum increment in the minimum decoding error (A&Y]").

Consider the two examples shown in Figure 7, in which re-
sponses to each stimulus are drawn from Gaussian distributions.
Similar examples have been previously studied assuming equal
variance and correlations among neurons (Sompolinsky et al.,
2001; Wu et al., 2001; Averbeck and Lee, 2006; Averbeck et al.,
2006). These studies, however, have also pointed out that those
highly homogeneous examples are rather unlikely in nature.
More biologically driven examples should include differences in
variances, in correlations, and in the symmetry of the distribution
of responses among neurons as observed, for example, in the
monkey MT area (Huang and Lisberger, 2009) and V1 area
(Kohn and Smith, 2005). These differences, even if small, may
change dramatically the role of noise correlations in neural decoding
(Fig. 1). With these ideas in mind, we have here chosen two examples
in which responses elicited by stimulus S, are negatively correlated
whereas responses elicited by S, are positively correlated.

The example of Figure 7A—C s an extension to the continuum of
the case studied in Figures 1A, 44, and 5B. In what follows, we first
show that, for the particular values of the parameters used in Figure
7A-C, noise correlations are irrelevant in neural decoding, a conclu-
sion that previous estimators failed to reveal. However, later we show
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that the irrelevance of noise correlations is a direct consequence of
the specific values of the parameters used in this example and that,
contrary to the discrete case, noise correlations are almost always
important for arbitrary values of the parameters.

For the example shown in Figure 7A—C, the estimations of the
minimum information loss AIN:" are as follows:

Aly = 15.53%
ATy = 15.53%

ALY, = 6.43%
AIR; = 6.32% (36)

all showing that noise correlations are not dispensable. However,

AN =0, (37)
indicating that the NI assumption preserves all the encoded in-
formation, and that all previous estimations overestimated both
AIN!™ and the importance of noise correlations.

To understand the discrepancy between our approach and
previous estimators, see Figure 7C, left. Responses that are sym-
metric with respect to the diagonal R, = R, have the same NI
likelihoods (Eq. 19). Therefore, after the NI assumption (Fig. 3
and Fig. 7B, middle), these responses are merged. Luckily, the
distinction between these responses is not informative. Indeed, in
the Figure 7C, right, we show that these responses have the same
posterior probabilities and thus comply with Equation 23. There-
fore, no information is lost after the NI assumption. In other
words, noise correlations can be safely ignored.

Analogously, A&\ is zero, and thus the NI assumption does not
increment the minimum decoding error. To see this, compare Fig-
ure 7, A and B, in which we show the performance of optimal decod-
ers with and without knowledge of correlations, respectively.
Population responses associated with different decoded stimuli in
Figure 7A are never merged after the NI assumption (Fig. 7B, mid-
dle). Therefore, the same mapping from population responses to
decoded stimuli can be constructed even after the NI assumption
takes place. Notice, nevertheless, that the optimal decision boundary
based on the NI likelihoods is curved and differs from the
maximum-likelihood criterion (dashed diagonal) or maximum-
posterior criterion, which coincides with the maximum-likelihood
criterion when stimuli are equally likely.

The situation is different in the example shown in Figure 7,
D-F. Here, the estimations of AIxi" are as follows:

ATy = 19.16%
ATy = 19.16%

ALY, = 3.22%
AR =3.22% (38)

whereas

AINE = 1.32%, (39)
indicating that previous estimations overestimated the impor-
tance of noise correlations, although noise correlations are not
completely irrelevant. Notice that, as in the previous example,
Al (or AIL)) is far greater than AIN' (and also greater than AI{F
and AIL)). These results indicate that the maximum rate of stim-
uli that can be processed without decoding errors decreases in
>1% after ignoring noise correlations. One may wonder how the
performance of the NI decoder is affected when decoding single
population responses, a situation in which response sequences
are short and decoding errors are allowed.

To answer this question, we determine the minimum decod-
ing error (measured as the error probability; see Eq. 10 in Mate-
rials and Methods) with and without the NI assumption as
follows:
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EMin(RNILS) = 7.847%
EMinR,S) = 7.834%

Their difference (which equals AEYS"; see Eq. 30) represents only

0.166% of &1™(R,S), indicating that noise correlations are almost
irrelevant when decoding single responses.

To understand why this increment in the minimum decoding
error occurs, compare Figure 7, D and E. Unlike the previous
example, here, some population responses associated with differ-
ent decoded stimuli in Figure 7D are merged after the NI assump-
tion (Fig. 7E, middle). Therefore, the mapping from population
responses onto decoded stimuli under the NI assumption is in-
evitably different from the mapping of an optimal decoder that
takes correlations into account. The arrows from the middle to
the right panels in Figure 7E indicate the optimal decoding strat-
egy (achieving AENT") once the NI assumption is made. The op-
timal mapping is constructed by first transforming the
population response R into RN™ (Eq. 19). Then, we decode for
each RN™ the stimulus that most likely elicited all responses

(40)

mapped into RN as follows:
S, if P(S,|RM™) > P(S,[RNY)
NI _
s = {Sz otherwise (41)

where P(S|RN™) is proportional to the sum of all joint probabil-
ities P(R,S) whose response R is mapped onto RN, Although, in
general, population responses mapped onto regions above and
below the dashed diagonal are decoded as S, and S, respectively,
for some regions near the origin of coordinates, the situation is
reversed.

We can now generalize the results to arbitrary Gaussian dis-
tributions and stimulus probabilities, following the same reason-
ing as in Figure 7, C and F. Consider that the responses of two
neurons R, and R, elicited by two stimuli S, and S, have a Gauss-
ian distribution N (Bishop, 2006) given as follows:

o k] [oe b
P(R|S) =N <[1}§2]’ [m [ﬁ: gj)’

where w,., po and o, represent the mean values, correlation
coefficients, and standard deviations, respectively, of the re-
sponses of the n™ neuron to stimulus S;, and p, = py T Oa
Noise correlations are almost always important for decoding ex-
cept when the following conditions are met:

(42)

0,0, p(1—p)) if Wi, = wia»

= 2\ d _ . (43&)
01,0, pi(1 — p3) and fy; = Mop5
o o o.(1 — p2) if oy = o
i = o2 = \/27;, Or Wp; = Ma2s (43b)
O Oy pi(1 — p3)
On _ 0n _ Ku— H«u) iflén:':lhz, . (430)
O O Mo — M2 and ) F ty)3

Conditions 43a, 43b, and 43c establish relations between the
mean values u,,, correlation coefficients p;, and standard devia-
tions 7, of the responses of the #n'" neuron to stimulus Sy, re-
spectively. Conditions 43a and 43b hold only when population
responses always exhibit the same type of correlations for all stim-
uli (i.e., they are always positively correlated or always negatively
correlated). Condition 43b also requires that all contour curves of
the NI response distributions are shifted and/or scaled versions of
one another (but not rotated). Finally, condition 43¢ analogously
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constrains the shape of the contour curves, but holds for arbitrary
correlation coefficients. Notice the change in the subindexes
from condition 43b to condition 43c. For any departure from
conditions 43a to 43¢, noise correlations are important for de-
coding: Both AIY* and AEY]" are greater than zero; their values
depend on the specific case under study, and can range from ~0
to 100% (e.g., when condition 43a holds and variances are equal).

Discussion

In neural decoding, the importance of noise correlations has been
linked to the minimum inefficiency of NI decoders. These decod-
ers have been constructed using two different methods. The first
one involves training specific types of decoders (generally linear)
using surrogate NI responses (Nirenberg et al., 2001; Latham and
Nirenberg, 2005; Quian Quiroga and Panzeri, 2009; Berens et al.,
2012). Here, we showed that the inefficiency of these decoders
may, depending on the decoding models and optimization func-
tions, overestimate or underestimate the importance of noise
correlations, and may not even be related to the NI assumption
(Fig. 2). Therefore, the results obtained with this method ought
to be observed with caution. The second method involves prob-
abilistic decoders that explicitly take the NI assumption as part of
the decoding algorithm (Nirenberg et al., 2001; Wu et al., 2001;
Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Ince
et al.,, 2010; Oizumi et al., 2010); the consistency with the NI
assumption is therefore guaranteed (Nirenberg and Latham,
2003).

The inefficiency of probabilistic NI decoders (hereafter called
NI decoders) has been previously assessed either by measuring
the information preserved in their output (Al and AI{)) ; Ni-
renberg et al., 2001; Ince et al., 2010) or by using information
theoretical quantities (A}, and Alny; Nirenberg et al., 2001; Ni-
renbergand Latham, 2003; Latham and Nirenberg, 2005; Oizumi
etal., 2010). Here, we compared these estimators for a wide range
of population responses and probability distributions. We found
that none of them bound the inefficiency of all NI decoders
tightly (Figs. 1, 7) and all of them overestimate the importance of
noise correlations. Therefore, previous studies concluding that
noise correlations are important based on these estimators may
require a second evaluation with the methods presented here.

Previous studies have claimed that NI decoders inferring the
stimulus from a maximum-posterior criterion (Eq. 7) are opti-
mal. When operating with the true response probabilities, this
criterion minimizes the decoding-error probability (Eq. 13).
However, neither other definitions of decoding error (Eq. 10) nor
the information loss (Eq. 2) are guaranteed to be minimized.
When operating with NI response probabilities, not even the
minimization of the decoding-error probability is guaranteed
(unless AIY, is zero; Nirenberg and Latham, 2003). As shown in
Figures 5 and 7, using a maximum-posterior criterion may result
in overestimating the minimum inefficiency of NI decoders and
therefore the importance of noise correlations.

To solve this problem, we first modeled NI decoders as series
of transformations of the population response, with only the first
one embodying the NI assumption and the following ones repre-
senting the estimation criterion (Figs. 3, 5A). We then noticed
that the information loss AIN{* induced by the first transforma-
tion is common to all NI decoders and, with no restrictions on the
stimulus estimation algorithms, constitutes an attainable lower
bound to the lost information (the coding theorem; Cover and
Thomas, 1991). The computation of AIN;" (and also its variance
and bias) can be done using standard tools for the analysis of
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Figure8. The NI decoder can paradoxically extract more information than that encoded by
individual neurons. A, Example showing the responses of two neurons R; and R, elicited by
three stimuli $;, S,, and . All stimuli are equally likely. Response probabilities P(L, L|S5),
P(M,M|S,), and P(H,H]S,) are equal to o and response probabilities P(L, M[S,), P(M,L|S,),
P(L,H|S;), P(H,L|S,), P(M,H]S,), and P(H,M|S2) are equal to 0.5 — a/2, with « varying
between 0and 1. B, The NI decoder is capable of extracting more information than the sum of
the information encoded by individual neurons for a wide range of response probabilities. This
effect is enhanced by the fact that the latter information is only an upper bound of the informa-
tion conveyed individually by the neurons in the population.

neural codes (Montemurro et al., 2007; Panzeri et al., 2007; Ey-
herabide and Samengo, 2010).

The interpretation of NI decoders as sequences of processes is
fundamental to understanding the role of noise correlations in
neural decoding. Using this paradigm, we studied the effect of the
NI assumption on later stages of the NI decoder. After the NI
assumption, the application of Bayes’ rule may give rise to addi-
tional information losses (Fig. 5C). Interestingly, information
losses may be reduced by using different stimulus prior probabil-
ities than those set in the experiment (Fig. 1G). However, when
applied to the true conditional response probabilities (as opposed
to the NI response probabilities), Bayes’ rule induces no informa-
tion loss. These results stress the remarkable differences (often
overlooked) between decoding algorithms constructed with the
real population-response probabilities and mismatched decoders
(Oizumi et al., 2010).

Most importantly, we determined when and why informa-
tion is lost by NI decoders in a single-response basis: informa-
tion losses occur because some population responses that are
informative are transformed in such a way that their distinc-
tion is unavailable for subsequent stages. To identify which
distinctions are informative and which ones constitute noise,
we do not rely on previous definitions of noise as mere varia-
tions around a mean (Oram et al., 1998; Sompolinsky et al.,
2001; Averbeck et al., 2006). Instead, our definition of noise
explicitly evaluates the role of response variations in informa-
tion transmission. Certainly, some variations around the
mean are essential to information transmission even in the
absence of noise correlations (Fig. 2B).

By analyzing the importance of noise correlations on a
single-response basis, we found that, in broad terms, their
importance depends on the relation between the number of
stimuli (K) and the number of neurons (N) and that, in gen-
eral, noise correlations are likely to be irrelevant. This approx-
imate picture may explain why previous studies using
different values of N and K often differed in the relevance
ascribed to noise correlations. Moreover, it may aid the design
of future experiments for which e outcomes depend on the
importance of noise correlations. To get an accurate assess-
ment of the importance of noise correlations in each individ-
ual case, however, one should rely on AIN;* and not on the
approximate argument mentioned above.
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The role of noise correlations in neural decoding, however,
cannot be completely characterized with quantities solely based
on mutual information because mutual information takes into
account neither temporal constraints of real neural systems nor
behavioral meaning of stimuli (Nirenberg and Latham, 2003).
When operating on single responses, higher or lower decoded
information may not be reflected directly in the efficiency of a
decoder (Thomson and Kristan, 2005). Here, we proposed to
additionally assess the role of noise correlations using quantities
based on the minimum decoding error. This quantity exhibits
many similarities with mutual information and, in addition, can
handle short time windows and reflect the biological cost of mak-
ing specific decoding errors.

Our results contrast with previous studies in three major
points. First, we assess the role of correlations using AIN;" and
AENT without explicitly displaying the best NI decoders (i.e., NI
decoders that minimize AIN'® or AENT). Our formulation has
both benefits and limitations. The benefits are that we can draw
conclusions about the importance of correlations with minimal
computational cost. The limitation is that, if we do actually need
to use a decoder, we have no explicit formula describing the best
ones. To our knowledge, an explicit formula only exists for the NI
decoder that minimizes the decoding error (Eq. 31), providing
that correlations are known. Nevertheless, one should remember
that minimizing the decoding error does not translate into max-
imizing the decoded information (Treves, 1997; Thomson and
Kristan, 2005). In general, the best NI decoders must be found by
searching among all possible NI decoders. To aid the search, our
analysis provides insight into which distinctions between popu-
lation responses must be preserved throughout the decoding pro-
cess to achieve optimality.

Second, previous studies have argued that decoding strategies
that ignore noise correlations are simpler than those taking noise
correlations into account (Nirenberg et al., 2001; Wu et al., 2001;
Nirenberg and Latham, 2003; Latham and Nirenberg, 2005;
Averbeck and Lee, 2006; Averbeck et al., 2006; Ince et al., 2010;
Oizumi et al., 2010). Even though the NI assumption simplifies
the probabilistic encoding model, optimal NI decoders may re-
quire more complex estimation algorithms than those used in
decoders constructed without the NI assumption. Other estima-
tion algorithms may be simpler but less efficient (Fig. 7).

Third, our results do not support directly any qualitative claim
about the nature of the decoded information (Nirenberg et al.,
2001). The amount of information extracted by NI decoders may
paradoxically depend on the noise correlations in the population
response. For example, in Figure 7, the amount of information
extracted by the optimal NI decoder does depend on the amount
of correlation p in the neural response. The extracted informa-
tion may even exceed the sum of the informations encoded indi-
vidually by each neuron (Schneidman et al., 2003) regardless of
whether or not surrogate NI population responses occur in the
real data (Fig. 8). The solution to this paradox goes beyond quan-
titative arguments and requires a comparison of what sort of
information (stimulus features) is individually encoded by each
neuron with that extracted by NI decoders (Eyherabide and
Samengo, 2010 and references therein).

To conclude, our work provides a rigorous framework for
understanding, both quantitatively and qualitatively, the role of
noise correlations in neural decoding. The quantities defined
here allow one to quantify exactly the trade-off between the com-
plexity and optimality of NI decoders, either in natural situations
or under artificial conditions (i.e., using long sequences of re-
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sponses). This assessment is fundamental for the development of
computational algorithms, brain-machine interfaces, and neuro-
prosthetics. Our description provides the basis for understanding
how the NI assumption (or any other assumption during the
decoding process) affects the amount and type of decoded infor-
mation, establishing for the first time a link between probabilistic
decoding models and the neural code. The framework is general
enough to analyze the importance of noise correlations not only
between neurons in neural populations, but also between neural
populations in different cortical areas or, more recently, between
cortical areas in different brains (Hari and Kujala, 2009; Babiloni
and Astolfi, 2012).

Notes

Supplemental material for this article is available at http://eyherabidehg.
com.ar/. This material includes additional examples and demonstrations
and the codes for making the figures. This material has not been peer
reviewed.
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