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Systems/Circuits

Leptin Signaling in GABA Neurons, But Not Glutamate
Neurons, Is Required for Reproductive Function

Wieteke A. Zuure, Amy L. Roberts, Janette H. Quennell, and Greg M. Anderson

Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand

The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone
(GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether
GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin
receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and
reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specificloss of leptin signaling
in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult
fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR
knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females
showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion
(an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In
conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is
involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central
leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus

on a few specific types of neurons.

Introduction

Circulating leptin is an important metabolic signal regulating
food intake and energy expenditure. Leptin also forms a per-
missive modulator of fertility (Ahima et al., 1997; Nagatani et
al., 1998). Reproduction is centrally regulated by the drivers of
the hypothalamic-pituitary-gonadal (HPG) axis: the gonadotro-
pin releasing hormone (GnRH) neurons. A significant body of
research has been devoted to trying to understand how leptin’s
effects are relayed to this reproductive axis. Leptin acts directly on
the brain as transgenic removal of leptin receptors (LEPRs) from
forebrain neurons results in the same infertile and obese pheno-
type as does global mutation in the leptin gene itself (Ingalls et al.,
1950; Swerdloff et al., 1975; Quennell et al., 2009). However,
leptin affects GnRH neurons indirectly as they do not express
LEPRs (Quennell et al., 2009). To elucidate the identity of the
neuronal network that must exist between leptin-responsive neu-
rons and GnRH neurons, we investigated leptin signaling in the
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major inhibitory and excitatory neuronal cell populations: GABA
and glutamate neurons.

The GnRH neurons express both GABA, and GABAj receptor
isoforms, and binding of GABA to the GABAj receptor causes an
inhibition of pulsatile GnRH release (Todman et al., 2005; Zhang et
al., 2009). Although GABA is generally an inhibitory neurotransmit-
ter, the effect of GABA , receptor activation in GnRH neurons can be
excitatory or inhibitory depending on the chloride concentration
within the neuron (Krnjevic, 1974; Herbison and Moenter, 2011).
Hypothalamic locations where GABAergic LEPR neurons are con-
centrated include the arcuate nucleus (Arc), dorsomedial nucleus
(DMN), and lateral hypothalamus (Ovesjo et al., 2001; Vong et al.,
2011). Functionally, acute fasting (i.e., reducing leptin levels) alters
GABAergic transmission to GnRH neurons and decreases GnRH
neuronal activity (Sullivan et al., 2003; Sullivan and Moenter, 2004),
suggesting that leptin sensing GABAergic afferents integrate meta-
bolic cues to modulate GnRH release.

Glutamate is the main excitatory neurotransmitter of the
CNS. The cell bodies of GnRH neurons are innervated by gluta-
matergic terminals that stimulate GnRH release (Bourguignon et
al., 1995; Kiss et al., 2003). Hypothalamic glutamatergic LEPR
neurons can be found in the Arc, the ventral medial nucleus
(VMN), and the ventral premammilary nucleus (PMV) (Kocsis,
2003; Vong et al., 2011). Lesion experiments indicate that PMV
LEPR neurons are involved in leptin’s effects on fertility (Donato
etal., 2009; Leshan et al., 2009). Hence, glutamatergic LEPR neu-
rons form a likely leptin-to-GnRH candidate.

To specifically delete LEPRs from either vesicular GABA
transporter (Vgat) or vesicular glutamate transporter 2 (Vglut2)
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expressing neurons, targeting GABA and glutamate neurons, re-
spectively, Cre-Lox transgenics was used. The effects of these
deletions on fertility were studied in female and male animals.
Specifically, puberty onset, adult fertility, and estradiol feedback
on the HPG axis were assessed to determine which of these two
major neuronal populations is primarily responsible for leptin’s
effects on reproductive function.

Materials and Methods

Animals. Female and male transgenic mice with Vglut2 (Vglut2-ires-Cre)
or Vgat (Vgat-ires-Cre) specific LEPR deletions were bred from trans-
genic lines as described by Vong et al. (2011) (on a mixed FVB and
C57BL/6] background). These animals are hereafter referred to as
GABA- and glutamate-specific LEPR knock-outs. Homozygous LEPR
floxed (Leprﬂ‘”‘/ flox) littermates were used as controls. Animals were
group housed or paired with an animal of the opposite sex (for fertility
assessment). Mice were kept on a 12 h:12 hlight and dark cycle (lights on
at 0800 h), at constant room temperature (21 = 1°C), with ad libitum
access to water and standard rodent chow unless otherwise noted. The
University of Otago Animal Ethics Committee approved all experimental
animal protocols.

Tissue collection and preparation. For tissue collection animals were
fasted overnight and injected subcutaneously with recombinant leptin (5
mg/kg; National Hormone and Peptide Program) or vehicle (0.01 m PBS,
pH 7.8). Two hours after injection, animals were sedated and blood
collected from the inferior vena cava before transcardial perfusion with
4% paraformaldehyde in 0.1 M PBS, pH 7.4. Brain tissue was prepared for
immunohistochemistry, as previously described by Quennell et al.
(2011).

Immunohistochemistry and image analysis. Immunohistochemical la-
beling of leptin-induced phosphorylation of the leptin signaling mole-
cule signal transducer and activator of transcription 3 (pSTAT3) was
performed to determine loss of hypothalamic leptin-responsiveness in
the knock-out mice. To do so, we performed an antigen retrieval step (15
min; 1 mM EDTA, pH 8.0, at 90°C), and used polyclonal rabbit anti-
pSTATS3 as the primary antibody (1:3000; Tyr705; #9145, Cell Signaling
Technology). This was followed by a biotinylated goat anti-rabbit sec-
ondary antibody (1:1000; Vector Laboratories), and labeling was visual-
ized with 3,3’-diaminobenzidine (Quennell et al., 2011). To analyze the
effects of LEPR knock-out on the number of pSTAT3-positive neurons,
stained cells were counted in hypothalamic nuclei [median preoptic area
(MnPO), rostral preoptic ares (rPOA), medial preoptic area (MPA), ros-
tral Arc (bregma —0.94 to —1.34 mm), medial Arc (bregma —1.46 to
—1.94 mm), caudal Arc (bregma —2.06 to —2.54 mm), VMN, lateral
hypothalamus, DMN, PMV] and the nucleus of the solitary tract (NTS).
Positive leptin-responsive cells were counted when a clear circular and
darkly stained nucleus was present. Counts were performed in photomi-
crographs of at least three tissue sections per area from each animal. The
three Arc subregions were later merged to form a single bar on the graph
(see Fig. 1]).

Fluorescent double-label immunohistochemistry of GnRH and vGAT
was performed in control and GABA-specific LEPR knock-out male
animals. Brain sections containing GnRH neurons were incubated in
polyclonal guinea pig anti-GnRH (1:2000; #GA02, in-house) and rabbit
anti-vGAT (1:750; #5062P, Millipore) primary antibodies. This was fol-
lowed by a direct labeling with fluorescent secondary antibodies, using
goat anti-guinea pig AlexaFluor-488 (Invitrogen) to visualize GnRH and
goat anti-rabbit AlexaFluor-568 (Invitrogen) to label vGAT. Sections
were mounted on microscope slides with Vectashield (Vector Laborato-
ries) for confocal microscopy (Zeiss LSM 710). Using an argon laser
exciting at 488 nm (GnRH), a helium neon laser exciting at 543 nm
(VGAT) and a X40 PlanApochromat objective lens, a z-stack (0.5 wm
optical slices) was made of each individual GnRH soma and proximal
projections. Omission of the primary vGAT antibody resulted in an ab-
sence of stained terminals. Twenty GnRH neurons per animal were pho-
tographed and used for counting (10 within the medial septum
population and 10 in the rPOA). Zeiss LSM image browser software was
used to count the number of appositions (where red pixels touched the
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green, for at least two consecutive optical slices) on the GnRH soma and
in three 10 wm segments progressing distally along the projections. This
tool was also used to measure the circumference of the soma. Where data
were obtained from two projections per GnRH neuron, these were
averaged.

Leptin ELISA. Plasma leptin concentration of control and knock-out
animals was measured by ELISA (Mouse Leptin ELISA kit, Chrystal
Chem). The average coefficient of variation was 4.1%, and the sensitivity
of the assay was 0.04 ng/ml. All samples were repeated in duplicate on one
single plate.

Fertility experiments. In female animals, puberty onset was measured
by vaginal opening along with the age at first estrus (based on vaginal
cytology). From 26 d of age, experimental (GABA- and glutamate-
specific LEPR knock-out) and control mice were checked daily. Once
vaginal opening was established, vaginal cytology was studied to assess
for signs of first estrus. Male mice were mated with adult wild-type
C57BL/6] females from 36 d of age. Male puberty onset was calculated by
subtracting 21 d (gestation period) from the date when their first litter
was born. Males were kept in their breeding pairs to further assess adult
fertility. To determine adult female estrous cyclicity, vaginal smears were
taken for 10 (glutamate-specific knock-outs and controls) or 28 (GABA-
specific knock-outs and controls) consecutive days starting at least 14 d
after first estrus. Estrus cycle duration was calculated as the average time
between two proestrus phases. Afterward, female knock-out and control
animals of both experimental groups were paired with adult wild-type
C57BL/6] males to study fecundity.

Estimation of daily sperm production. After transcardial perfusion and
brain collection, one testis from control or knock-out male mice was
removed, wet weight recorded, and stored at —80 C. Daily sperm
production was subsequently determined as described previously
with slight modifications (Robb et al., 1978; Singireddy et al., 2013).
Briefly, testis fragments (25 mg) were homogenized in a tissue lyser
(TissueLyser II, QIAGEN) for 10 min. Spermatids in stages 14—16 of
spermatogenesis (Leblond and Clermont, 1952) are resistant to ho-
mogenization, and their nuclei were counted in 10 ul aliquots of
homogenate using a hemocytometer. Total counted nuclei were di-
vided by 4.84 because developing spermatids spend 4.84 d in stages
14-16 during spermatogenesis in mice.

Assessment of HPG axis regulation by estradiol. Negative feedback as-
sessment of estradiol was based on the experiments described by Moore
et al. (2012). Briefly, GABA-specific LEPR knock-out and control mice
were anesthetized with isoflurane and tail blood samples taken at baseline
(day 0; intact). Ovariectomies were performed, and 14 d later another
blood sample was taken (OVX). Animals were subsequently implanted
with a chronic slow-release 173-estradiol subcutaneous implant (50 ug/
kg; 11-26 mm long depending on body weight); 8 d later, another blood
sample was taken (OVX+implant). Subsequently, preovulatory-like lu-
teinizing hormone (LH) surge induction was performed as described by
Quennell et al. (2009). On day 22, all mice received a bolus injection of
estradiol benzoate (50 ug/kg, s.c.) 9 h before lights out. At lights out on
day 23, final trunk blood samples were taken. All blood samples were
processed within 10 min of collection. Plasma was separated by centrif-
ugation, immediately frozen, and stored at —20°C. The concentration of
LH in the plasma was measured by radioimmunoassay, as described by
Quennell et al. (2009). The sensitivity of the assay (95% confidence in-
terval at 0 ng/ml) was 0.14 ng/ml, and the intra-assay coefficient of vari-
ation was 5.5%. All samples were analyzed in triplicate within the same
assay.

Statistical analysis. All results are presented as mean * SEM. Student’s
t tests were used to identify significant statistical differences (p < 0.05)
between control and knock-out mice in the pSTAT3 cell counts, plasma
leptin concentrations, daily sperm production, and other measures of
fertility. The body weight and negative feedback data were compared
using a two-way ANOVA with repeated measures and a Bonferroni
multiple-comparison post hoc test. Pooling of Lepr1°1°% control groups
was used in immunohistochemical, plasma leptin concentration and
body weight comparisons because the two experiments were run concur-
rently and controls were identically produced.
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Figure 1.  Characterization of the knock-out models by labeling leptin-induced phosphorylated STAT3. A-1, Representative photomicrographs of staining in different hypothalamic
areas counted. A-C, MnPO and rPOA. D—F, Arc, VMN, LH, and DMN. G-/, Arc and PMV. The first column shows leptin-induced (5 mg/kg) pSTAT3 labeling in control animals. Second and
third columns show pSTAT3 labeling in GABA- and glutamate-specific LEPR knock-out animals, respectively. J, Quantification of immunohistochemical staining (number of positive
labeled cells per section) in control animals (black bars; n = 11), GABA-specific (gray bars; n = 10), and glutamate-specific (white bars, n = 8; n = 2 for NTS) knock-outs. There was
no difference between the pSTAT3 counts of the two control groups (n = 6 and n = 5) that are derived from the two different Cre lines; therefore, they have been pooled in this graph.
In all regions, experimental groups are compared with the control animals to show significant differences. MnPO includes the region of the organum vasculosum of the lamina terminalis
(OVLT); rPOA, ventral part. Scale bar, 100 wm. *p << 0.05.
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Results
Loss of leptin signaling in GABA- and
A Female glutamate-specific LEPR knock-out
* neurons

' ' To validate our transgenic knock-out
models, we identified the loss of leptin-
responsive cells using pSTAT3 immu-
nohistochemistry. The Cre-Lox animal
models used in this study disrupt leptin sig-
naling by deletion of exon 17 of the Lepr
gene. This exon codes for the part of the re-
ceptor responsible for JAK-STAT signaling
(McMinn et al., 2004); therefore, loss of
phosphorylated STAT3 provides an accu-
rate representation of where LEPR was de-
leted. The transgenic disruption of LEPR
-®- Controls . from either GABA or glutamate neurons re-
-~ GABA specific LEPR knockout sulted in a marked reduction of leptin-
104 1 Glut. specific LEPR knockout induced pSTAT3 immunoreactivity in the
0 5 1'0 1'5 2'0 2'5 hypothala}mic nuclei where these neu-
rotransmitters are known to be strongly
Age (weeks) expressed (Vong et al, 2011). Removing
B Male LEPRs from GABA neurons caused a 42%
reduction of leptin-induced pSTAT3 in the
Arc (particularly in the medial and caudal
504 Arc sections; the effect was not seen in the
most rostral sections; Fig. 1 E,H,J). Similar
reductions were seen in the lateral hypothal-
* amus (49%) and the DMN (31%; Fig.
' r 1E,]). Deletion of LEPRs from glutamate
neurons caused a different pattern of
PSTATS3 staining. Strikingly, pSTAT3 im-
munoreactivity was 80—-97% reduced in the
PMV and VMN, respectively (Fig. 1F,L]).
Significant decreases were also evident in the
ventral rPOA (55%; Fig. 1C,J) and MPA
(47%; Fig. 1]) as well as the lateral hypothal-
amus (30%; Fig. 1F,J) when glutamate-
104 specific LEPR knock-outs were compared
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Figure 2.  Effects of LEPR knock-outs on body weight and
- Control plasma leptin concentration. A, B, Female and male GABA-

I GABA specific LEPR knockout and glutamate-specific LEPR knock-out and control animals

404[] Glut. specific LEPR knockout body weights. Female GABA-specific knock-out animals (gray
. triangles; n = 10) are significantly heavier than controls

b (black circles; n = 19) at 4 weeks of age; glutamate-specific
LEPR knock-out animals (white squares; n = 9) are signifi-
cantly heavier than controls (black circles) at 9 weeks of age.
Male GABA-specific LEPR knock-out animals (gray triangles;
n = 9) had an increase in body weight from 6 weeks onwards
and glutamate-specific knock-out males (white squares; n =
6) from 12 weeks onwards compared with controls (black cir-
cles;n = 15). We were unable to gather body weight data for
the female groups throughout the breeding study because fe-
males were at different stages of pregnancy. (, Plasma leptin
concentrations of control animals (black bars; female n = 8,
male n = 3) are significantly lower than GABA-specific knock-
out animals (gray bars; female n = 8, male n = 2). In
glutamate-specific LEPR knock-outs, male animals show sig-
nificantly higher leptin than the controls (white bars; female
Female Male n'=14,malen = 2).%p < 0.05.**p < 0.01.***p < 0.001.
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Figure3. Puberty onsetin GABA- and glutamate-specific LEPR knock-out animals. 4, In GABA-specific LEPR knock-out animals (gray bars; n = 7-10), vaginal opening, first estrus, and male puberty onset

wereallsignificantly delayed compared with their control littermates (black bars; n = 7-10). B, Vaginal opening, first estrus, and male puberty onset all occurred at the same time in glutamate-specific knock-out
animals (white bars; n = 6 —9) compared with their control littermates (black bars; n = 8 -9). €, Survival profiles showing puberty onset of female GABA-specific LEPR knock-out (gray lines) and control animals
(black lines). The percentage of mice showing vaginal opening (intermittent lines) and first estrus (continuous lines) is plotted for each time point. D, Puberty onset (date of first successful mating) profiles of male
GABA-specific knock-outs (gray line) and controls (black line) over time is plotted. VO, Vaginal opening. *p << 0.05. **p << 0.01. ***p << 0.001.

positive nuclei in the NTS. No significant differences were found
between the GABA-specific knock-outs and controls (Fig. 1]); this
was expected because several studies have shown that the NTS LEPR
neurons are not GABAergic (Vong et al., 2011; Garfield et al.,, 2012).
The number of animals in the glutamate-specific LEPR knock-out
group was low; nevertheless, a trend toward a reduced pSTATS3 re-
sponse (albeit nonsignificant; n = 2; t4) = 1.261, p = 0.24) was
observed similar to what has been reported (Vong et al., 2011).

In vehicle-treated animals, the overnight fast was unable to
reduce pSTAT3 immunoreactivity to the same extent in the
GABA-specific LEPR knock-outs compared with the controls.
This phenomenon is likely the result of the high circulating leptin
found in these very obese animals (Fig. 2C).

The above-mentioned findings agree with previously described
distributions of Vgat and Vglut2 mRNA in the hypothalamus (Vong
et al., 2011), confirming that the LEPR deletions were indeed tar-
geted to neurons expressing Vgat and Vglut2. There appeared to be
very little overlap between the regions affected by GABA and gluta-
mate LEPR knock-out. The lateral hypothalamus was an exception;
both GABA- and glutamate-specific LEPR deletion reduced the
numbers of neurons able to respond to leptin here.

Disrupted body weight regulation in both GABA- and
glutamate-specific LEPR knock-out animals

Body weights of all knock-out and control groups were mea-
sured fortnightly. The genotype of the knock-outs had a

significant effect on body weight in females (two-way repeated-
measures ANOVA: F, ;,, = 247.06, p < 0.001) and in males
(two-way repeated-measures ANOVA: F,,, = 69.50, p <
0.001) compared with controls. As previously described, LEPR
knock-out from GABA neurons caused an obese phenotype
(Vong et al., 2011). Post hoc testing revealed that female
GABA-specific LEPR knock-out animals were significantly
heavier than littermate controls from the age of 4 weeks on-
wards (Fig. 2A), whereas for males a significantly greater body
weight was reached at 6 weeks of age (Fig. 2B). Glutamate-
specific LEPR knock-out caused a milder metabolic pheno-
type. Females were significantly heavier than their littermate
controls by 9 weeks of age (Fig. 2A). The males showed a
significant weight difference from 12 weeks of age compared
with control animals (Fig. 2B). These results are similar to the
body weights described by Vong et al. (2011), with the GABA-
specific knock-outs being notably heavier than the glutamate-
specific knock-out animals. Blood collected at the end of the
breeding studies showed that plasma leptin concentrations
were significantly elevated in both female and male GABA-
specific LEPR knock-outs (female: t,,, = 16.46, p < 0.0001
and male: ¢, = 9.85, p = 0.0022; Fig. 2C). In glutamate-
specific knock-outs, a significant increase in leptin concentra-
tion was only evident in male animals (¢, = 4.56, p = 0.02;
Fig. 2C).
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bars; n = 10). Asignificant decrease in time spent in proestrus was seen in the knock-out females. B, The time from pairing with a wild-type male to first litter in GABA knock-out females (gray bar;
n = 10) was longer than in littermate controls (black bar; n = 10). Number of days between litters was significantly increased in male GABA-specific knock-out animals (n = 7 in both groups). The
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Delayed puberty onset in GABA-specific LEPR

knock-out animals

To assess puberty onset, date of vaginal opening and first estrus in
females were measured, whereas for males the age of first fertile
mating was determined. Female mice with LEPR deleted from
GABAergic neurons showed a significant, 7 d delay in vaginal open-
ing (t,) = 2.40, p = 0.027), coupled with a 20 d delay in first estrus
(t6 = 10.31, p < 0.0001; Fig. 3A,C). When male GABA-specific
LEPR knock-out animals and controls were mated with inbred wild-
type C57BL/6] females of reproductive age, they showed a significant
delay in puberty onset. When the age at puberty was backdated, it
revealed that the knock-out animals went through puberty ~13 d
later than the controls (#,,, = 3.40, p = 0.005; Fig. 3A, D).

Puberty onset of glutamate-specific LEPR knock-out females and
males did not differ from controls (Fig. 3B). Both female knock-out
and control animals showed vaginal openingat 30.2 * 0.7 d. In these
animals, first estrus was evident ~3-4 d later. Male glutamate-
specific LEPR knock-out animals did not show any significant dif-
ference in the timing of puberty onset either (Fig. 3B).

Reduced adult fertility in GABA-specific LEPR
knock-out animals
To assess adult fertility, we investigated female estrous cycles and
measured fecundity in both sexes. Vaginal cytology was deter-
mined for 28 consecutive days beginning at day 60 in female
GABA-specific LEPR knock-out animals; significantly less time
was spent in proestrus (t,,y = 7.32, p < 0.0001; Fig. 4A) and
more time in estrus compared with controls (t,,) = 2.28, p =
0.036). The time spent in met- or diestrus was not different
between groups (t,;, = 0.63, p = 0.54; Fig. 4A). Estrus cycle
duration averaged 13.6 * 1.8 d for knock-outs compared with
4.9 *= 0.2 d for controls, showing that GABA-specific LEPR
knock-out resulted in significantly prolonged cycles (t,,, = 5.02,
p = 0.0001). For glutamate-specific LEPR knock-out females,
there was no difference in the frequency of cycle stage compared
with controls. On average, one day was spent in each of the pro-
and estrus phases and 2 d in met- and diestrus per cycle (Fig. 4C).
Fecundity of adult mice was assessed by litter size and fre-
quency after pairing with wild-type mates. In the GABA-specific
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LEPR knock-out females, three animals had to be killed because
of dystocia complications; and because of these welfare consider-
ations, the experiment had to be terminated prematurely (after
38 d of mating). Only 30% (3/10) of GABA-specific LEPR knock-
out females produced two litters within this time frame, a further
four of the knock-out females delivered successfully but only had
one litter. In contrast, all control females produced two litters
after 38 d of mating. The interlitter interval for the multiparous
three knock-outs was not significantly different compared with con-
trols (#,,) = 1.12, p = 0.29; Fig. 4B). However, there was a significant
delay in the time from pairing to first delivery for knock-out females
(tg) = 4.21, p = 0.0005; Fig. 4B). The average number of pups in the
litters that were born did not differ between groups (knock-out:
6.2 = 0.4 and control 7.6 = 0.6 pups per litter; t,, ;) = 1.79, p = 0.09).
Male knock-out and control animals were kept in their breeding
pairs for 100 d after their first litter was born. The time between litters
over this period was significantly greater in the knock-out group
compared with the control animals (f,,, = 2.74, p = 0.0178; Fig.
4B). The average number of pups per litter was not different between
groups (knock-out: 7.8 = 0.7 and control 7.8 = 0.5 pups per litter;
ta2 = 0.11, p = 0.91). To assess whether this reduced fertility in the
male animals was the result of lower sperm counts, daily sperm pro-
duction was measured in GABA-specific LEPR knock-out males and
controls. This revealed no significant differences between the two
groups (control: 1.2 X 10° + 0.3 X 10% knock-out: 1.4 X 10° +
0.5 X 10° spermatocytes per testis per day; #g = 0.32, p = 0.76).
Glutamate-specific LEPR knock-outs and their controls were also
assessed for litter frequency and time to first litter. After pairing with
an inbred wild-type mate, both female and male knock-outs and
controls were proven to be equally fertile (Fig. 4D).

These results, together with the delay in puberty onset, indi-
cate a critical role for GABAergic leptin-sensing neurons in the
onset and maintenance of male and female fertility. Interestingly,
the results show that LEPR signaling in glutamate (vGLUT2)
neurons is not required for normal reproductive function.

GABA-specific LEPR knock-out animals have an impaired
response to estradiol in a positive feedback paradigm

The experiments described above have demonstrated a signifi-
cant delay in puberty onset and a reduction in fertility when LEPR
signaling is disrupted in GABA neurons. To explore the underly-
ing mechanism of this decrease in fertility, we assessed the hypo-
thalamic response to estradiol. Measuring the circulating
concentration of LH in different estrogenic states provides a di-
rect index of GnRH neuronal activity because GnRH is a potent
stimulator of LH release. Estrogens inhibit GnRH/LH secretion
at most times during the female cycle (negative feedback); how-
ever, on the day before ovulation, a rising estradiol concentration
triggers a massive preovulatory GnRH/LH surge (positive feed-
back), eventually causing ovulation (Herbison, 1998).

Intact control and GABA-specific LEPR knock-out mice had
similar LH levels that increased significantly after OVX (controls
tae) = 6.12;knock-outs ¢ 5) = 5.70; p < 0.0001 for both; Fig. 5A).
The ability of estradiol to suppress LH levels was undiminished in
GABA-specific LEPR knock-out compared with control animals
(controls t,5, = 5.01; knock-outs 4 = 5.27; p < 0.0001 for
both; Fig. 5A), showing that estrogenic negative feedback remains
functional in these mice despite their fertility defects and high
circulating leptin concentration. To test whether leptin signaling
in GABA neurons is required for the positive estradiol feedback,
we used an ovariectomized plus high-dose estradiol model. In
this model, a bolus injection of estradiol benzoate results in an
artificially induced preovulatory-like LH surge the following day
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Figure 5.  The effects of estradiol on plasma LH concentration in GABA-specific LEPR knock-
outs and controls. A, Estradiol-negative feedback was assessed by measuring plasma LH con-
centration in serial blood samples. Intact plasma samples were taken on day 0, day 14 (OVX),
and day 22 (OVX+implant). The negative feedback actions of estradiol remained intact in
GABA-specific LEPR knock-out animals (gray triangles; n = 9) compared with littermate con-
trols (black circles; n = 9). B, Estradiol-positive feedback was assessed based on plasma LH
concentrationin trunk bloods taken at the time of an estradiol-induced preovulatory-like surge.
There was a significant suppression of LH concentration in GABA-specific knock-out female
animals (gray bar; n = 9) compared with controls (black bar; n = 9). *p < 0.05.

at the time of lights out (Wintermantel et al., 2006). When our
animals were subjected to this treatment, the knock-out animals
had a 46% lower plasma LH concentration at the time of the
preovulatory-like surge compared with controls (¢, = 2.49,p =
0.025; Fig. 5B). These data suggest that an impaired positive feed-
back mechanism may underlie the subfertile phenotype seen in
the GABA-specific LEPR knock-out mice.

The reduction in fertility of our GABA-specific LEPR knock-
out animals could be a result of a difference in GABAergic wiring
onto GnRH neurons. To investigate this, we counted GABAergic
appositions (VGAT-positive) on GnRH soma and the proximal
projections in both groups. Double-label immunohistochemis-
try and confocal imaging were used to visualize GnRH neurons
and surrounding vGAT-positive terminals. We found that the
circumference (knock-out: 31.5 = 0.78 wm and controls: 32.3 =
1.83 um; tg) = 0.85, p = 0.42) and number (knock-out: 5.9 *
1.32 GnRH neurons per section and controls: 5.4 * 0.95 GnRH
neurons per section; ¢4 = 0.35, p = 0.74) of GnRH soma did not
differ between knock-out and control animals. When the number of
GABAergic appositions onto the GnRH soma and projections were
counted, there were no differences between the groups (Fig. 6), in-
dicating that there are no detectable deficits in GABAergic GnRH
inputs in the GABA-specific LEPR knock-out mice.
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Figure 6.  GABAergic (VGAT-positive) appositions on GnRH neurons in male GABA-specific knock-outs and controls. A, Repre-
sentative image of a GnRH neuron (green) with vGAT (red) appositions on the soma and proximal projection (white arrowheads).
White linesindicate 10 .um segments of the neuronal projection. B, Number of vGAT-positive appositions per 10 um of GnRH soma
membrane and the first three 10 .um segments of the projection, in control (black bars; n = 5) and GABA-specific LEPR knock-out
animals (gray bars; n = 5). No significant differences were found between groups. Scale bar, 10 wm.

Discussion

Neuronal pathways that communicate leptin and other meta-
bolic signals to the HPG axis are poorly understood. Here, LEPRs
were selectively deleted from the principal inhibitory (GABA)
and excitatory (glutamate) neuronal populations to identify
whether these neurons mediate interactions between leptin
and the reproductive axis. Using these validated mouse mod-
els, we conclude that leptin signaling in GABAergic neurons is
critical for HPG axis functioning in both sexes, and surpris-
ingly glutamatergic LEPR neurons are not.

Leptin signaling in the PMV is thought to play a major role in
regulating fertility rather than metabolism. Lesion studies of this
nucleus cause a disruption of estrous cyclicity in rats (Donato et
al., 2009), and selective PMV LEPR reexpression in LEPR-null
mice induces female puberty onset and some pregnancies (Do-
nato et al., 2011). Additionally, PMV LEPR neurons (of which
>80% are glutamatergic) are known to project to GnRH cell
bodies, AVPV kisspeptin neurons, and GnRH terminals in the
median eminence (Rondini et al., 2004; Leshan et al., 2009; Do-
nato et al., 2011; Louis et al., 2011). Although the present study
showed a reduction of ~80% in PMV leptin signaling in the
glutamate-specific LEPR knock-outs, it was unexpected to see
that these neurons are not required for fertility. However, they
may well participate in this role under normal conditions and
even be sufficient to permit fertility in the absence of other brain
LEPRs (Donato et al., 2011). Alternatively, the remaining ~20%
of LEPR neurons in the PMV are not glutamatergic and may
fulfill the leptin-to-GnRH role. In a recent paper by Leshan et al.
(2012), removal of LEPR from neuronal nitric oxide synthase
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(nNOS) neurons, which are strongly rep-
resented in the PMV, caused a delay in
puberty onset. Thus, PMV nitric oxide
neurons might mediate leptin’s effects to
the HPG axis. Interestingly, these nNOS
LEPR knock-out mice were considerably
more obese than our glutamate-specific
LEPR knock-outs. This is probably be-
cause the nNOS LEPR knock-out targets
Arc neurons in addition to those in the
PMV (Leshan et al., 2012).

In contrast to the fully fertile
glutamate-specific LEPR knock-outs,
male and female GABA-specific LEPR
knock-outs exhibited markedly reduced
fertility and the females had impaired es-
trous cycles. To try to identify the cause of
subfertility in the GABA-specific LEPR
knock-out mice, we assessed estradiol
feedback in females and daily sperm pro-
duction in males. The results of our estro-
genic feedback experiment indicate that
knock-out mice exhibit normal negative
feedback regulation of LH but are im-
paired in their ability to mount a full
preovulatory-like LH surge. This conclu-
sion is consistent with the reduced occur-
rence of proestrus in these mice. Similar
findings with regards to the LH surge have
been reported in LEPR-deficient (in all
forebrain neurons) and high fat diet-fed
mice (Quennell et al., 2009; Sharma et al.,
2013). As with the fertility data in intact
animals, the concurrence of severe obesity
with this effect means that caution must be exercised in attribut-
ing the disrupted preovulatory-like LH surge specifically to defi-
cient leptin signaling in GABA neurons. Male ob/ob mice
completely lacking leptin produce relatively few mature sperma-
tozoa, but this deficit appears to be the result of apoptotic effects
of leptin deficiency at the gonadal level (Bhat et al., 2006; Zhu et
al., 2013). Daily sperm production in our animals, which were
not leptin deficient, did not differ between GABA-specific LEPR
knock-out mice and controls, suggesting that our male mice had
no such apoptotic effects. Perhaps their subfertility was instead
the result of reduced sperm efficacy or to mating behavior defi-
cits.

GABA is well known to be an important modulator of GnRH
neurons, and the present results are consistent with the idea that
leptin may communicate with GnRH through GABA. It is known
that fasting alters GABA, receptor-mediated transmission to
GnRH neurons, and leptin is able to modulate this change (Sul-
livan et al., 2003; Sullivan and Moenter, 2004). Similarly, GABA-
specific LEPR knock-out mice in the study of Vong et al. (2011)
were characterized by an increased inhibitory GABAergic tone
upon Arc pro-opiomelanocortin neurons. Therefore, GABAergic
input upon GnRH neurons may also be compromised in our
GABA-specific LEPR knock-out mice, causing the subfertile
phenotype.

There are a few other candidates for providing the leptin-to-
GnRH intermediate signal, in the form of neuropeptides that are
potentially coreleased from GABAergic LEPR neurons. First, the
neuropeptide kisspeptin is the most potent known stimulator of
GnRH release and regulates the timing of puberty onset (Han et
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al., 2005; Clarkson and Herbison, 2006). Additionally, leptin is
able to regulate kisspeptin expression (Quennell et al., 2011).
Disruption of the function of these cells would provide a conve-
nient explanation for the inability of GABA-specific LEPR knock-
out mice to mount a full LH surge in this study. However,
conditional LEPR deletion in kisspeptin neurons or even reex-
pression in LEPR-null mice has revealed that a direct action is
neither required nor sufficient for fertility (Donato et al., 2011;
Cravo et al., 2013). Therefore, if kisspeptin function is reduced in
these mice, it probably does not occur as a direct response to
LEPR deficiency. Second, agouti-related peptide (AgRP)/neuro-
peptide Y (NPY) neurons in the Arc are affected by the knock-out
of LEPR because they are GABAergic (Horvath et al., 1997). Both
the AgRP and NPY neuropeptides have been linked to metabolic
control of reproduction by direct actions onto GnRH neurons
(Klenke et al., 2010; Roa and Herbison, 2012) and indirectly by
inhibiting the stimulatory o melanocyte-stimulating hormone
produced from the Pomc gene (Israel et al., 2012). In both leptin-
deficient ob/ob and LEPR-deficient db/db animals, ablation of
AgRP neurons restores normal puberty onset and fertility (Israel
et al., 2012; Wu et al., 2012). These experiments suggest that
leptin-responsive AgRP/NPY/GABA neurons are likely to act as
intermediates between metabolism and GnRH neurons, and thus
suppress the HPG axis in absence of leptin or leptin signaling. We
suggest that these LEPR/AgRP/NPY/GABA neurons are likely to
be at least partly responsible for the subfertile phenotype ob-
served in our GABA-specific LEPR knock-out mice. Last, there
are galanin-like peptide (GALP) neurons in the Arc and co-
caine and amphetamine-regulated transcript (CART) neurons
in the DMN that express LEPR and project to the area of the
GnRH neurons (Lebrethon et al., 2000; Takatsu, 2001; Ron-
dinietal., 2004). Whether GALP and CART neurons corelease
GABA has not been identified; therefore, it is unclear whether
they have been targeted in our knock-out model.

Regardless of whether leptin’s permissive actions on the HPG
axis occur via GABA inhibition or other predominantly inhibi-
tory peptidergic neurotransmitters, such as NPY, deletion of
LEPRs from GABA neurons might be predicted to cause upregu-
lation of GABA/NPY function leading to an increased inhibitory
tone upon GnRH neurons. Alternatively, if leptin’s signals are
relayed by stimulatory neuropeptides (i.e., GALP and CART),
and knowing that GABA has the ability to stimulate GnRH neu-
ronal activity (Herbison and Moenter, 2011), then a reduction in
the tone of these pathways upon GnRH neurons would be pre-
dicted in our knock-out model. It would be interesting to deter-
mine the nature of such changes in our GABA-specific LEPR
knock-out mice.

The knock-out animals in which we observed a delay in pu-
berty onset were also characterized by obesity and had high cir-
culating leptin concentrations. Transgenic removal of exon 17
from the Lepr gene happens at early embryonic stages because
Vgat expression is detectable from mid-gestation (Oh et al.,
2005). Therefore, leptin receptor deletion in GABA neurons
would have encompassed the second half of gestational develop-
ment in all GABA-specific LEPR knock-out animals. The repro-
ductive phenotype we observed in these animals could be an
effect of defective wiring or the resulting obesity. However, early
obesity or high circulating leptin is known to cause an advance in
puberty onset rather than a delay (Ahima et al., 1997; Li et al,,
2012). Additionally, HPG axis functioning can be successfully
stimulated by exogenous administration of gonadotrophins and
progesterone, or of leptin in ob/ob animals (Smithberg and Run-
ner, 1957; Chehab et al., 1996). These studies indicate that
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neurotropic deficits resulting from deficient leptin signaling
throughout development are relatively minor, at least as far as
fertility is concerned. In support of this, no deficits in GABAergic
GnRH inputs were apparent in the GABA-specific LEPR knock-
out mice because no detectable differences were noted in the
number of vGAT-positive appositions on the GnRH neurons.
Collectively, these results suggest that the obesity or any differ-
ences in neuronal wiring in our GABA-specific LEPR knock-outs
are unlikely to be primarily responsible for their reduced fertility.

Here, we have limited the first-order leptin-to-GnRH media-
tors to GABAergic neurons. These experiments show that there is
a pivotal role for LEPRs in GABA neurons, but surprisingly not in
glutamate neurons, in metabolic regulation of male and female
fertility. This serves to focus attention on GABA or a few known
peptide cotransmitters, specifically NPY, AgRP, GALP, and
CART as critical neurotransmitters for the control of reproduction.
Future studies should determine which neurons are GABAergic,
leptin-responsive, and send inputs to GnRH neurons to control
fertility.
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