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An unresolved question in our understanding of the medial temporal lobes is how functional differences between structures pertaining
to stimulus category relate to the distinction between item-based and contextually based recognition–memory processes. Specifically, it
remains unclear whether perirhinal cortex (PrC) supports item-based familiarity signals for all stimulus categories or whether parahip-
pocampal cortex (PhC) may also play a role for stimulus categories that are known to engage this structure in other task contexts. Here,
we used multivoxel pattern analyses of fMRI data to compare patterns of activity in humans that are associated with the perceived
familiarity of faces, buildings, and chairs. During scanning, participants judged the familiarity of previously studied and novel items from
all three categories. Instances in which recognition was based on recollection were removed from all analyses. In right PrC, we found
patterns of activity that distinguished familiar from novel faces. By contrast, in right PhC, we observed such patterns for buildings.
Familiarity signals for chairs were present in both structures but shared little overlap with the patterns observed for faces and buildings
on a more fine-grained scale. In the hippocampus, we found no evidence for familiarity signals for any object category. Our findings show
that both PrC and PhC contribute to the assessment of item familiarity. They suggest that PhC does not only represent episodic context but
can also represent item information for some object categories in recognition-memory decisions. In turn, our findings also indicate that
the involvement of PrC in representing item familiarity is not ubiquitous.

Introduction
The functional organization of the medial temporal lobes
(MTLs) remains a topic of intense debate in neuroscience. Much
pertinent research in human and nonhuman species has focused
on recognition memory, i.e., the ability to discriminate between
previously encountered and novel stimuli, and the question of
whether different MTL structures make distinct functional con-
tributions. An influential view is that the hippocampus (Hip)
plays a unique role in the encoding and subsequent recovery of
episodic contextual information about a specific previous stimu-
lus encounter, whereas perirhinal cortex (PrC) supports recogni-
tion based on the familiarity of the item itself (Aggleton and
Brown, 1999; Eichenbaum et al., 2007; Mayes et al., 2007). How-
ever, there are also findings that point to category-specific con-
tributions of different MTL structures to recognition memory
(Davachi, 2006; Murray et al., 2007; Graham et al., 2010). An
important, currently unresolved question is how category-
specific effects relate to the distinction between item-based and

contextually based recognition processes. This issue is of partic-
ular relevance for characterizing the functional contributions of
PrC and parahippocampal cortex (PhC; Ranganath and Ritchey,
2012).

In the visual modality, the strongest category-specific neural
responses have been observed for faces and scenes. Differential
fMRI responses to faces are typically most pronounced in aspects
of the lateral occipital and posterior fusiform gyrus (Kanwisher et
al., 1997; for review, see Gobbini and Haxby, 2007) but have also
been reported more rostrally in PrC (Tsao et al., 2008; Nasr and
Tootell, 2012; O’Neil et al., 2013). In contrast, differential re-
sponses to scenes have been found predominantly in posterior
aspects of PhC (Epstein and Kanwisher, 1998; Epstein, 2008).
Scene-specific responses in PhC have informed the proposal that
this structure represents episodic context in recognition memory
and recall (Davachi, 2006; Eichenbaum et al., 2007). This role of
PhC has been considered as distinct from both the role of PrC in
the representation of objects and from the role of the Hip in
item-context binding (Diana et al., 2007; Eichenbaum et al.,
2007).

Interestingly, fMRI research has also revealed that preferential
PhC responses extend beyond scenes to certain types of objects,
including buildings (Aguirre et al., 1998; Cate et al., 2011). Al-
though the exact object characteristics that “drive” PhC re-
sponses are only beginning to be understood, initial findings
suggest that PhC is preferentially tuned to objects that are large
(Konkle and Oliva, 2012), that evoke a sense of three-
dimensional space (Mullally and Maguire, 2011), and/or that
have navigational relevance (Janzen and van Turennout, 2004;

Received Jan. 10, 2013; revised April 9, 2013; accepted May 21, 2013.
Author contributions: C.B.M., E.B.O., and S.K. designed research; C.B.M. performed research; C.B.M., D.A.M., and

E.B.O. analyzed data; C.B.M. and S.K. wrote the paper.
This research was supported by Canadian Institutes of Health Research Operating Grant MOP93644 (S.K.) and an

Ontario Graduate Scholarship (C.B.M.). We thank Dr. Annika Linke for insightful comments on a previous version of
this manuscript.

The authors declare no competing financial interests.
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Troiani et al., 2013). That PhC responds
not only to scenes but also to certain types
of objects is of direct relevance to its pro-
posed role in recognition memory. Specif-
ically, the summarized findings raise the
question of whether the role of PhC in
recognition memory is indeed limited to
representing episodic contextual infor-
mation or whether it also represents item-
based familiarity for certain types of
objects. Phenomenologically, buildings,
like any other objects, can be recognized
as “old,” even when episodic contextual
detail about a specific previous stimulus
encounter is absent. Corresponding item-
based familiarity signals in PhC would be
of broader theoretical significance toward
understanding MTL organization, be-
cause they could suggest that familiarity is
not invariably supported by PrC.

Here, we used high-resolution fMRI
in combination with multivoxel pattern
analyses (MVPA) to examine distributed
patterns of activity in MTL structures that
carry information about the perceived fa-
miliarity of three categories of objects,
namely faces, buildings, and chairs.

Materials and Methods
Participants. Nineteen right-handed partici-
pants took part in the study (21–30 years of age; mean age, 25.2 years; 12
females). They were screened for the absence of a history of neurological
disorders. Data from one participant were excluded from all analyses as a
result of excessive head movement (�5 mm in one plane) during scan-
ning. Participants received financial compensation for their participa-
tion and provided informed consent according to procedures approved
by the University of Western Ontario Health Sciences Research Ethics
Board.

Stimuli and procedure. Grayscale images depicting exemplars from
three different object categories (faces, chairs, and buildings) were used
as stimuli. Images of chairs and buildings were obtained from the inter-
net using Google Image Search. Images of faces were obtained from a
database we acquired for another study (O’Neil et al., 2009). All visual
background was removed from the target object depicted in each image
and replaced by an artificial, homogenous background without any
space-defining features (Fig. 1). For example, sidewalks, lawns, and any
visible horizon were removed from each image depicting a building.
Presented in this manner, all items fulfill the definition of an object as
being a discrete entity bounded by a single contour that does not have
background elements or a horizon (a definition adopted in previous
research that aimed to characterize the response properties of PhC
regions; Troiani et al., 2013). Image size was constrained by a 375 �
250 pixel bounding box, and each object image was scaled to fit this
box, with at least one dimension corresponding to its limits. Final
item selection was optimized based on behavioral pilot data so as to match
recognition accuracy and maximize the proportion of familiarity-based rec-
ognition responses across the three object categories. For each category,
three sets of 40 items were selected. Two of these sets served as items
presented before scanning during a study session and as corresponding
targets in the subsequent recognition–memory test during scanning;
items from the third set served as novel lures in the recognition task.
Assignment of the three item sets as targets or lures was counterbalanced
across participants.

All participants completed an initial study session outside of the scan-
ner that was preceded by a brief practice phase. The study session was
separated into six blocked sequences of 40 trials, with blocks correspond-

ing to the two sets of items from each of the three categories. Blocks were
presented in an ABCCBA order, with each stimulus category corre-
sponding to one of the letters. Stimuli were presented for 3000 ms each
with a 2000 ms interstimulus interval, and participants were asked to rate
the relative attractiveness, comfort, or value for faces, chairs, and build-
ings, respectively, using a five-point scale. For a schematic representation
of the experimental design, refer to Figure 1.

After a delay of �1 h that allowed for scanning preparation, partici-
pants completed a recognition–memory test consisting of the 80 previ-
ously studied targets and 40 lures from each category, for a total of 360
trials. Items were distributed over eight functional runs, each comprising
45 trials with 10 previously studied and five novel items from each stim-
ulus class. Each stimulus was presented for 2500 ms (corresponding to
the length of acquisition of one MRI volume), with a jittered fixation
baseline separating trials. Baseline fixation ranged from 2.5 to 15 s, and
the order of trials and jitter were optimized within each run, using the
OptSeq2 algorithm (http://surfer.nmr.mgh.harvard.edu/optseq/). Each
of the three counterbalanced experiments used a unique jitter sequence
and trial order. Participants viewed the stimulus displays through a mir-
ror at a distance that yielded an approximate object size of 18° � 13°
visual angle. Participants were asked to make recognition judgments with
one of five different response buttons using an MRI-compatible keypad.

For their recognition judgments, participants were instructed to focus
on their experienced item familiarity and provide a rating of perceived
strength on a scale from one (least familiar) to four (most familiar). They
were asked to respond quickly and avoid intentional attempts to recollect
contextual details pertaining to a specific previous item encounter; how-
ever, they were offered an opportunity to indicate recognition based on
spontaneous, involuntary recollection (R) with a separate response but-
ton when it occurred. Pertinent previous fMRI research suggests that
participants can indeed control the extent to which they attempt to re-
trieve contextual details in recognition decisions strategically (Dobbins
and Han, 2006; Quamme et al., 2010). The specific instructions were
guided by those provided by Montaldi et al. (2010; for additional ratio-
nale, see Migo et al., 2012). Participants were informed that, despite their
efforts to focus on familiarity, spontaneous recollection could be ex-

Figure 1. Experimental task design. During encoding, participants rated the relative attractiveness, comfort, or value for faces,
chairs, and buildings, respectively. In the subsequent scanned recognition test stage, participants provided a rating of perceived
item familiarity. They were asked to avoid voluntary attempts to recollect contextual details pertaining to a specific previous item
encounter but were offered an opportunity to indicate recollection when it occurred involuntarily.
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pected to occur on some trials. Recollection of contextual details was
defined as any situation that involved conscious awareness of informa-
tion about the past item encounter that was not included in the stimulus
itself, such as internal thoughts and associations that were formed during
the initial item encounter, or related uncontrolled external events (e.g., a
knock on the door during the presentation of that item at study). Partic-
ipants were familiarized with these response options in a practice phase
that required them to justify any R response with a description of the
contextual detail retrieved. They were also informed that two-thirds of
the items to be presented had been encountered in the study phase.

fMRI acquisition protocol. All MRI data were acquired on a 3 T Siemens
TIM Trio scanner with a high-resolution fMRI protocol optimized for
MTL examination. Functional MRI volumes were collected using a T2*-
weighted single-shot gradient echo-planar acquisition sequence [repeti-
tion time (TR), 2500 ms; echo time (TE), 26 ms; slice thickness, 2 mm;
in-plane resolution, 2 � 2 mm; field of view (FOV), 220 � 220 mm;
matrix size, 110 � 110; flip angle, 90°]. Each functional volume included
37 contiguous slices collected in an interleaved manner. For each exper-
imental run, 176 volumes were collected. To optimize MR signal in the
anterior temporal lobes, a transverse orientation was chosen with the
intent to include the entire temporal lobes and as much visual cortex as
possible. This slice selection resulted in full coverage of the ventral as-
pects of occipital and full coverage of the entire temporal lobes in all
participants, with exclusion of the most dorsal aspects of frontal, parietal,
and occipital cortices. A saturation band was applied during functional
runs to minimize artifacts related to eye movements and the sinus cavity.
T1-weighted anatomical images were obtained using an MPRAGE se-
quence (192 slices; TR, 2300 ms; FOV, 240 � 256 mm; matrix size, 240 �
256; flip angle, 9 mm; TE, 4.25 ms; 1 mm isotropic voxels).

fMRI data preprocessing. fMRI data were preprocessed in native space
using BrainVoyager QX version 2.3 (Brain Innovation). Functional im-
ages were slice-scan time corrected, three-dimensional motion corrected
with reference to the functional volume taken just before the anatomical
scan, and high-pass filtered using a Fourier basis set of two cycles per run
(including linear trend). Images were then coregistered with the anatom-
ical set, aligned with the anterior commissure–posterior commissure
plane, and smoothed using a three-dimensional Gaussian kernel with a
full-width at half-maximum of 3 mm. Functional data were convolved
using a standard double gamma hemodynamic response function (Fris-
ton, 1998). Participant-specific GLMs of these data allowed for extrac-
tion of z-scored trial-specific � estimates in all voxels of interest. �
estimates derived from a modeled HRF were chosen as target measure for
the MVPA (i.e., as classifier input) because they are particularly well
suited to account for overlap in the hemodynamic response in fast-event-
related designs (Misaki et al., 2010). Changes in mean intensity were
modeled by including them as predictors of no interest in the
participant-specific GLMs.

Anatomical ROI definition. The main structures of interest in our in-
vestigation were PrC, PhC, and the Hip. To conduct our MVPA, we
obtained anatomically defined ROIs in native MRI space with manual
tracing separately in each participant, using an established MR-based
protocol that specifies anatomical landmarks for demarcation of these
MTL structures and their boundaries (Pruessner et al., 2000, 2002). Spe-
cifically, we obtained ROIs for PrC, PhC, anterior Hip (aHip), posterior
Hip (pHip), and the entire Hip in each hemisphere. Entorhinal cortex
was identified at the time of tracing to aid in the identification of ana-
tomical landmarks but was not considered for the functional analyses.
The distinction between aHip and pHip was introduced based on recent
findings pointing to distinct functional specialization and followed the
protocol described by Poppenk and Moscovitch (2011), with the uncal
apex serving as the critical boundary. Figure 2 depicts a graphical repre-
sentation of these ROIs in a representative participant.

MVPA of fMRI data. MVPA (for reviews and rationale, see Norman et
al., 2006; Kriegeskorte and Bandettini, 2007; Tong and Pratte, 2012) was
used to address two different types of questions. First, we used it to
determine whether distributed patterns of activity in any of the MTL
structures examined could reliably distinguish between the stimulus cat-
egories (i.e., faces, chairs, and buildings). Second, and more importantly,
it allowed us to examine whether distributed patterns of activity could be

identified that reflected a memory signal, i.e., differences between famil-
iar and novel stimuli, for each stimulus category. In these analyses, we
specifically focused on perceived familiarity given that our main interest
was in understanding the role of MTL structures in explicit recognition
judgments. To the extent that the response distribution for items per-
ceived as familiar or novel (i.e., familiarity levels 3, 4 vs familiarity levels
1, 2, respectively) varied within participants and to the extent that such
unequal item distributions can introduce unwanted classification biases,
we introduced a sampling procedure that matched item numbers of
perceived familiar and novel trials within each stimulus category. This
sampling procedure operated in a pseudorandom manner and under-
went 10 iterations, with the provision that all trials be included in the
classification analysis at least one time. It reduced the number of trials in
the condition with the larger number (familiar or novel) so that it corre-
sponded with the number in the other condition of interest. For example,
if one participant had 50 “familiar” and 42 “novel” responses for faces,
the number of familiar trials included in the classification analysis for
faces was reduced to 42. We decided to use 10 different sampling itera-
tions in each familiar/novel classification based on initial pilot analyses in
two participants that showed that classifier performance did not differ
statistically when more sampling iterations (up to 100) were included.

Pattern classification analyses were conducted using the Princeton
MVPA toolbox (http://www.pni.princeton.edu/mvpa) and custom
MATLAB code (MathWorks). As a first step, we performed feature se-
lection to reduce noise in the functional data. For each ROI, the voxels
that appeared most informative for classification based on initial univar-
iate GLMs were selected in each participant separately (ANOVA; for
discussion, see Norman et al., 2006). Specifically, a one-factorial
ANOVA, with number of conditions being equal to the number of con-
ditions pertinent for the classification at hand (two or three), was con-
ducted on the � weights of all voxels in each ROI and in each cross-
validation. For all familiar/novel classifications, this analysis was also
performed separately for each of the 10 iterations of item sampling. The
resulting F values were then rank ordered across all voxels, and the voxels
corresponding to the top 10% of that ranking were selected for the
MVPA-based classification. Note that, with this type of feature selection,
the number of voxels considered for classifier training still scales with the
overall size of the ROI. To illustrate the outcome of this feature selection,
the number of voxels (2 � 2 � 2 mm in size), averaged across partici-
pants, that were included in the subsequent MVPA for each ROI were as
follows: right PrC, 55.1; left PrC, 54.9; right PhC, 41.2; left PhC, 41.2;
right aHip, 26.2; left aHip, 24.3; right pHip, 30.5; and left pHip, 30.0.

A linear support vector machine (SVM; libSVM, http://www.csie.ntu.
edu.tw/�cjlin/libsvm) was used for classification of the � values for the

Figure 2. Coronal structural MRI slices from a representative participant with anatomically
defined ROIs used for MVPA of fMRI data. L, Left; R, right.
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various experimental conditions, with a linear kernel function and a
constant cost parameter of C � 1. The SVM was trained on all trials
minus one from each of the conditions that were included in the analysis
at hand; those trials not included in the training dataset subsequently
served as test trials for assessment of classification performance. This
procedure was repeated multiple times such that all trials served as the
test stimuli for classification, providing a k-fold cross-validation (Duda
et al., 2001; Chadwick et al., 2010), where k reflects the number of trials
that were included in the relevant analysis. For each trial in the test set, the
classifier provided probability estimates that reflected the likelihood that
the activity pattern across voxels associated with that trial corresponded
to each of the different conditions included in the classification. These
estimates were expressed in a binary manner such that classification was
either correct (i.e., when the “true” experimental condition was assigned
the highest probability) or incorrect. Classification accuracy was then
calculated based on the percentage of test trials that were classified cor-
rectly in this binary schema. This calculation was performed and aver-
aged across all 10 sampling iterations in the familiar/novel classifications
to provide an unbiased performance estimate.

Finally, we also conducted additional cross-classification analyses to
probe whether any decision boundary yielding above-chance classifica-
tion between familiar/novel trials in a stimulus category might also allow
for successful classification between familiar and novel trials from other
stimulus categories. The MVPA cross-classification procedure used for
this purpose used the same linear SVM, cross-validation technique, and
sampling procedure described above. However, the sampling procedure
was performed to equate the number of trials across four, rather than
two, conditions (i.e., novel and familiar trials from two stimulus
categories).

To obtain inferential statistics, we primarily examined whether classi-
fication performance was above chance (0.5 or 0.33 depending on
whether two or three conditions were included, respectively), focusing
on each ROI independently. For this purpose, we used a single-sample t
test to test against a population mean of chance level, applying Bonfer-
roni’s correction based on the number of independent comparisons
made (i.e., the number of ROIs or stimulus categories examined).

Results
Behavioral performance
Raw percentages of the different recognition-response types for
each stimulus category are presented in Table 1. Visual inspection
of these data demonstrates that recognition decisions for previ-
ously studied items were based more frequently on familiarity (F3
and F4 collapsed; mean percentages, 40.2, 41.0, and 43.5 for faces,
chairs, and buildings, respectively) than on recollection (mean
percentages, 11.2, 12.9, and 12.5 for faces, chairs, and buildings),
as intended. Overall recognition performance, i.e., the ability to
distinguish between previously studied items and novel lures,
regardless of subjective recognition experience, was quantified
using the discriminability index d�, which considers hits and false
alarms in the context of signal-detection theory, considering F3,
F4, and R as old responses. Familiarity estimates were calculated
using d� based on F1, F2, F3, and F4 responses and corrected
assuming independence between familiarity and recollection
(Yonelinas, 1999). A one-way ANOVA conducted on these mea-
sures revealed that performance was closely matched across stim-
ulus categories; there were no significant differences between

categories for overall discrimination (F(2,51) � 0.81, p � 0.45),
estimates of familiarity (F(2,51) � 0.45, p � 0.64), or estimates of
recollection (R hits � R false alarms; F(2,51) � 0.01, p � 0.99).
Although performance levels were low, because of the high sim-
ilarity between all items within each stimulus category, familiar-
ity discrimination was above chance for each category (all t(17)

values �8.4, p values �0.001). We note that the limited number
of R responses observed in the present study (collapsed across hits
and false alarms; mean number of trials, 9.56, 11.67, and 11.06 for
faces, chairs, and buildings, respectively) did not allow for any
investigation of fMRI responses associated with recollection.

With respect to reaction times, a 2 � 3 ANOVA (response
type � stimulus category) revealed neither a main effect of cate-
gory (F(2,102) � 2.00, p � 0.14) nor a significant interaction
(F(2,102) � 2.13, p � 0.12), providing additional evidence that all
three stimulus categories were matched behaviorally. This analy-
sis did reveal a significant main effect of response type (F(2,102) �
44.39, p � 0.001), with R responses (mean � SD, 1336.2 � 233.9
ms) being faster than judgments of familiarity (F1–F4; mean �
SD, 1648.8 � 261.4 ms).

fMRI results: between-category classification
With our MVPA, we first sought to determine whether distrib-
uted patterns of activity across voxels in any of the anatomically
defined ROIs in the MTL could discriminate between the three
stimulus categories. For this purpose, we considered all novel
trials regardless of the recognition responses provided by the par-
ticipants, with an equal number of trials for each stimulus cate-
gory. The one-sample t tests conducted with a Bonferroni
correction for eight comparisons (i.e., ROIs) revealed that classi-
fication performance was above chance in right PrC (t(17) � 3.96,
p � 0.01 corrected), left PrC (t(17) � 4.56, p � 0.01 corrected),
right PhC (t(17) � 12.89, p � 0.001 corrected), left PhC (t(17) �
9.13, p � 0.001 corrected), and right pHip (t(17) � 3.46, p � 0.05
corrected), with all other regions (left aHip, right aHip, and left
pHip) showing classifier accuracy not significantly greater than
chance (all p values �0.37). Although these data point to
category-specific representations in some MTL regions, they do
not allow for any inferences as to whether all stimulus categories
can be discriminated from one another. Figure 3 presents the
results of additional analyses that focused on pairwise classifica-
tions. Activation patterns in right PrC (t(17) � 3.82, p � 0.01
corrected), left PrC (t(17) � 3.19, p � 0.05 corrected), right PhC
(t(17) � 12.04, p � 0.001 corrected), and left PhC (t(17) � 7.25,
p � 0.001 corrected) were sensitive to differences between faces
and buildings (p values for remaining ROIs were �0.11). These
regions were also sensitive to differences between faces and chairs
(right PrC, t(17) � 3.46, p � 0.05 corrected; left PrC, t(17) � 5.67,
p � 0.001 corrected; right PhC, t(17) � 7.31, p � 0.001 corrected;
left PhC, t(17) � 7.14, p � 0.001 corrected). Another region that
showed above-chance classification for these categories was the
right pHip (t(17) � 3.66, p � 0.05 corrected; all other p values
�0.41). Last, for discriminations between buildings and chairs,

Table 1. Recognition-response distribution and discrimination estimates for each stimulus category

Stimulus category

Responses to studied items (%) Responses to novel items (%) Discrimination d�

1 2 3 4 R 1 2 3 4 R Recognition Familiarity

Faces 21.9 � 3.1 26.7 � 2.1 20.8 � 1.4 19.4 � 2.1 11.2 � 2.0 42.9 � 5.1 30.9 � 3.1 16.3 � 1.8 8.0 � 1.9 2.0 � 0.9 1.24 � 0.06 0.64 � 0.08
Chairs 21.4 � 2.5 24.6 � 1.5 20.7 � 2.1 20.3 � 1.8 12.9 � 3.6 46.5 � 3.4 26.8 � 2.2 15.4 � 1.4 7.8 � 1.6 3.5 � 1.2 1.26 � 0.06 0.66 � 0.06
Buildings 24.3 � 3.5 19.7 � 1.4 18.4 � 1.7 25.1 � 2.5 12.5 � 2.6 48.0 � 5.6 25.4 � 2.6 14.2 � 2.5 10.2 � 1.6 3.1 � 1.1 1.34 � 0.06 0.73 � 0.07

For behavioral signal-detection and fMRI analyses, novel responses correspond to 1 and 2 collapsed, with familiar responses corresponding to 3 and 4 collapsed. Numbers reflect mean � SEM.
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classifiers for activation patterns in right PrC (t(17) � 3.19, p �
0.05 corrected), right PhC (t(17) � 5.41, p � 0.001 corrected), and
left PhC (t(17) � 6.06, p � 0.001 corrected) produced above-
chance performance (all other p values �0.30). Together, these
results revealed evidence for category-specific representations re-
flected in sensitivity to differences between all pairs of stimulus
categories in PrC as well as in PhC, with the most clear-cut pat-
tern emerging in the right hemisphere. Evidence for category-
specific representations in the Hip was limited.

fMRI results: within-category classification of familiar and
novel trials
Although the previous analyses revealed category-specific effects
in both PrC and PhC, their selective focus on novel items does not
speak to mnemonic signals as such. In other words, the results of
these analyses do not imply that these structures carry informa-
tion about the perceived familiarity of items in any of the relevant

categories. Therefore, we next examined whether subjectively
perceived familiarity would also be reflected in patterns of activ-
ity in PrC and PhC that are category specific. For these analyses,
trials were considered regardless of objective item status and were
collapsed across familiarity ratings F1 and F2 (novelty or low
familiarity) and contrasted with familiarity ratings F3 and F4
(high familiarity). This approach ensured that SVM training
could be based on a sufficiently large number of trials (�24) for
the familiarity-based classification in each category and individ-
ual participant. The average number of trials included for the
classification of faces, chairs, and buildings at each familiarity
level (i.e., low vs high) was 39.8, 39.7, and 38.3, respectively. The
results of these analyses are presented in Figure 4. We found
evidence for activation patterns that reflected subjectively per-
ceived familiarity in both PrC and PhC but not in the Hip in
either hemisphere. Specifically, in right PrC, patterns of activity
could be classified according to subjective familiarity with above-
chance accuracy for faces (t(17) � 4.77, p � 0.001 Bonferroni
corrected for three comparisons, i.e., number of stimulus catego-
ries) and chairs (t(17) � 3.47, p � 0.01 corrected) but not for
buildings (t(17) � 0.17, p � 0.87). Further, classifier accuracy for
both faces and chairs was significantly greater than for buildings
in right PrC (t(34) � 3.83, p � 0.01; t(34) � 2.68, p � 0.05, respec-
tively; corrected). In contrast, in right PhC, patterns of activity
could be classified according to subjective familiarity with above-
chance accuracy for buildings (t(17) � 3.91, p � 0.01 corrected)
and chairs (t(17) � 5.27, p � 0.001 corrected) but not faces (t(17) �
1.20, p � 0.25). Classifier accuracy for both buildings and chairs
was significantly greater than for faces in right PhC (t(34) � 2.42,
p � 0.05; t(34) � 2.48, p � 0.05, respectively; corrected). In the left
hemisphere, classifier performance in PrC did not exceed chance
level for any stimulus category (faces, t(17) � 1.15, p � 0.26;
chairs, t(17) � 1.95, p � 0.06; buildings, t(17) � 0.44, p � 0.67).
Classification accuracy was above chance in left PhC for chairs
(t(17) � 3.53, p � 0.01) but not faces (t(17) � 0.05, p � 0.96) or
buildings (t(17) � 0.72, p � 0.48).

Critically, in the Hip, we found no evidence for patterns of
activation that allowed for classification based on subjective fa-
miliarity for any stimulus category. This held regardless of
whether we assessed the pHip or aHip and regardless of whether
we did this in the right or the left hemisphere (all p values �0.15).
One issue to consider in these analyses is that the four hippocam-
pal ROIs were generally smaller than those in PrC and PhC.
Moreover, because they focused only on the anterior or posterior
section separately, they would not capture diagnostic patterns
that might be distributed across the entire Hip. Accordingly, we
also determined whether results would differ if we examined the
whole Hip in a single analysis (for each hemisphere). Note that, in
these analyses, the right hippocampal ROIs were on average, and
in the majority of the participants, numerically larger in volume
than the ROIs for right PrC and right PhC. Still, we found no
evidence for patterns of responses in the right Hip that allowed
for classification based on subjective familiarity for faces
(mean � SEM, 0.50 � 0.01), chairs (mean � SEM, 0.49 � 0.01),
or buildings (mean � SEM, 0.50 � 0.02). Similarly, we found no
such evidence when the Hip was considered as a whole in the left
hemisphere for faces (mean � SEM, 0.49 � 0.01), chairs
(mean � SEM, 0.50 � 0.01), or buildings (mean � SEM, 0.49 �
0.01).

Although our primary interest was in perceived familiarity, we
also explored whether patterns of responses in any ROI would
allow for successful classification based on objective item status
(i.e., previously studied vs new items regardless of recognition

Figure 3. Pairwise MVPA classification of different stimulus categories in left and right PrC,
PhC, aHip, and pHip. Classification was based on examination of all trials in which novel stimuli
were presented. Dashed lines indicate chance level for classification. Numbers within bars rep-
resent the number of participants for whom classification performance was numerically above
chance level. All error bars indicate the SEM calculated across participants. *p � 0.05, **p �
0.01, ***p � 0.001.
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response). No significant effects were re-
vealed for any stimulus category in any
region examined (PrC, PhC, aHip, pHip,
entire Hip in left or right hemisphere; all p
values �0.05). These divergent results for
classification based on perceived (i.e.,
subjective) familiarity versus objective
item status mirror previous fMRI findings
obtained with MVPA for the whole brain
in the context of recognition memory for
faces (Rissman et al., 2010).

fMRI Results: between-category cross-
classification and voxel overlap analysis
Given that our MVPA revealed signals re-
lated to subjectively perceived familiarity
for two stimulus categories in both PrC
(faces and chairs) as well as PhC (build-
ings and chairs), an important question
that arises is whether the patterns of activ-
ity that could be classified successfully are
indeed category specific. For example, the
analyses conducted so far would not rule
out that above-chance classifier perfor-
mance in right PrC for faces and chairs is
based on a common familiarity signal. Likewise, they do not rule
out that the familiarity signal for buildings and chairs in PhC is
shared. To address category specificity of the observed familiarity
signals more directly, we first explored the extent of overlap be-
tween voxels that contribute to the classification of familiar and
novel responses in one stimulus category and those that contrib-
ute to classification in the other. Toward this end, we examined
overlap at the level of voxels that were selected in the initial
feature-selection procedure to be the most informative for use in
the SVM. We found that 52% of the voxels in right PrC that
entered the classification analysis for faces also entered the clas-
sification for chairs (and vice versa). The corresponding averaged
value for overlap in right PhC in the context of classification of
buildings and chairs was 53%. These results suggest that the dis-
tributed memory representations for the categories supported by
each of these MTL structures show partial overlap. In the next
step, we examined this issue more formally with inferential sta-
tistics by conducting a cross-classification analysis for faces and
chairs in right PrC and for buildings and chairs in right PhC. For
example, if familiarity-based classification in PrC is based on
strongly overlapping distributed representations for faces and
chairs, these analyses should reveal that the pattern of activity that
distinguishes between familiar and novel faces can also be used to
discriminate between familiar and novel chairs and vice versa.
The classification accuracies we obtained for these cross-
classification analyses in right PrC and right PhC are presented in
Figure 5. Again, these analyses were conducted using the item-
sampling procedure described previously that matched item
numbers across both stimulus class and recognition responses
(with 33.7 trials included on average). Critically, cross-
classification was at chance in right PrC when the linear decision
boundary of the SVM trained on faces was used to classify famil-
iar and novel chairs (mean, 0.50; p � 0.45 uncorrected) as well as
when the SVM trained on chairs was used to classify familiar and
novel faces (mean, 0.49; p � 0.58). Cross-classification perfor-
mance for buildings and chairs in right PhC was equally unsuc-
cessful (mean, 0.52; p � 0.18; and mean, 0.51; p � 0.32). These
data suggest that the distributed patterns of voxels that contribute

to classification of familiar versus novel faces and chairs in PrC
and those that contribute to classification of familiar versus novel
buildings and chairs in PhC show some specificity within each of
these structures.

In the interest of completeness, we also conducted the remain-
ing cross-classification analyses that can be brought to bear on
our data in right PrC and right PhC (i.e., cross-classification in-

Figure 4. MVPA classification of perceived familiar versus novel trials for the three different stimulus categories in left and right
PrC, PhC, aHip, and pHip. Dashed lines indicate chance level. Numbers within bars represent the number of participants for whom
classification performance was numerically above chance level. All error bars indicate the SEM calculated across participants. *p �
0.05, **p � 0.01, ***p � 0.001.

Figure 5. MVPA cross-classification for the two stimulus categories for which reliable
familiarity-based classification was found in right PrC and PhC. Within-category classification
performance is shown for reference in the left column of each data pair as displayed in Figure 4.
Cross-classification data are displayed in green in the right column. A, Classification and cross-
classification of familiarity signals for faces and chairs in PrC. B, Classification and cross-
classification of familiarity signals for buildings and chairs in PhC. Dashed lines indicate chance
performance level. Numbers within bars represent the number of participants for whom clas-
sification performance was numerically above chance level. All error bars indicate the SEM
calculated across participants. Cross-classification performance did not exceed chance level in
any condition.
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volving buildings in PrC and faces in PhC). None of these analy-
ses revealed any significant effects (all p values �0.11,
uncorrected).

Discussion
In the current study, we examined distributed patterns of activity
in the MTL that are associated with the perceived familiarity of
faces, buildings, and chairs. Our primary analyses of interest fo-
cused on patterns of activity that distinguished between subjec-
tively experienced familiar or novel items in each object category.
In right PrC, MVPA revealed such familiarity signals for faces but
not buildings. In contrast, in right PhC, we observed familiarity
signals for buildings but not faces. Familiarity signals for chairs
were present in both structures but shared limited overlap with
the patterns we observed for faces and buildings. Contrasting
with these findings for PrC and PhC, we found no evidence for
familiarity signals in the Hip for any of the object categories
examined.

A number of studies have previously documented category-
specific responses in the MTL (Litman et al., 2009; Preston et al.,
2010; Staresina et al., 2011), some of which were also based on
MVPA of fMRI data (Diana et al., 2008; Liang et al., 2013). As in
the literature on category-specific effects in the ventral visual
stream more broadly, the most widely used comparison in these
studies has been between faces and scenes. In research concerned
with item-based familiarity, such comparisons can pose chal-
lenges for interpretation. When a scene (such as a bedroom) is
endorsed as being familiar, the response may be based on indi-
vidual objects (e.g., furniture), the spatial relationships between
these objects, or the geometric properties of the background (e.g.,
shape and size of the room). Unless the relationships between
target scenes and their distractors are systematically manipulated
(e.g., Cleary et al., 2012), the source of information in the stimu-
lus display that guides the memory judgment is unknown and
may even vary from trial to trial (for discussion, see Preston et al.,
2010; Martin et al., 2012).

In the present study, we addressed the potential role of PhC in
item familiarity by examining familiarity signals for items from
three different object categories, all of which were presented
without any scene context. Results from our initial examination
of MVPA classification (when only novel stimuli were consid-
ered) revealed that patterns of activity in both PrC and PhC were
sensitive to differences between all three object categories and
that the most consistent differences were present in the right
hemisphere. Critically, patterns of activity that gave rise to reli-
able classification of memory signals, more specifically item-
based familiarity, revealed noticeable functional differences
between both structures. In right PrC, familiarity signals could be
classified reliably only for faces and chairs. In contrast, in right
PhC, familiarity signals could be classified reliably only for build-
ings and chairs. This pattern of findings suggests that PhC, like
PrC, carries information about the familiarity of objects. How-
ever, both structures differ in their response profile across the
three different object categories examined here. To the extent
that these results were obtained with analyses that excluded any
recollection-based behavioral responses, this difference in neural
response profile cannot be captured with reference to the distinc-
tion between items and episodic context.

The preferential responses in PrC and PhC we observed for
faces and buildings in familiarity-based judgments are consistent
with findings from previous research in other tasks. For example,
recent evidence from fMRI studies in human and nonhuman
primates points to the presence of a cortical patch in rostral as-

pects of the collateral sulcus that shows preferential responses to
faces even during passive viewing (Tsao et al., 2008; Rajimehr et
al., 2009; Ku et al., 2011; Nasr and Tootell, 2012). Other studies
have revealed preferential responses to buildings in PhC (Aguirre
et al., 1998; Maguire et al., 2001; Cate et al., 2011; Nasr and
Tootell, 2012) and have shown adaptation effects in perceptual
judgments (Pourtois et al., 2009).

That familiarity signals for chairs were found to be present in
PrC as well as in PhC suggests that reference to stimulus category
alone may ultimately be insufficient to account for the difference
in response profiles exhibited by both structures. What other
factors might determine whether reliable familiarity signals are
observed in PrC or PhC then? The current findings would be
consistent with the idea that these structures are differentially
sensitive to specific stimulus dimensions that are often correlated
in various object categories (Op de Beeck et al., 2008). Based on
the characterization of PhC responses in other studies, we spec-
ulate that critical dimensions may include the size, mobility, and
sense of space that objects evoke (Cate et al., 2011; Mullally and
Maguire, 2011; Konkle and Oliva, 2012; Troiani et al., 2013).
From a functional perspective, these dimensions are essential de-
terminants of the navigational relevance of objects (Janzen and
van Turennout, 2004; Troiani et al., 2013). In such a framework,
PhC may carry familiarity signals for objects that tend to be large,
immobile, and evoke a sense of three-dimensional space. Con-
versely, PrC may carry familiarity signals for objects that are
smaller in real-world size and are not tied to a specific geograph-
ical location. Familiarity for chairs would be represented in both
PrC and PhC because chairs are characterized by some stimulus
attributes that drive PrC and others that drive PhC. Namely, like
faces, they are not tied to a specific location. Like buildings, they
can evoke a sense of surrounding three-dimensional space (Mul-
lally and Maguire, 2011). An account that makes reference to
object dimensions, rather than categories, could also explain why
the voxels within each structure that carry information about the
familiarity for one object category, although not allowing for
cross classification, show some overlap with those that are diag-
nostic for the familiarity of another. Given that fMRI studies in
recognition memory have most commonly focused on verbal
stimuli, with no systematic manipulation of specific dimensions
of the referent objects, we acknowledge, however, that extant
evidence that speaks to this proposal is currently limited.

Another explanation as to why certain types of objects prefer-
entially engage PhC could invoke the degree to which different
objects elicit contextual associations. In particular, it has been
suggested that PhC is involved in representing contextual associ-
ations for those objects (e.g., pillow) that are typically encoun-
tered in the same context (e.g., bed or bedroom; Bar and Aminoff,
2003). These types of contextual associations can be seen as se-
mantic in nature, in that they specify a typical context that may or
may not hold for any specific episodic encounter. It seems un-
likely that such semantic contextual associations would be of
diagnostic value in familiarity-based recognition memory deci-
sions that require discrimination between studied and non-
studied exemplars within restricted object categories, such as the
buildings used in the current study. Although some buildings
may be more likely to elicit such contextual associations than
others, these associations, to the extent that they become con-
scious at the time of encoding and retrieval, would be captured
with recollective rather than familiarity-based responses. To-
gether with other recent evidence showing that the contextual
effects in PhC reported by Bar and Aminoff (2003) may in fact
reflect scene imagery (Epstein and Ward, 2010) or the sense of
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surrounding space that some objects evoke (Mullally and Magu-
ire, 2011), these considerations argue against the idea that the
differences in item-based familiarity signals we observed for PhC
and PrC reflect differential influences of semantic contextual
associations.

In the current study, the primary focus of analysis centered on
discrete MTL structures that were defined anatomically. Another
approach in the literature has been to examine functional gradi-
ents that cross the boundary of both structures in the parahip-
pocampal region (Litman et al., 2009; Staresina et al., 2011; Liang
et al., 2013). We focused on differences between discrete struc-
tures because our primary objective was to evaluate theoretical
claims about functional specialization that have been proposed to
be present at this neuroanatomical scale (Eichenbaum et al.,
2007; Graham et al., 2010). These models of functional MTL
organization have typically been informed by differences in cyto-
architectonic composition and anatomical connectivity of PrC
and PhC (Lavenex and Amaral, 2000; Manns and Eichenbaum,
2006). In the future, it will be important to develop and test
models of MTL organization that directly map distributed patterns
of mnemonic signals to more fine-grained neuroanatomical subdi-
visions in neocortical MTL structures (e.g., Ding and Van Hoesen,
2010) and to corresponding differences in connectivity.

Concerning Hip function, we observed that distributed pat-
terns of activation in this structure did not allow for any reliable
classification of familiarity signals. These results held across both
hemisphere and across anterior and posterior aspects of the Hip,
regardless of stimulus category. Because the patterns probed were
specific to trials that were not accompanied by recollection of
episodic contextual information, this finding is consistent with
the influential idea that the Hip does not support item-based
familiarity (Aggleton and Brown, 1999). However, we recognize
that, considered in isolation, this hippocampal finding reflects a
null effect. As such, it is amenable to alternate interpretations and
could also be accommodated by the proposal that the Hip only
carries memory representations of high strength, which are asso-
ciated with high levels of behavioral accuracy (Squire et al., 2007).
Nevertheless, we note that recent data from intracranial EEG
recordings strongly argue against a single-process account of
MTL organization that attributes functional differences between
PrC and Hip to any differential sensitivity of both structures to a
unidimensional strength signal (Horner et al., 2012; Staresina et
al., 2012).

In conclusion, our findings indicate that both PrC and PhC
contribute to the assessment of item familiarity. They show that
the role of PhC is not limited to representing information about
context and that PrC is not involved in representing familiarity
for all object categories. Considered within the larger literature
reviewed, these findings suggest that a comprehensive model of
MTL organization for PrC, PhC, and Hip will ultimately require
consideration of representational distinctions that include, but
go beyond, the division between item and context information.
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