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Short-Term Plasticity Explains Irregular Persistent Activity
in Working Memory Tasks
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Persistent activity in cortex is the neural correlate of working memory (WM). In persistent activity, spike trains are highly irregular, even
more than in baseline. This seemingly innocuous feature challenges our current understanding of the synaptic mechanisms underlying
WM. Here we argue that in WM the prefrontal cortex (PFC) operates in a regime of balanced excitation and inhibition and that the
observed temporal irregularity reflects this regime. We show that this requires that nonlinearities underlying the persistent activity are
primarily in the neuronal interactions between PFC neurons. We also show that short-term synaptic facilitation can be the physiological
substrate of these nonlinearities and that the resulting mechanism of balanced persistent activity is robust, in particular with respect to
changes in the connectivity. As an example, we put forward a computational model of the PFC circuit involved in oculomotor delayed
response task. The novelty of this model is that recurrent excitatory synapses are facilitating. We demonstrate that this model displays
direction-selective persistent activity. We find that, even though the memory eventually degrades because of the heterogeneities, it can be
stored for several seconds for plausible network size and connectivity. This model accounts for a large number of experimental findings,
such as the findings that have shown that firing is more irregular during the persistent state than during baseline, that the neuronal
responses are very diverse, and that the preferred directions during cue and delay periods are strongly correlated but tuning widths

are not.

Introduction

Working memory (WM), the ability to temporarily hold, inte-
grate, and process information to produce goal-directed behav-
ior, is crucial to higher cognitive functions, such as planning,
reasoning, decision-making, and language comprehension (Bad-
deley, 1986; Fuster, 2008). The persistent activity recorded in
neocortex during WM tasks is thought to be the main neuronal
correlate of WM (Fuster and Alexander, 1971; Miyashita and
Chang, 1988; Goldman-Rakic, 1995). For example, in an
oculomotor-delayed response (ODR) task in which a monkey has
to remember the location of a stimulus for several seconds to
make a saccade in its direction, a significant fraction of the neu-
rons in the prefrontal cortex (PFC) modify their activity persis-
tently and selectively to the cue direction during the delay period
(Funahashi et al., 1989, 1990, 1991; Constantinidis et al., 2001;
Takeda and Funahashi, 2007). The classical view is that this re-
flects a multistability in the dynamics of the PFC circuit because
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sensory inputs are the same in the precue and in the delay periods
but neuronal activity is different (Hebb, 1949; Hopfield, 1984;
Amit, 1995; Amit and Brunel, 1997; Wang, 2001).

The persistent activity of PFC neurons is highly irregular tem-
porally (Shinomoto et al., 1999; Compte et al., 2003; Shafi et al.,
2007). For instance, it has been reported that in ODR tasks, the
coefficient of variation of the interspike interval distribution is
close to 1, and even >1 for many of the neurons (Compte et al.,
2003). Previous modeling works have attempted to account for
this irregularity (Brunel, 2000; van Vreeswijk and Sompolinsky,
2004; Renart et al., 2007; Roudi and Latham, 2007; Barbieri and
Brunel, 2008). However, in all these models, unless parameters
are tuned, the neurons fire much too regularly in memory states.
Hence, accounting in a robust way for highly irregular firing and
persistent activity remains challenging.

Irregular firing of cortical neurons is naturally explained if one
assumes that cortical networks operate in a regime in which ex-
citation is strong and balanced by strong inhibition (Tsodyks and
Sejnowski, 1995; van Vreeswijk and Sompolinsky, 1996, 1998;
Vogels et al., 2005; Lerchner et al., 2006; Vogels and Abbott,
2009). It is therefore tempting to assume that in WM tasks the
PFC network expresses a multistability between balanced states.
We argue here that this requires that the nonlinearities underly-
ing the persistence of activity in PFC are primarily in the neuronal
interactions and not in the neurons as assumed previously. We
also argue that short-term plasticity is a possible substrate for
these nonlinearities. Specifically, we propose that the short-term
facilitating excitatory synapses recently reported in PFC (Hempel
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et al., 2000; Wang et al., 2006) play an essential role in WM. To
illustrate these claims, we develop a new network model for spa-
tial WM based on this assumption. We show that the model
displays highly irregular spontaneous activity as well as persis-
tent, selective, and highly irregular delay activity. Importantly, it
also displays a great deal of the diversity observed in the delay
activity of PFC neurons (Funahashi et al., 1989, 1990; Asaad et al.,
1998; Romo et al., 1999; Takeda and Funahashi, 2002; Brody et
al., 2003; Shafi et al., 2007).

A brief account of this study has been presented in abstract
form (Hansel and Mato, 2008).

Materials and Methods

The network models. In this paper we consider two network models made
of spiking neurons. One model (Model I) has an unstructured connec-
tivity. The second model (Model II) represents a network in PFC in-
volved in an ODR task and has a ring architecture (Ben-Yishai etal., 1995;
Hansel and Sompolinsky, 1996).

Single neuron dynamics. Both models are made up of an excitatory and
an inhibitory population of integrate-and-fire neurons. The membrane
potential of a neuron follows the dynamics:

av
T— =

I =V + I"() + I™(), (1)
where 7 is the membrane time constant, I"°(¢) is the total recurrent
synaptic current the neuron receives from all other cells in the network
connected to it and I°¥(¢) represents feedforward inputs from outside
the network. Whenever the membrane potential of the neuron reaches
the threshold, V7, it fires an action potential and its voltage is reset to V.
We take V; = 20 mV, V; = —3.33 mV. The time constants of the
neurons are 7 = 20 and 10 ms for excitatory and inhibitory neurons
respectively, in accordance with standard values (Somers et al., 1995).

The external inputs. Simulation of a memory task (Model I) or of the
ODR task (Model II) requires a stimulus that depends on time. First,
there is a precue period that allows the system to settle in a baseline state.
In the second stage, a transient input is applied to simulate the cue, after
which the input returns to the previous value. Finally another transient
input is applied to erase the memory that has been stored. Thus, the
external feedforward input into neuroni = 1, ..., N, in population a =
E, I (hereafter neuron 7, «) is:

I = I, + LR + ). )

The first term on the right hand side represents the background input,
which is constant in time and depends solely on the target population.
The second term represents the transient sensory inputs related to the cue
to be memorized. The third term represents a transient input that erases
the memory at the end of the delay period. In Model I, I} ,(¢) (y = cue,
erase) is homogeneous (i.e., I7,(f) = AX(f) does not depend on i). In
model II:

RL(1) = AUD[1 + €lcos(6,. — 6,)], (3)

2
where 6. is the direction in which the cue is presented; 0;, = —iis

the direction of the cue for which the sensory input into neuron (i, &) is
maximum; and 6,,,.. is the direction of the saccade that is actually per-
formed. An estimate of 6., is given by the direction of the population
vector computed from the activity of the neurons at the end of the delay
period (see below). We assume that the angles, 6, ,, are uniformly dis-
tributed between 0 and 360°.

For simplicity we take AX(f) = AYH(f) (y = cue, erase), where A is
constant, H"*(t) = 1 during the cue period, and H“**(t) = 0 otherwise.
Similarly, H"**(t) = 1 when the memory erasing input is present and
H**¢(t) = 0 otherwise.

Connectivity of the networks. We define the connectivity matrix of the
network by J;, ;s = 1 if neuron (, B) is connected presynaptically to
neuron (i, @) and J;, ;s = 0 otherwise. In Model I the connectivity is
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unstructured. Therefore the probability, P;, ;g, that J;, ;3 = 1 depends

onlyon aand B: Py, ;s = K,5/Ng, where Np is the number of neurons in
population 8 = E, I and K, is the average number of connections a
neuron in population « receives from population .

The architecture of Model II is consistent with the columnar func-
tional anatomy of the monkey PFC (Goldman-Rakic, 1987, 1988, 1995;
Rao et al., 1999). The probability of connection between two neurons is

given by P, s = P,g(]6,, — 0;g]) with:

3 (61
Pp(0) = C.pexp 207,) (4)

where [0] = min(|6], 2 — [6]) and C,; is a normalization that ensures
that the total number of inputs a neuron in population « receives from
population § is on average K. The range of the interactions is charac-
terized by the parameters . The resulting network architecture is a
probabilistic version of the architecture of the ring model, in which neu-
rons are all connected with probability 1, whereas the strength of their
interactions depends on their distance on the ring (Ben-Yishai et al.,
1995; Hansel and Sompolinsky, 1996; Compte et al., 2000).

Synaptic interactions. We model the recurrent synaptic input current
into neuron (i, @) as:

LS = D Jiaj6Gapthpipnfup(t —
j8n

th,n)» (5)

where G, is a constant that measures the maximal synaptic current
neuron (i, @) receives from neuron (j, B), ;g ,, is the time of the n-th spike
fired by neuron (j, B), x;5, is the amount of synaptic resources available
atits synaptic terminals before this spike, and u;g , is the fraction of these
resources used by this spike. The dynamics of these two variables are
responsible for the short-term plasticity (STP) and we model them as

(Markram et al., 1998):
At At
8 ) + U(l - ujﬁ,n eXp( - 8, ))
¥ ¥

(6)

uj,B,Vx+l = ujﬁ,nexp<_

Atig,n Atig,,
Ngnr = Xpall = tggr)oxp|l —— =) + 1 — exp| — ,

r Tr
(7)

where Ath)n is the n-th interspike interval of neuron (j, 8); 7, and Tpare
the recovery and the facilitation time constants of the synapse, and U the
maximal utilization parameter.

Finally, the function f,5(#) in Equation 5 describes the dynamics of
individual postsynaptic currents (PSCs). It is given by f, () = (1/7,p)
exp(—t/7,p)H(t) where 7,4 is the synaptic decay time, and H(t) = 0
[respectively (resp.) 1] for t < 0 (resp. t > 0) (Dayan and Abbott, 2001).

Network size, connectivity, and scaling of network parameters with con-
nectivity. The total number of neurons in the network is N = N + N;
with N = 0.8 N and N; = 0.2N. The average total number of synaptic
inputs a neuron receives, K, is assumed to be the same in the two popu-
lations. We take: K;; = K;; = K; = 0.8 K and K;; = K;; = K; = 0.2K.
Unless specified otherwise we take N = 80,000 and K = 2000.

The balanced regime is mathematically well defined only in the limit
N — 00, K — 0 while K << N, and the strength of the recurrent interac-
tions and the external inputs are scaled as (van Vreeswijk and Sompolin-
sky, 1998):

8ap
Gup = = (8)
VK
L= it K (9)
Ay = al Ky (10)

where g5, i, and 42 do not depend on K. This scaling ensures that, in a
wide range of parameters, the temporal fluctuations in the synaptic in-
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Table 1. Parameters of the synaptic interactions for the unstructured and spatial
working memory networks

Unstructured Spatial WM

Gee (AMPA) 560 mV ms 533.3mVms
Gee (NMDA) 560 mV ms 533.3mVms
9, (AMPA) 67.2mV ms 67.2mV ms
;e (NMDA) 7.4 mV ms 7.4 mV ms
Jy —138.6 mV ms —138.6 mV ms
ay —90.6 mV ms —90.6 mV ms
U 0.03 0.03

T, 200 ms 200 ms

T 450 ms 450 ms

O — 60°

O — 70°

oy — 60°

oy — 60°

puts remain finite and do not depend on the connectivity when the
connectivity is large, whereas the time-average excitatory and inhibitory
inputs increase and balance each other (van Vreeswijk and Sompolinsky,
1996, 1998). In that limit, even though the excitatory and inhibitory
inputs become infinitely large, the temporal mean and SD of the fluctu-
ations of the total inputs remain finite and on the same order of the
neuronal threshold.

For finite connectivity, the balance of excitation and inhibition is only
approximate. Therefore, to qualify the dynamic regime of the network as
balanced, it is important to check the robustness to increasing K. As
explained in Results, it is essential to verify that the domain of the param-
eters in which the multistability between balanced states occurs does not
vanish in the limit of large N and large K. To test for this robustness, we
performed numerical simulations with a network of size up to N =
320,000 neurons and connectivities as large as K = 32,000.

Synaptic parameters. Unless specified otherwise, the parameters of the
models used in our simulations are those given in Table 1.

In both models, pyramidal cells form a mixture of fast (AMPA) and
slow (NMDA) synapses on other pyramidal cells and interneurons. Both
components share the same connectivity matrices J;,, ;; but differ in their
synaptic strength (g*MP* and gNMPA, respectively) and in the decay time
constant of their PSCs. Equation 5 must be interpreted as including the
sum over both components. The decay time constant of the excitatory
postsynaptic currents are 3 and 50 ms for AMPA and NMDA synapses,
respectively. We tested to confirm that taking longer time constants for
the NMDA synapses (for instance 80 ms, as reported by Wang et al.,
2008) has no impact on the results (data not shown).

The voltage dependence of the NMDA currents was not included in
the simulations depicted in this paper. However, we have verified that
including voltage dependence while keeping the STP of the recurrent
excitation (EE) synapse interactions does not qualitatively change the
conclusions of our work. For that purpose, we multiplied the synaptic
strength, Ghx"%, by the same voltage-dependent factor as in Compte et
al. (2000). Since this factor is always <1, we had to increase Gy °* and
GMPA by some constant factor equal to 5.

We define R as follows: R, = ghy " /(gax™* + gaF™). In most of
the simulations we took R, = 0.5 and R, = 0.9. This accounts for the fact
that NMDA synapses are more abundant between pyramidal cells than
between pyramidal cells and interneurons (Thomson, 1997). All the in-
hibitory interactions have a decay time constant of 4 ms (Bartos et al.,
2001, 2002). We verified that the properties of the model were robust
with respect to the values of the excitation and inhibition decay-time
constants, as well as with respect to the ratios R; and R,.

The recurrent excitation between pyramidal cells displays short-term
plasticity. For simplicity, in the simulations described in this paper, we
assumed that this is the case for AMPA as well as for NMDA interactions.
However, we verified that the properties of the network are essentially the
same if only AMPA synapses display STP (provided that the synaptic
strength Gy is increased appropriately to compensate for the absence
of facilitation in NMDA synapses). The parameters of the STP were
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chosen such that the network displays multistability in a broad range of
background inputs. The chosen values for the recovery and the facilita-
tion time constants were compatible with the in vitro data of Wang et al.
(2006). The utilization parameter, U, was in the range of the lower values
reported in that study. We assume that excitatory synapses to inhibitory
neurons as well as all inhibitory synapses do not display STP. Therefore
for these synapses x;5 ,, = g, = 1.

With the parameters in Table 1, the maximal postsynaptic potentials
(PSPs) of the various connections are as follows: 4.3 10 "> mV and 0.14
mV for the NMDA and AMPA components of the EE synapses, respec-
tively; —2.3 mV for the EI synapses, —2.5 mV for the IT synapses; and 2.5
10 ~?and 1 mV for the NMDA and AMPA components of the excitatory
to the inhibitory neurons, respectively. Note that the PSPs generated by
individual excitatory connections are substantially weaker than those
generated by inhibitory ones. This is partially compensated for by excit-
atory connectivity that is larger by a factor of 4 than the inhibitory con-
nectivity, and by greater activity for inhibitory than for excitatory
neurons. Moreover, the neurons receive an excitatory tonic input. Alto-
gether, excitation and inhibition inputs balance approximately as we
show in the results.

Numerical simulations. Simulations were performed using a second-
order Runge—Kutta scheme with a fixed time step, 8t = 0.1 ms, supple-
mented by an interpolation scheme for the determination of the firing
times of the neurons (Hansel et al., 1998).

Characterization of the irregularity in action potential firing. We quan-
tify the irregularity of the discharge of a neuron by the coefficient of
variation (CV) of its interspike interval (ISI) distribution defined by:

<(6n - <8n>)2>1/2
cv 5, s (11)
where 8, is n-th ISI of the neuron and (. . . ) denotes an average overall
number of spikes it has fired.
We also evaluate the coefficient of variation CV,. CV, is computed by
comparing each ISI (8, to the following ISI (5, ;) to evaluate the degree
of variability of ISIs in a local manner (Holt et al., 1996). It is defined by:

_ <‘8n - 6n+1‘>

cv, = Zm. (12)

For a Poisson spike train, CV = CV, = 1.

Evaluation of the phase diagrams. To evaluate which regions in the
space of parameters display persistent activity, we use the following pro-
cedure: In simulating the network, we slowly increase the external input
I (while keeping the rest of the parameters constant) and monitor the
mean and spatial modulation of the network activity. When Ij; has
reached a predefined value of sufficient size, we continue the simulations
while decreasing I, back to its initial value. This generates a hysteresis
curve, which enables us to identify the bistability region for that point in
the parameter space. The procedure is repeated for different values of the
parameters (e.g., Ggg) to obtain a phase diagram.

Simulation of the delayed response task in Model II. At the beginning of
a trial, the network is initialized from random initial conditions. After 3 s
(representing the fixation period in the experiment), the cue is presented
and the related feedforward input occurs for Af.,, = 0.5 s. The delay
period goes from 3.5 to 6.5 s. The transient input, which erases the
memory, begins at t = 6.5 s and has a duration of At,,,.. = 1s.

Quantification of the single neuron directional selectivity in Model II.
Tuning curves were estimated by simulating 20 trials for each of the eight
cues from 0 to 315° in intervals of 45°. Using a bootstrap method, we
determined whether the task-related activity of a neuron was direction-
ally tuned (Constantinidis et al., 2001). For each neuron we evaluated the
quantity O;, = [2,r5]"/? where ris the firing rate of the neuron during
the delay period averaged over the 20 trials with the cue presented in
direction 6. We compared the obtained value of O, , with the one ob-
tained after randomly permuting the angles of each trial before averaging. If
the second quantity is smaller than the first one for 99% of the permutations,
we consider that the activity is significantly directionally tuned.

We quantified the degree of directional selectivity with the circular
variance (CircVar) (Mardia, 1972) defined by CircVar = 1 — ¢,/c, where
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& = [ 1o exp(ik0)|. A broad tuning curve (badly selective response)
corresponds to CircVar close to 1 whereas for very sharp tuning CircVar
is close to 0.

The tuning curves of a large fraction of the neurons can be well fitted to
avon Mises function defined as:

cos(f — ) — 1>. (13)

r(0) = A + Bexp( D

We estimated the parameters A, B, i, D for each neuron by minimizing
the quadratic error of the fitt E = X4(r(6) — r,)* /03, where the sum
is over the eight directions of the cue and o, is the trial-to-trial SD of the
response. The estimate of the preferred direction (PD) of the neuron is
given by PD = 180°yy/r. The sharpness of the tuning curve [tuning width
(TW)] above baseline can be computed from the formula:

180°

1+ 2
W = "1 + DI T\ D
= cos og > .

(14)

The quality of the fit is estimated by evaluating the y? distribution for 4
degrees of freedom (8 points minus 4 parameters) (Press et al., 1992).
This probability characterizes the goodness-of-fit. Bad fits correspond to
extremely low values of the probability, g. We consider that the fit is good
if ¢ > 0.001. To determine the spatial modulation of the network activity
and population vector in Model II, let us denote by f,,(#) the firing rate of
neuron (j, o) averaged over a time window of 50 ms around time . To
characterize the spatial modulation of the activity of population « at time
t we computed:

Z1) = D fia0)exp(i6,,)/ Dfad) (15)

= M,(1)exp(iV (1)), (16)

where M, is the modulus of the complex number Z, and ¥, is its argu-
ment. Note that the real and imaginary parts of Z,(t) are the components
of the population vector at time ¢ for population . If the network activity
is homogeneous, M, (t) is ~0, whereas for a very sharply modulated
activity profile, M (t) is ~1. In our simulations, we always found that
Y (1) is approximately equal to ¢ (¢). The preferred direction, 6,,,.., of
the feedforward input that erases the memory trace was taken to be the
value of {; = {j; at the end of the delay period.

Results

Irregular firing in cortex in vivo and balance of excitation

and inhibition

Cortical neurons fire irregularly (Burns and Webb, 1976; Softky
and Koch, 1993; Bair et al., 1994). The neurons that fire less
irregularly are those in primary motor cortices, in supplemen-
tary motor cortices, or in association with or in motor areas,
such as parietal regions (Maimon and Asaad, 2009; Shinomoto
et al., 2009), where the CV of the ISI distributions of the
neurons are in the range CV = 0.5-0.8. The neurons that fire
more irregularly are in sensory areas and in prefrontal cortex
where the CVs are ~1.

Remarkably, recent experimental studies in monkeys per-
forming WM tasks have reported that the level of temporal irreg-
ularity with which PFC neurons fire during the delay period is
comparable to, if not higher than, what is observed in spontane-
ous activity or during the fixation period (Shinomoto etal., 1999;
Compte et al., 2003; Shafi et al., 2007).

The highly irregular activity of cortical neurons in vivo has
long appeared paradoxical in view of the large number of their
synaptic inputs (Softky and Koch, 1992, 1993; Holt et al., 1996).
This is because the temporal fluctuations of the postsynaptic cur-
rent produced by K >> 1 presynaptic afferents firing asynchro-
nously are much smaller, by a factor 1/ \K than its average.
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Accordingly, since in vitro neurons fire regularly in response to
weakly noisy input (Connors et al., 1982), one would expect that
firing in vivo would be only weakly irregular. A generic solution to
this problem posits nearly balanced strong excitatory and inhib-
itory synaptic inputs such that their temporal fluctuations, al-
though much smaller than their means taken separately, are
comparable to the average total input and to the neuronal thresh-
old (van Vreeswijk and Sompolinsky, 1996, 1998). Modeling
studies have shown that balanced states emerge in a robust man-
ner without fine tuning of parameters from the collective dynam-
ics of recurrent neuronal networks (van Vreeswijk and
Sompolinsky, 1996, 1998, 2004; Amit and Brunel, 1997; Lerchner
et al., 2006; Hertz, 2010). The balance mechanism has been ap-
plied to account for the high variability of spontaneous activity as
well as sensory-evoked neuronal activity in cortex (van Vreeswijk
and Sompolinsky, 2004; Lerchner et al., 2006). Can it also provide
a natural framework to account for the spiking irregularity ob-
served during WM tasks?

In balanced states, the level of activity of macroscopic ensem-
bles of neuronal populations are largely independent of single-
cell intrinsic properties (van Vreeswijk and Sompolinsky, 1998).
This can be understood heuristically as follows. Let us consider a
network comprising one excitatory population (E) and one in-
hibitory population (I) (Fig. 1 A). The state of each population is
characterized by its activity, f,, &« = E, I. Assuming a stationary
state of the network, this activity is related to the total input into
the population «, h,, via f, = S,(h,) where S, is the sigmoidal
input—output transfer function of population a and h;and h; are
given by (see for instance Dayan and Abbott, 2001):

hg = Geefy — Geify + I

hy= GIEfE - Gufl + I,

where the constants G,z measure the efficacy of the interactions
between population 8 and « and I and I; are external inputs to
the network.

If the excitation is too strong, the inputs h; and h; and there-
fore the activities of the populations reach the saturation levels of
Sg and S,. Conversely, for overly strong inhibition, h; and h; are
below the (soft) threshold of S and S;and network activity is very
low. An appropriate balance of excitation and inhibition is nec-
essary to prevent the network from being in one of these extreme
regimes. This occurs if the activities of the two populations obey
the conditions:

(17)

(18)

GIEfE - GHfI + Ilz 0,

(19)
(20)

which express the very fact that inhibition balances excitation.
These balance conditions do not depend on the input—output
transfer functions of the populations. They fully determine the
population activities as a function of the external inputs. Since
these equations are linear, there is generically a unique solution
for given values of I and I,. Hence the network cannot exhibit
more than one balanced state. This effective washout at the mac-
roscopic level of the neuronal intrinsic properties is a remarkable
feature of the balance regime. As a matter of fact, it can be derived
in large networks of randomly connected binary neurons (van
Vreeswijk and Sompolinsky, 1998), of randomly connected spik-
ing integrate-and-fire neurons (Renart et al., 2010), or of
integrate-and-fire networks (Lerchner et al., 2004; van Vreeswijk
and Sompolinsky, 2004).
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Figure 1.  Bistability between balanced states sustained by nonlinear recurrent excitation in
a two-population rate model. A, Architecture of the model. B, Graphic solution of the balance
equations for the sigmoidal synaptic transduction function, Sg( f;): Black curve: The function
Sgel fo). Straight lines: y = (f, — Q)/G, Q = 0.5; blue: G = 20; green: G = 3.3; red: G = 9.3.
The intersections between the straight lines and the black curve correspond to the possible
states of the network. For G = 20 and G = 3.3, the network has only one stable state. For G =
9.3, itis bistable and also displays one unstable state (indicated by the symbol u). ¢, Nonlinear
input- output transfer function Fe( ) = (a + bf)/(1 + of, + df) witha = 0.03, b =
0.01355,¢ = 0.0195s,d = 2.710 ~*s? (top). D, Phase diagram of the network. Background
inputs to the £ and / populations are equal (/s = /). Parameters: G, = 2.5, G, = 9, G, = 3.

According to the classical theory of WM, the selective persis-
tent activity observed during the delay period reflects the coexis-
tence of many collective stable states of the network dynamics in
PFC. The argument above implies that for these states to be bal-
anced, other nonlinearities than those present in the input—out-
put transfer functions of the neurons are required. This
prompted us to inquire which nonlinearities other than those of
single neurons are sufficient to achieve multistability between
balanced states.

Bistability between balanced states can be robustly sustained
by nonlinear recurrent interactions

The simplest form of persistent activity is exhibited by neural
networks that possess two stable states that differ by the level of
activity of the neurons. If the network is in one of these states, it
remains there until an appropriate perturbation of a macroscopic
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number of neurons induces a transition to the other state. We will
term the state in which the activity is lower as baseline and the
state in which the activity is elevated as persistent.

Bistability between balanced states in a simplified rate model
with nonlinear synaptic interactions

It is clear that the linearity of Equations 19 and 20 stems from the
assumption that the interactions between the neurons are linear;
namely, that the synaptic inputs are proportional to the presyn-
aptic firing rates and linearly sum up.

We first relax this assumption by considering that the recur-
rent excitatory interactions depend nonlinearly on the activity of
the excitatory neurons. This means that we replace G in Equa-
tions 19 and 20 by a term GpFg( f), which depends nonlinearly
on the activity of the excitatory population. Equations 19 and 20
are therefore replaced by:

GEESEEfE) - GELfI +1;=0 (21)

Gufy — Gyfi + ;= 0, (22)
with Sgi( fg) = feFee( fp). Expressing f; as a function of f; using
Equation 22 and inserting in Equation 21 we get:

fe —Q

T = SEE(fE)’ (23)

where

G = GGpe/(GpGg) > 0, (24)
and Q = (Guly/Gg — I))/Gyg. Equation 23 determines f;; as a
function of the model parameters. Note that this equation is for-
mally equivalent to the one that determines the firing rate of a
population of excitatory neurons with an input—output trans-
fer function, Spg, coupled recurrently with linear interactions
of strength G, receiving an external input GQ. It can be solved
graphically: its solutions are given by the intersections of the
straight line y = (f; — Q)/G with the curve y = Sgx( fp).

Of particular interest is the case in which Sg; has a sigmoidal
shape (Fig. 1 B). Then, for G small (Fig. 1 B, blue line) or G large (red
line) only one solution exists (blue and red points, respectively). For
intermediate G (green line), three solutions coexist (green points).
One corresponds to a low activity state and another to a high activity
state. In the third solution (point u) the activity is at an intermediate
level. Stability analysis reveals that the low and high activity states are
stable whereas the intermediate state is unstable. Therefore, a net-
work with such nonlinear recurrent excitatory interactions can dis-
play bistability between two balanced states.

As an example, we consider the function Fy; plotted in Figure
1C. We numerically solved Equation 23 for different values of the
external input and the strength of the recurrent excitation. The
resulting phase diagram is plotted in Figure 1D. It shows that
there is a large domain in the parameter space where the network
displays bistability. In this domain, the balanced conditions,
Equations 21 and 22, are fulfilled. Hence, the bistability is be-
tween balanced states.

Similar analyses can be performed when nonlinearities are
present in II, EI, or IE interactions. This shows that bistability
between balanced states can also occur if the IT interactions are
nonlinear with a sigmoidal transfer function. However, nonlin-
earities only in EI or IE interactions are not sufficient to sustain
bistability of balanced states (results not shown).
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Nonlinearities induced by facilitating recurrent excitatory
synapses can sustain bistability between balanced states in a
spiking network

The analysis above provides insights into the possibility of achiev-
ing bistability between balanced states in large neuronal networks
in which excitatory recurrent synaptic currents are sigmoidal
functions of the firing rates of the presynaptic neurons. Synapses
exhibiting STP with facilitation at a low presynaptic firing rate
display input—output transfer functions that exhibit this feature.
This suggests that STP may underlie bistability of balanced states.
Let us note that it has been previously found that synapses with
STP can give rise to bistability in a fully connected network of
excitatory integrate-and-fire neurons, although in this case no
irregular firing is observed (Hempel et al., 2000).

We investigated this hypothesis in a network consisting of two
large populations of integrate-and-fire neurons with random and
unstructured connectivity (see Materials and Methods for de-
tails). The recurrent excitatory synapses are endowed with STP
described according to the model of Markram et al. (1998). The
efficacy of an EE connection, Ggzux, is the product of the maxi-
mal efficacy Ggg, the amount of available synaptic resources x,
and the utilization fraction of resources u. At each presynaptic
spike, the synapse depresses due to depletion of neurotransmitter
and it also facilitates due to calcium influx. As a result, the vari-
able x is reduced by a quantity ux (depression) and the fraction u
increases (facilitation). Between spikes, u relaxes to its baseline
level, U, and x recovers to 1, with time constants 7and 7,, respec-
tively. The parameters we use for the STP are given in Table 1.
Figure 2A depicts the steady-state input—output transfer func-
tion for these parameters when the presynaptic spike train has
Poisson statistics or when it is periodic. In both cases, the
shape is similar to the one in Figure 1C. Note that the shape of
the input—output transfer function depends only weakly on
the spike statistics.

We performed extensive numerical simulations to study the
dependence of the network steady states on the model parame-
ters. Figure 2 B shows the phase diagram of the model as a func-
tion of the strength of the recurrent excitation and the
background inputs. All other parameters of the model are given
in Tables 1 and 2. Itis qualitatively similar to the phase diagram of
our nonlinear rate model (Fig. 1D). It displays a wide region of
bistability between a low (baseline) and an elevated (persistent)
activity state. In this region, the network prepared in the baseline
state remains in that state. However, a transient input of appro-
priate intensity and duration induces a switch of the network to
the activity-elevated state. The network persists in that state until
another appropriate transient input switches it back to baseline
(Fig. 20).

The balance regime is characterized by excitatory and inhibi-
tory inputs into neurons that are much larger than the neuronal
threshold, whereas the temporal mean and temporal fluctuations
of the total (net) inputs are comparable to the threshold. Figure
3A shows the excitatory (red), inhibitory (blue), and total synap-
tic currents (black) to an excitatory neuron in the network in the
baseline and in the persistent states. In both situations, the time
average of the excitatory current into this neuron is much larger
than the threshold. However, it is compensated for to a large
extent by a strong inhibition. This results in a total input whose
temporal mean is below threshold at a distance comparable to the
amplitude of the input temporal fluctuations. As a result, in base-
line as well as during the delay period, the action potentials this
neuron fires are driven by the temporal fluctuations. The result-
ing spike trains are highly irregular in both epochs.
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Figure 2.  Bistability between balanced states induced by STP in recurrent excitation in a
two-population network of integrate-and-fire neurons. Parameters as in Table 1. We keep the

relationship [ = 1 It A, The transduction function of the recurrent excitatory synapses

facilitates (resp. depresses) at a low (resp. high) presynaptic firing rate. This function was
computed by simulating the model synapse (Egs. 6, 7 in Materials and Methods) and the sta-
tionary value (after 5 s of simulation) of the product ux averaged over 100 trials. Dashed line,
Periodicinput. Dots, Input with Poisson statistics. B, Phase diagram of the network (G, = 2.6).
The star indicates the parameters used in C. C, Top, The population average activity of the
excitatory (solid line, low activity state: f; = 1.25 Hz; high activity state: f, = 3.9 Hz) and
inhibitory (dashed line, low activity state: f, = 4.1 Hz; high activity state: f, = 9.32 Hz) popu-
lations. Bottom, External inputs (background plus transient inputs).

The histograms plotted in Figure 3B show that these features
are not specific to this particular neuron. For all the neurons, the
mean excitatory and inhibitory currents are much larger than the
threshold in baseline as well as in the persistent state. However, in
both states the mean net input is comparable, in absolute value, to
the threshold and the input fluctuations. It is in general below
threshold, but the fluctuations are large enough to bring the
membrane potential of the neurons above threshold. This is clear
from the histogram of the mean inputs plus 1.5 SDs plotted in
green in Figure 3B. The distribution of the membrane potentials
in the two populations can be seen in Figure 3C. We can see that
even if the firing rate is higher in the delay state than in baseline,
the membrane potentials tend to be smaller in the second case
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Table 2. Parameters of the external current for the unstructured and spatial
working memory networks

Unstructured Spatial WM
i 1.66 mV 1.66 mV
ag'* 4.66 mV 24mV
€ 0 0.17
ag™e 2.66 mV 52mV
€pe 0 0.23
it 0.83mV 0.83mV
arc 233 mV TmV
e 0 0
a;e 1.83 mV 3.7mV
e 0 0.28

because the mean total input decreases. The activity of the neu-
rons is highly irregular in both states. This is depicted in Figure
3D, where the spike rasters of a subset of neurons are plotted. This
is also confirmed by Figure 3E, which plots the CV of the ISI of
2000 neurons as a function of their averaged firing rates.

Interestingly, in the persistent state, the mean net inputs into
the neurons are more negative than during baseline. However,
the resulting mean hyperpolarization of the neurons is compen-
sated for by an increase in their input temporal fluctuations in
such a way that the neuronal activity is larger in the persistent
states than in baseline. The firing is more irregular in the persis-
tent state: the histogram of the CV of the ISI distributions is
shifted toward values larger than during baseline (Fig. 3E). This is
a consequence of the increase in the input temporal fluctuations.

Note that our model does not incorporate the voltage depen-
dence of NMDA synapses (Jahr and Stevens, 1990). This is an-
other nonlinearity that will not be washed out in the balanced
state. We have checked that these nonlinearities do not affect the
qualitative behavior of the model when STP is present, but they
are incapable by themselves of generating persistent activity in a
balanced state. This is because as the firing rate increases the
mean total input decreases and the mean membrane potential
decreases also (Fig. 3C). The increase in the firing rate is allowed
only by the increase in the fluctuations, but the NMDA synapse
filters those fluctuations and is dominated by the mean voltage.
Therefore the voltage-dependent NMDA synapse will not be-
come potentiated as firing rate increases, and cannot provide a
suitable substrate for WM.

Robustness of the bistability regime with respect to
connectivity changes
We investigated the robustness of the bistability regime in our
model with respect to changes in connectivity K by simulating the
network with different values of K while the strength of the inter-
actions and the external inputs are scaled according to Equations
8,9, and 10 (van Vreeswijk and Sompolinsky, 1996, 1998, 2004).
This scaling guarantees that the temporal fluctuations in the total
inputs into the neurons remain similar while increasing K.
Changing the connectivity from K = 2000 to K = 4000 has
some effect in the phase diagram of the network as indicated by
the comparison of the solid and dashed lines in Figure 4 A (left).
The lower boundary of the bistable region moves slightly upward
but at the same time the upper boundary also moves in the same
direction. The latter move is larger than the former. Hence, in
fact, the bistable region is slightly larger for K = 4000. This sug-
gests that the phase diagram remains essentially the same when K
increases. Figure 4 A (right) plots the critical value of the background
current on the boundary of the bistable region for G = 1.6 V ms for

J. Neurosci., January 2, 2013 - 33(1):133-149 « 139

A Baseline Delay
8
:|- 4E Il 15 (NI N
‘é_ 0 0
£ -4 -15
8L~ 30
200 ms 200 ms
B ]
4 -
1_
2F l[\ A
LA A

e | 1 M|
-10-5 0 5 10 -20-10 0 10 20

Input /1, Input /1,
C
0.04 0.04
0.02{ ?F E!’ 0.02[ E
o-80 -40 0 40 0-80 -40 0 40
V (mV) V (mV)
D
2(3 ms 2(5 ms
E
>
(&)
PR T R | | L J
% 35 7015 % 50 100
Firing Rate Firing Rate

Figure 3.  Inhibition balances excitation in the baseline as well as in the persistent state. 4,
Input currents into an excitatory neuron. Red, Excitatory input (recurrent plus background).
Blue, Inhibitory input. Black, Total input (excitatory plus inhibitory). The firing rate and the CV of
the ISI histogram of this neuron are as follows: baseline: f = 1.4 Hz, (V = 1.2; delay: f = 16.6
Hz, (V = 1.9. B, Population histograms of the inputs into the neurons normalized to the firing
threshold. Blue, Time-averaged inhibitory input. Red, Time-averaged excitatory input. Black,
Time-averaged total input. Green, Time-averaged total input plus 1.5 SDs of the total input
fluctuations. All neurons are included in the histograms. Vertical line corresponds to threshold.
C, Population histograms of the membrane potentials. Red, Excitatory population. Blue, Inhib-
itory population. The membrane potentials of all the neurons are included in the histograms.
The potentials are sampled with a rate of 0.1 Hz. Vertical line corresponds to threshold. D, Spike
trains of 200 excitatory neurons during baseline and delay periods. E, CV/ versus firing rates. One
thousand neurons in each population are included. The histograms of the (Vs and the firing
rates are plotted in Figure 4. The results plotted in Cand D were obtained in simulations 100 s
long.
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Figure4. The bistable regime is robust with respect to changes in the average connectivity,
K. A, Left, Phase diagram for K = 2000 (solid line) and K = 4000 (dashed line). The dots show
the critical value of the background current below which the network displays bistability for
gee = 1.6V msand K = 2000, 4000, 8000, 16,000, and 32,000 (left to right). Right, The critical
value of the background current below which the network displays bistability as a function of £.
For the simulations with K = 2000, the network size was N = 80,000. For the other values of ,
N = 160,000. B, The average activity of the excitatory population versus time for different
values of K. Red, K = 2000; green, K = 4000; black, K = 8000. The network size is N = 80,000
and the synapticstrengthis g, = 1.23V ms. C, The population averages of the mean excitatory
input (red), total inhibitory input (blue), mean net input (black), and of the input fluctuations
(green). Left, Baseline. Right, Delay period. D, Histograms of the firing rates for K = 2000 (red),
K= 4000 (green), and K = 8000 (black); N = 80,000. All the neurons in the two populations
areincluded. Left, Baseline. Right, Delay period. The histograms are very similar for all the three
values of the connectivity. E, Histograms of the CV for K = 2000 (red), K = 4000 (green), and
K= 8000 (black); N = 80,000. (Vs were estimated from spike trains 100 s long. All the neurons
with a firing rate larger than 0.5 Hz in the two populations are included. Left, Baseline. Right,
Delay period. The histograms are almost identical for all three values of the connectivity.

K = 2000 up to K = 32,000. The overall variation of the critical
current suggests that it saturates as K becomes very large.

The properties of the dynamical states of the network for the
reference set of parameters (see Tables 1, 2) are also compared in
Figure 4 for K = 2000, 4000, and 8000. Figure 4 B confirms the
robustness of the bistability with respect to K. Indeed, the net-
work is bistable, the population average activities in the two co-
existing stable states are the same, and the overall dynamics of
activity during the switch on/off are very similar for all the values
of K tested. Figure 4C plots, as a function of K, the population
average of the mean excitatory currents (red) and mean inhibi-
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tory currents (blue) as well as the mean (black) and the fluctua-
tions (green) of the net inputs into one excitatory neuron. The
mean excitation and the mean inhibition increase proportionally
to V]I?. This contrasts with the mean and the fluctuations of the
net inputs, which remain almost constant and on the order of the
neuronal threshold. These features indicate that the baseline as
well as the elevated activity states are balanced independently
of K. Finally, Figure 4 D,E plots the histograms of the single
neuron firing rates and CV for different values of K. It is clear
that increasing the connectivity has almost no effect on these
distributions.

We therefore conclude that the bistability, the excitation and
inhibition balance, the irregularity, and the heterogeneity of the
neuronal activity are robust in our network with respect to
change in connectivity.

Network mechanism underlying visuospatial WM

The classical framework to investigate visuospatial WM in pri-
mates is the ODR task schematically represented in Figure 5A. In
this task, a monkey needs to remember the location of a stimulus
for a delay period of several seconds and make a saccade in that
direction at the end of the period (Funahashi et al., 1989). Elec-
trophysiological recordings performed in dorsolateral prefrontal
cortex of primates has revealed that neurons in this region modify
their activity persistently and selectively to the cue direction dur-
ing the delay period (Funahashi et al., 1989, 1990, 1991; Constan-
tinidis et al., 2001; Takeda and Funahashi, 2007). It is believed
that this selective persistent activity is the neural correlate of in-
formation on the location of the cue that has to be memorized to
perform the saccade at the end of the delay period.

A theoretical framework to account for this selective persis-
tent delay activity is a recurrent network made of identical neu-
rons with the geometry of a ring and a connectivity pattern such
that the interaction between two neurons depends solely on their
distance on the ring (Camperi and Wang, 1998; Compte et al.,
2000). With sufficiently strong and spatially modulated recurrent
excitation and appropriate inhibition, the network operates in a
regime of multistability between a state in which the activity is
homogeneous and a set of states characterized by a bumpy activity
profile. The “bump” can be localized at an arbitrary location if the
network connectivity is tuned so that it is rotationally invariant. Dur-
ing the cue period, a transient stimulus tuned to a specific location
on the ring, corresponding to the direction to be memorized, selects
the state in which the bump peaks at that location. After the stimulus
is withdrawn, the network remains in this state. Therefore, the net-
work is able to encode the memory of the cue location.

A crucial ingredient in this hypothesis is that neuronal popu-
lations respond in a nonlinear fashion to external inputs. This is
essential not only to generate the persistence of neuronal activity
during the delay but also its bumpy localized profile (i.e., selec-
tivity) (Hansel and Sompolinsky, 1998). In all the models studied
so far to account for selective persistent activity in ODR tasks
(Compte et al., 2000; Barbieri and Brunel, 2008), the population
nonlinearities are induced by nonlinear input—output transfer
functions of single neurons. As argued above, the network in
these models cannot display baseline as well as memory balanced
states because of the washout at the population level of the latter
nonlinearities. In the following we show that this becomes possi-
ble if the nonlinearities are generated by short-term facilitation in
the recurrent excitatory synapses.
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Figure 5.  The PFCnetwork model. A, Left, The visuomotor WM task. A trial begins while the monkey fixates the screen center.
Avisual cue appears for 0.5 s. The monkey must memorize the cue direction during a 3 s delay period while it maintains fixation. At
the end of the delay it must make a saccade in the cue direction and restore fixation. Right, Model architecture. Red dots, Excitatory
(pyramidal) neurons. Blue dots, Inhibitory interneurons. Neurons are arranged according to their preferred directions 6. The
probability of connection decreases as a function of the difference between the preferred directions. The interaction strengths are
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their distance according to Equation 4.
The neurons receive a homogeneous
background input that is constant in time.
During the cue period, the neurons re-
ceive an additional input. This stimulus
depends on the direction of the cue ac-
cording to Equation 3. It is maximum for
0.4 = 0. Another transient input erases
the memory at the end of the delay period.
A crucial feature of the model is that ex-
citatory recurrent synapses display STP as
in Figure 2 A. See Materials and Methods
for the details of the model.

We studied this network using nu-
merical simulations that mimic the ex-
perimental protocol of an ODR task.
Figure 5B shows a typical trial. At the
start, during the precue period, the net-
work activity is low and homogeneous:
the network is in its baseline state. The
visual cue is presented for 500 ms in di-
rection 6., = 180°. Subsequently the
neurons near § = 180° elevate their ac-
tivity. Upon removal of the cue, the net-
work relaxes to a state with a “bumpy”
pattern of activity localized near 6.
The network activity remains elevated
and localized close to 6 = 0, (Fig. 5C),
maintaining memory of the cue direc-
tion during the 3 s delay period. Even-
tually, the transient input at the end of
the delay period erases this memory.

For the duration of the turn-on input
we have chosen 0.5, as this is the typical
duration of the cue period in the ODR
task experiments (Funahashi et al.,
1989). We have also assumed that the
cue-related input is tuned to account for
the direction selectivity of the cue pe-
riod activity of PFC neurons. With the
parameters we have chosen, the cue-
related input, averaged over all direc-
tions, is not very different from the
background input. The modulation
with the direction, &, is 0.17. So the
maximum/minimum of this input are
only 17% larger/smaller than the back-
ground. In fact, our simulations indi-
cate that the mean cue-related input can
be taken as the same as for the back-

Ger G, G and G, The background currents I4, I¢ are applied uniformly to all the neurons. The transient currents I, 5, 15, ground input (results not shown). The
and I5** are applied as explained in Materials and Methods. B, One trial of the task simulated in the network. Cue direction, 180°. ~ most critical parameter is &, which
Fixation, cue, and delay periods are denoted by F, , and D, respectively. Top, Left, Spike rasters. Ten percent of the excitatory ~needs to be at least 0.1. Therefore, the
neurons are included. Top, Right, Spatial profile of the time-averaged activity of the neurons during the delay period. Twenty-five percent  transient input necessary to activate the
of the neurons are represented. Middle, Population-averaged activity of excitatory neurons versus time. Bottom, External input toexcit-  persistent state does not need to be large
atory neurons versus time. C, The position of the bump versus time during cue (C) and delay (D) periods for eight directions of the cue (every compared with background.

45°, dashed lines). The blue vertical line denotes the beginning of the delay period (see Materials and Methods for details).

Balanced visuospatial WM can be sustained by STP

We consider a large recurrent network of integrate-and-fire neu-
rons with a ring architecture (Fig. 5A; Materials and Methods).
Each neuron is parametrized by its location, 6, on the ring. The
probability of connection between two neurons decreases with

As far as we know, nothing is known ex-
perimentally about the strength and the du-
ration of the external inputs responsible for turning the switch off.
Simulations show that erasing of the memory can be achieved in
various ways in our model. In fact, a broad range of stimulus param-
eters and stimulus durations can achieve switch-off. The most effi-
cient way is a sufficiently strong and long-lasting feedfoward
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inhibitory input into the excitatory population, or a strong excit-
atory input on the inhibitory neurons. However, such stimuli sup-
presses almost completely the activity in all the neurons. This is not
observed in experiments. In the parameters of our reference set, both
populations of neurons are excited by the transient stimulus that
erases the memory. The excitation of the interneurons induces an
inhibition on the pyramidal cells. This inhibition is to some extent
balanced by the feedforward excitatory input these neurons receive
via the erasing stimulus. As a result, this input reduces their activity
and only some of the pyramidal neurons display a transient com-
plete suppression of activity. Note that according to Table 2 with the
parameters of the simulations described in the paper, the mean (over
directions) of the switch-off-related input is approximately 2 (for
excitatory neurons) and 3 (for inhibitory neurons) times larger than
the background input. Hence the switch-off input is larger than the
background, but only moderately.

To show that there is a balance of exci-
tation and inhibition during the precue as
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Figure 6.  Spatial profiles of the time-averaged inputs into excitatory neurons demonstrat-

ing the balance of excitation and inhibition in the spatial WM model. 4, Baseline. B, Delay
period. Black curves, Top to bottom, Excitatory input, total input, and inhibitory input. Red,
Excitatory input averaged with a square filter with a width of 50 neurons to smooth fast spatial
fluctuations. Blue, Inhibitory input averaged with the same filter. Green, Total input plus 1.5 SDs
of the total synaptic input fluctuations. All the inputs are normalized to the threshold (dashed
line).
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Figure 7.  The activity of the neurons during the delay period is selective to the direction of the cue and the spike trains

(compare green line with threshold). In-
terestingly, the temporal mean of the total
inputs tends to be lower during the delay
than during the precue period. This is
compatible with the elevation of the activ-
ity of a large fraction of the neurons dur-
ing the delay period because the
fluctuations also tend to increase. This is similar to what we found
in our simulations of the unstructured network studied above
(e.g., Fig. 3).

The activity of most of the neurons in our network is
direction-selective during the cue period as well as during the
delay. This is depicted in Figure 7 for one excitatory neuron.
Note that its tuning curves during the two periods have
slightly different preferred directions (PDs) and different tun-
ing widths (TWs). The discharge pattern of the neuron at
baseline is highly irregular (CV = 0.9). It is also strongly ir-
regular during the delay whether the cue is presented at PD
(CV = 1.6) or away from it (CV = 1.3). In Figure 8 we show
the distribution of CV over the whole population in the precue
and the delay periods. For the delay period the CVs were com-
puted separately for preferred (Fig. 8, left) and nonpreferred
directions (Fig. 8, right), defined as those directions for which

are highly irreqular for preferred as well as for nonpreferred cue directions. Rasters and PSTH (bins, 50 ms) for one
excitatory cell. Eight cue directions and 20 trials/cue direction. Vertical lines indicate the cue period (blue) and the end of
the delay period (red). Center, tuning curves of the neuron for the delay (black; PD, 170°; TW, 38°) and cue (green; PD, 199°;
TW, 68°) periods. Note that for this neuron the TWs are different but the PDs are similar. Error bars: SD estimated over the
20 trials. Dashed line, Baseline firing.

the trial-averaged firing rate was higher (preferred directions)
or lower (nonpreferred directions) than the activity of that
neuron averaged both over trials and over the eight directions
(Compte et al., 2003). These results show that all the neurons
in both periods fire in a very irregular manner and that, during
the delay, the firing is more irregular when the cue was pre-
sented at preferred directions. We also investigated whether
slow firing rate nonstationarities can account for part of the
irregularity. To do that we computed CV,, which takes into
account difference between adjacent interspike intervals (see
Materials and Methods). We found (Fig. 8, dashed lines) that
the behavior is now much more similar to a Poisson process.
This is also compatible with the results found in Compte et al.
(2003). In Figure 8 we also show CV in baseline period versus
CV in delay period for all the neurons in the network. We can
see that there is no correlation between the two values.
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The tuning curves of the responses
during the cue period are also diverse (Fig.
10A, green lines). For instance, for some
o neurons the optimal response is larger for
1 the cue than for the delay whereas for oth-
| ers the reverse is observed. The simula-
? tions also revealed strong correlations
|
|

Delay-NP

between the preferred direction of the de-
lay and the cue responses. In contrast, the

1.5

CV (Baseline)
T

0.5 | | J
0.5 1 1.5 2

CV (Delay)

Figure8.

versus CVin delay for all the neurons.

A B C
0.06 4

0.04

0.02f

Top, Histograms of the CV/ (solid line) and CV/, (dashed line) for activities during fixation (baseline), and delay periods.
Delay-P, preferred directions. Delay-NP, nonpreferred directions. (see Materials and Methods). For each neuron, (V/and (V, were
computed from 20 trials per cue direction. Only directions with average firing rate >2 Hz are included. Bottom, (V in baseline

tuning widths in the two epochs are only
weakly correlated (Fig. 10 B). Note that in
Fig. 10 B (left) one can see eight faint hor-
izontal stripes associated with the eight
equally spaced directions used to evaluate
the tuning curves. This is because for very
narrow tuning curves, the sampling of the
directions is too coarse to obtain a precise
estimate of the preferred directions. This
effect involves <0.1% of the neurons.

Figure 11 plots the poststimulus time
histograms (PSTHs) of the activity for
several neurons. It shows that the firing
rate dynamics of the neurons during the
task are also diverse. In particular, al-
though for many neurons activity remains
essentially constant during the delay pe-
riod (Figs. 1, 3, 11C), for others it ramps
up (Figs. 2, 4, 11C). Some neurons display
a phasic response to the cue (Figs. 1, 2,
11C), whereas others do not (Figs. 3, 4,
11C). In fact, visual inspection of the
PSTH for a sample of 200 neurons (data
not shown) indicates a phasic cue re-
sponse at the preferred direction for ap-
1 proximately half of them.

This diversity is also an outcome of the
balanced regime in which the network is

| J 0
90 -q80 90 0 90 180 O
APD (deg)

00 30 60

Tuning Width (deg)

Figure9.

circular variance for all the neurons (solid, excitatory neurons; dashed, inhibitory neurons).

The selectivity properties and the dynamics of the delay
activity are diverse

The neurons in our model display a diversity of selectivity prop-
erties. Although most neurons (98%) have selective delay activity
(selectivity evaluated by the bootstrap method), only half have
tuning curves well fitted to a von Mises function (Eq. 13). More-
over the width of the tuning curves of these neurons are broadly
distributed (Fig. 9A) and the preferred directions are diverse even
for nearby neurons (Fig. 9B). Neurons with tuning curves badly
fitted to a von Mises function also display a broad dispersion in
the degree of selectivity as quantified by the circular variance
(Mardia, 1972) (Fig. 9C). Other aspects of the diversity in tuning
curves are depicted in Figure 10A. Note in particular that, de-
pending on the neuron, for a cue that is opposite to the preferred
direction, the delay activity can be suppressed (also Fig. 7), sim-
ilar to, or enhanced compared with baseline (Fig. 10A, black
lines).

Circ. Variance

Diversity in the tuning curves. A, Histogram of the tuning width for neurons with tuning curves well fitted with a von
Mises function. Solid, Excitatory neurons (TW, 48 = 14°). Dashed, Inhibitory neurons (TW, 61 = 16°). B, Histograms of the
difference APD = PD — 6 between the PD of a neuron and its location in the network for these neurons. €, Histograms of the

l 2 operating. Because of the randomness in
0.5 1 connectivity, the excitatory and the inhib-
itory inputs fluctuate spatially. Although
the spatial fluctuations are much smaller
than the spatial average for each of these
inputs, they are comparable in size in the
total inputs. As a result, the spatial fluc-
tuations in connectivity substantially af-
fect the discharge of the neurons (van
Vreeswijk and Sompolinsky, 1996, 1998, 2004) inducing di-
versity in single neuron activity properties.

The network dynamics are multistable in a broad range of the

background

inputs

We assessed the robustness of multistability with respect to
changes in the background inputs. Figure 12 depicts the bifurca-
tion diagram for the network dynamic states when the back-
ground input is varied. This was done by running the dynamics of
the network (with the parameters of Table 1) while changing I’
(keeping I! = I% /2) very slowly. The network was initialized in
the low activity state with a small value of I% just above the thresh-
old current of the excitatory neurons, I ~ 20 mV . Figure 12
plots the hysteresis behavior of the spatial average (A) and the
spatial modulation (B) of the network activity, as defined in the
Materials and Methods section, as a function of I%. By increas-
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ing I% slowly, the network remains in a
state of low activity up to a value of I%
~ 80 mV, beyond which this state no
longer exists. The network then settles in a
state of elevated activity where it remains
while I keeps increasing. At I} = 100 mV
the direction of the changes of I% is re-
versed and it starts to decrease. The net-
work now tracks the state of elevated

'y
(3}

Firing Rate (Hz) »
S
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activity until IZ ~ 24 mV, when it 0

ceases to exist. This shows that in a ~
broad range of background inputs the 4 10
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work and the selectivity of the neurons are
robust to changes in the connectivity K.
This is shown in Figure 13A, which plots
the distribution of the circular variance
for three different values of the connectiv-
ity (K = 2000, 4000, and 8000). It shows
that for larger connectivity the neurons
tend to be more selective, but that this ef-
fect saturates for large values of K.

Figure 14 plots the bifurcation dia- 1)
gram for different values of the spatial 0
range of the inhibitory interactions. It
shows that, even though the range of the
inhibition is shorter than the range of the
excitation, the network displays multista-
bility. It also shows that the domain of
multistability is larger when the inhibition
is broader. It can also be seen that in the
multistable regime, the spatial average fir-
ing rates in the baseline as well as in persistent states depend only
weakly on the range of the inhibition (Fig. 14, left). The depen-
dency of the spatial modulation of the activity profile in the per-
sistent state is more pronounced: for broader inhibition the
modulation is larger (Fig. 14, right). This corresponds to an
increase in the degree of direction selectivity of the neurons
during the delay period when inhibition is broader. This is
shown in Figure 13B and in Table 3. The fraction of neurons
with good fit to a circular variance, also given in Table 3, is also
sensitive to the range of the inhibitory interactions. The
broader the inhibition, the smaller this fraction becomes.

These results indicate that these parameters (range of inhibi-
tion and connectivity) can be varied in a very broad range and the
network still displays selective persistent activity.

Pref. Dir. (cue)
%
o

Encoding of the cue direction in the position of the

activity bump

In theory, the existence of a continuous set of persistent attractors
is necessary to maintain memory of the cue direction in the net-
work. This continuity is destroyed by very small spatial heteroge-
neities in the connectivity or in the intrinsic properties of the
neurons. In the presence of such heterogeneities, the network
state during the delay period drifts toward a discrete attractor of
the dynamics that is only very weakly correlated with the cue
position (Tsodyks and Sejnowski, 1995; Zhang, 1996; Seung et al.,

180
Pref. Dir (delay)

©
o
1

% — a5 o0
Tuning Width (delay)

360

Tuning Width (cue)
&
I

Figure10. A, Diversity in the shapes of the tuning curves. Black, Delay. Green, Cue. Dashed line, Baseline average firing rate. All
the neurons are excitatory except for the last neurons in the second line, which are inhibitory. B, Comparison of the tuning
properties of the neurons during the cue and delay periods. Left, The preferred directions are strongly correlated (R* = 0.94).
Right, The tuning widths are weakly correlated (R = 0.02). Only neurons with tuning curves well fitted with von Mises functions
for the two periods are included.

2000; Renart et al., 2003). Hence, the memory trace encoded in
the location of the bump of network activity fades during the
delay period at a rate that depends on the velocity of this drift.
If the drift is too fast, this trace cannot be conserved for the
duration of the delay and the selectivity of the neurons to the
cue direction will be impaired. However, if the drift is suffi-
ciently slow, the network can still function properly to encode
the position of the cue, provided the delay duration is not
overly lengthy.

In our network model, the connectivity is random and hence
is heterogeneous. As a result, the dynamics of the network pos-
sesses only a small number of attractors, as shown in Figure 15A
(left). The eight trajectories of the bump plotted in that figure
correspond to different directions of presentation of the stimulus
during the cue period. After a relatively long time all the trajec-
tories converge toward one of two possible locations. In other
words, there are only two persistent attractors. However, if the
delay period is not too long, the position of the cue is still strongly
correlated at the end of this period (Fig. 154, right).

In fact, the accuracy with which the location of the cue can be
memorized decreases with the duration of the delay period. To
estimate the rapidity of the memory degradation, we simulated
N, = 100 realizations of the network for delay periods of 15 s. For
each realization we computed, as a function of time, the location
of the bump of activity, () (k = 1, ..., N,), as explained in
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Figure 12.  Bifurcation diagram as I? is varied. A, Spatial average activities of excitatory
neurons (solid) and inhibitory (dashed). B, Spatial modulation of the activities of the two pop-
ulations. All parameters are givenin Table 1. The arrow indicates the value of the current used in
simulations.

Materials and Methods. Defining 8s,.() = y.(t) — ¢(0) (t =0 at
the beginning of the delay period), we evaluated:

(25)

1 N
A() = 2 W),

k=1

and:

() =

(26)

Clearly A(t) is a small quantity on the order of 1/ \N This is
because, after averaging over the realizations of the connectivity,
the network displays rotational symmetry. This is in contrast with
3,(t), which does not vanish even though N, is large, as depicted in
Figure 15B. At short time, the drift is dominated by the effect of
the fast noise generated by the network dynamics in the balanced

Diversity in the firing rate dynamics during cue, delay, and response periods. Poststimulus histograms (100 trials
included) for five neurons. A-D, Different excitatory neurons for a cue direction at their PDs. E, F, One excitatory neuron with PD =
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state. Therefore, it is a diffusion process
and 2(t) = \E For very long times, the
dynamics converge toward one of the at-
tractors therefore () saturates. For in-
termediate values of ¢, the drift is
dominated by the effect of the heterogene-
ity in the connectivity. It takes the form of
adirected random walk and 3.(#) increases
linearly with time: 2(#) ~ V. The rate of
this increase, V, is an estimate of the drift
velocity and thus of the rapidity of mem-
ory deterioration during the delay period.
For the parameters of Table 1, we find a
drift velocity of approximately 1.8°/s (Fig.
15B). Hence, the typical error in encoding
the direction of the cue in the memory
trace in this network is not >6° if the delay
period is 3 s in duration.

The drift velocity depends on the net-
work size, N, and on its connectivity, K.
This is depicted in Figure 16, which plots
log V'as a function of log N for two values
of K. The best linear fit of the data points
reveals that the slope is very close to 2 for
these two cases. This means that the veloc-
ity of the drift scales is V o 1/ VrN with a
prefactor that decreases with the connec-
tivity. This prefactor also depends on
other parameters of the network. For instance, we found that it
increases with the background input and therefore with the aver-
age activity of the network in the persistent state.

The scaling of the drift velocity can be understood in terms of
the fluctuations in the neuronal input. For abump that involves a
finite fraction of the network [i.e., a number of neurons which is
O(N)] and if the fluctuations are uncorrelated, the drift velocity
should scale as the fluctuation of the input on the individual
neuron divided by \N In Zhang (1996) these fluctuations come
from perturbations in connections on the order of 1/ \N This
means that the fluctuation in the total input for a given neuron is
on the order of 1/ VN and the drift velocity is O(1/ VrN'). In Renart
et al. (2003) the fluctuations come from intrinsic heterogeneity
and are order 1, so the drift velocity will be O(1/ \’M' In our case
we have O(K) inputs into each neuron, each one of them scaling
as 1/ \;?[. Therefore the total fluctuations per neuron are on the
order of 1 and the drift velocity scales as O(1 \N). The prefactor
should remain finite in the limit of very large K because the
quenched fluctuations do not vanish in the balanced regime.
Proving rigorously this conjecture is an interesting problem that
deserves further research.

Itskov et al. (2011) have recently studied a ring model of visu-
ospatial WM with rate-based neuronal dynamics in which the
selective delay activity was generated by the nonlinearity of the
neurons. In the presence of heterogeneities the dynamics had
only a small number of attractors. However, they showed that
short-term facilitation in the recurrent interactions can slow
down the drift of the bump dramatically. This is because it
selectively amplifies synapses from neurons that have been
activated by the cue, which tends to pin down the bump at its
initial position. A similar effect explains the slowness of the
drift in our PFC model. Therefore, facilitation in the recurrent
excitatory interactions plays two roles in our mechanism: (1)
it induces nonlinearities that sustain the persistence of the

6 9
Time (s)



146 + ). Neurosci., January 2, 2013 - 33(1):133-149

A

m 5r- 5r-

e

s 41 4

S 31 3F

]

S 2 2F

o

g 1 1

o 0 0 | 1
0 025 05 075 1 0 025 05 075 1

Circular Variance Circular Variance

B E |

™ 4~ 4r-

(%]

c

= 3r 3r

S

= 25 2

©

S

g1t i

o

o

(=}

1 1 0
0 025 05 075 1 0

Circular Variance

l 1
025 05 075 1
Circular Variance

Figure 13. A, Dependence of the width of the tuning curves on the network connectivity. Left,
Distribution of the circular variance for the excitatory neurons. Right, Distribution of the circular vari-
ance for the inhibitory neurons. K = 2000 (red), K = 4000 (blue), K = 8000 (green). Other parame-
ters as in Tables 1 and 2. B, Dependence of the width of the tuning curves on the range of
inhibition. Left, Distribution of circular variance for the excitatory neurons. Right, Distri-
bution of the circular variance for the inhibitory neurons. o, = o, = 60° (red), oy, = o =
80° (black), and o, = o7, = 40° (green). All the other parameters (but o7, o) are given in
Table 1.
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Figure 14.  Dependence of the bifurcation diagram on the range of inhibition. 4, Spatial average
activity of the excitatory neurons for the following: oy, = o = 60° (red), o, = o7 = 80° (black),
and oy, = g = 40° (green). B, Spatial modulation of the activity of the excitatory neurons. All
parameters (but o, o) are given in Tables 1and 2.

Table 3. Tuning width and percentage of neurons with good tuning, f, .. oy, as a
function of the width of the inhibitory interactions, o = o, = o7,

g W, W, fq>o,oor
40° 50 = 13° 60 + 14° 75%
60° 48 £ 14° 61 *= 16° 44%
80° 38 +13° 49 +16° 23%

activity and (2) it slows down the degradation of the memory
trace.

In our PFC model, the spatial fluctuations in the connectivity
give rise to strong heterogeneities. As a result, the bump of activ-
ity that should encode the direction of the cue drifts during the
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Figure 15. A, The direction of the population vector estimated from the activity of the

excitatory neurons versus time. All parameters are as in the reference set. At that time the cue is
presented at t = 3 s for a duration of 500 ms in one of the eight directions. From bottom to top
(in degrees): 0, 45,90, 135,180, 225, 270, 315. The total simulation time is 150 s (left) and 105
(right). B, Z(f) (in degrees) versus time (see definition in Materials and Methods). The size of
the network is N; = 64,000, N, = 16,000. The averaging was performed over N, = 100
realizations of the network. All parameters are as in the reference set.
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Figure 16.  The drift velocity of the bump versus the network size. Circles, Average connec-
tivity as in the reference set. Triangles, Average connectivity smaller by a factor of 2. All other
parameters are as in the reference set. Lines correspond to the best linear fit: y = a, + a;x.
Solid: ay = 6.193, a, = —0.499; correlation coefficient, 0.991. Dashed: a, = 6.372, a, =
—0.5; correlation coefficient, 0.996.

delay period toward a location that is weakly correlated with the
stimulus. This leads to an eventual loss of memory. However, we
found that the drift is slow. It is on the order of 2°/s in a network
with 80,000 neurons and connectivity K = 2000 and even slower
for a larger network. For plausible size and connectivity one can
easily obtain a drift of 0.5-1°/s, which is in line with experimental
data (White et al., 1994, Ploner et al., 1998).
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Discussion

Experimental data support the hypothesis that the cortex oper-
ates in states in which excitation is balanced by inhibition
(Destexhe et al., 2003; Shu et al., 2003; Haider et al., 2006). Mod-
eling studies (van Vreeswijk et al., 1996, 1998; Lerchner et al.,
2004, Vogels et al., 2005; Vogels and Abbott, 2009; Hansel and
van Vreeswijk, 2012) have argued that this can explain in a natu-
ral way why neurons in vivo fire so irregularly in spontaneous as
well as in sensory-evoked activity. In the present work, we argued
that balance of excitation and inhibition can also explain the high
irregularity of neuronal firing in persistent activity but that this
requires synaptic nonlinearities. This is because, if the synaptic
interactions are linear, neuronal nonlinearities wash out at the
population level in balanced states, thus precluding more than
one balanced state.

Our first result is that in an unstructured network, nonlineari-
ties induced by short-term facilitation in recurrent excitation are
appropriate to generate bistability between balanced states in a
very robust way. We then demonstrated that in a network model
of PFC, these nonlinearities can also sustain the selectivity of the
delay activity as recorded in PFC during ODR tasks. Interestingly,
we found in our simulations that the mean input into a neuron is
more hyperpolarizing during the delay period than in baseline.
Concomitantly, the temporal fluctuations in the input also in-
crease to guarantee that the activity is larger during the delay. This
explains why in our model the spike trains are typically more
irregular during the delay period than during baseline, in quali-
tative agreement with the experimental results of Compte et al.
(2003). Similar features were found in the mean-field theory of
the integrate-and-fire network with stochasticity and short-term
plasticity in neuronal interactions studied by Mongillo et al.
(2012). However, this effect may be model and parameter depen-
dent and more modeling as well as experimental works are re-
quired to further probe its significance.

Another important feature of our PFC model is the diversity
across neurons in the neuronal tuning curves and in the dynam-
ics. This occurs although all the neurons (in a given population)
are identical. In fact this is another hallmark of the balanced
regime in which the network operates. Such diversity is also ob-
served in experimental data (Funahashi et al., 1989, 1990; Takeda
and Funahashi, 2007). Remarkably, in our model, the preferred
directions of the neurons during the cue and during the delay
periods are highly correlated whereas the tuning widths are very
weakly correlated in agreement with experimental reports (Fu-
nahashi et al., 1990).

An essential property of the mechanism we have proposed is
its robustness. Even if the average connectivity, K, is very large,
the unstructured network as well as our PFC model display mul-
tistability of balanced states in which the activity is driven by
temporal fluctuations in synaptic inputs. The temporal irregular-
ities and the heterogeneities in the neuronal firing are very robust
features that depend only weakly on K for very large K. This
agrees with the work of Mongillo et al. (2012).

This contrasts with what happens in networks with linear syn-
aptic interactions. In this case a coexistence of several states in
which the neuronal firing is driven by the temporal fluctuations
rather than by the mean inputs can in theory be achieved. How-
ever, this requires an increasingly precise tuning of the parame-
ters as the connectivity increases (Renart et al., 2007). This is
because the response of populations to external inputs becomes
more linear as the connectivity increases. As a result, accounting
for both spatiotemporal irregularity and mnemonic activity in
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models with linear synaptic interactions requires fine-tuning of
the network size and connectivity (Renart et al., 2007), the coding
level (van Vreeswijk and Sompolinsky, 2004; Lundqvist et al.,
2010), synaptic efficacies (Roudi and Latham, 2007), and on the
level of fast noise (Barbieri and Brunel, 2008). Durstewitz and
Gabriel (2007) argued that a network with voltage-dependent
NMDA synapses can significantly display enhanced variability
when it operated in a chaotic close-to-bifurcation regime. This
presumably also needs fine-tuning of the parameters in the large
size limit to insure the right membrane potential distribution.

Facilitation has been found in vitro in synapses in a population
of pyramidal neurons in PFC (Hempel et al., 2000; Wang et al.,
2006). Wang et al. (2006) fitted the dynamics of these synapses to
the same model of STP that we used here (Tsodyks and Markram,
1997) and found a broad diversity for parameters 75 7,, and U.
The conditions under which STP gives rise to multistablity in
balanced networks have been already investigated by Mongillo et
al. (2012) in the infinite connectivity limit for a network of
integrate-and-fire neurons. The conditions we found in our
models are qualitatively similar. In the case of the rate model
(Egs. 21, 22), they can be summarized as follows. On the one
hand, the effective synaptic strength [Fgg( fz)] must be non-
monotonic (i.e., synaptic transmission must be facilitating at
low firing rates). This can be obtained if U is sufficiently small
and 7, < 7. If U increases, the region displaying facilitation
becomes smaller, but that can be compensated by decreasing
7,. Another necessary condition is that the maximum value of
Fprmust be larger than 1/G (Eq. 24). This quantity depends on
the couplings but it can be made small enough by taking a large
value of Ggg. Our simulations of the integrate-and-fire model
agree with those conditions. They show that the range of the
background input in which our PFC model displays persistent
selective activity decreases when U increases when all other
parameters are kept constant. However, if one also changes
Gpp> keeping UG, constant (or, alternatively, decreasing 7,),
there is a selective delay activity for U as large as 0.12. The STP
parameters 7, 7, can be changed by *20% without losing
multistability even if all the other parameters are kept con-
stant. These numbers are similar to those reported in the phase
diagrams computed by Mongillo et al. (2012). However, if the
STP parameters are changed too much, the network model
loses its selective delay activity. This is compatible with recent
experimental studies that have identified altered STP in PFC
circuits as a neural substrate underlying impairment in WM
(Fénelon et al., 2011; Arguello and Gogos, 2012).

Mongillo et al. (2008) proposed a mechanism for WM based
on STP that differs from the one we have investigated here. It does
not require reverberating activity. It relies on the fact that syn-
apses displaying STP keep a transient mark of changes in network
activity over time scales of several hundred milliseconds. Mon-
gillo et al. (2008) argued that the mark left by the cue period
activity can underlie WM for a duration of <1 s. Similarly, in our
mechanism, there should be a mark of persistent activity outlast-
ing the end of the delay period. This prediction can be examined
experimentally (e.g., by comparing the activity of the neurons in
the postsaccadic and precue periods in an ODR task). STP dy-
namics can be also expressed in the gradual building up of the
activity at the beginning of the delay period. This should be ob-
served preferentially in neurons for which the phasic response
during the cue period is not too strong. This effect can be seen
in the examples of Figure 11C,F. Another interesting predic-
tion of our model is that the strong heterogeneity in the neu-
ronal properties manifests itself in an uncorrelated way
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between the different periods. For instance, the CV values
between the two periods do not correlate (Fig. 8). Similarly, no
correlation can be found for tuning widths between cue and
delay periods (Fig. 11).

To conclude, the highly irregular activity observed both dur-
ing fixation and delay periods of WM tasks challenges network
mechanisms of WM. We argued in favor of a new mechanism in
which nonlinearities in synaptic interactions play a central role in
sustaining multistability in neocortical networks. We claimed
that the short-term facilitation observed in populations of pyra-
midal neurons in PFC is a plausible physiological substrate for
these nonlinearities. We illustrated this in a model of visuospatial
WM that accounts for the first time in a comprehensive and
robust way for the observed persistence selectivity, temporal ir-
regularity, and diversity of delay activity of neurons in PFC dur-
ing ODR tasks. This framework is general and can also be applied
to other WM tasks.
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