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Delusions are unfounded yet tenacious beliefs and a symptom of psychotic disorder. Varying degrees of delusional ideation are also found
in the healthy population. Here, we empirically validated a neurocognitive model that explains both the formation and the persistence of
delusional beliefs in terms of altered perceptual inference. In a combined behavioral and functional neuroimaging study in healthy
participants, we used ambiguous visual stimulation to probe the relationship between delusion-proneness and the effect of learned
predictions on perception. Delusional ideation was associated with less perceptual stability, but a stronger belief-induced bias on
perception, paralleled by enhanced functional connectivity between frontal areas that encoded beliefs and sensory areas that encoded
perception. These findings suggest that weakened lower-level predictions that result in perceptual instability are implicated in the
emergence of delusional beliefs. In contrast, stronger higher-level predictions that sculpt perception into conformity with beliefs might

contribute to the tenacious persistence of delusional beliefs.

Introduction
Folk wisdom has it that “seeing is believing,” but what we see is in
turn also influenced by what we believe. Recent theoretical ad-
vances provide an elegant framework for explaining this recipro-
cal interaction of perception and beliefs in terms of Bayesian
inference and learning (Mumford, 1992; Kersten et al., 2004;
Friston, 2005). Originating from Helmholtz’s idea of uncon-
scious inference (von Helmholtz, 1867), perception can be de-
scribed as an inferential process that combines sensory signals fed
forward along the cortical hierarchy with endogenous predic-
tions fed back from higher hierarchical levels. These predictions
derive from an internal model that represents the knowledge and
beliefs about the outer world, and enable a stable and unitary
perceptual experience despite noisy and ambiguous sensory in-
formation. Whenever predictions are violated by sensory input,
the resulting prediction error signal drives learning by updating
the internal model’s predictions.

This framework has paved the way for comprehensive models
of psychopathology that conceptualize delusions, which are im-
plausible yet fixed beliefs, from a perceptual perspective (Fletcher
and Frith, 2009; Corlett et al., 2010). Delusions can be explained
by altered integration of endogenous predictions with sensory
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information (Hemsley, 2005), based on aberrant prediction error
signals (Heinz, 2002; Kapur, 2003) that drive maladaptive belief
formation (Fletcher and Frith, 2009). In other words, imprecise
predictions render sensory events surprising and salient, and the
cognitive effort to make sense of such aberrant salience results in
the formation of delusional beliefs. However, this framework fails
to account for a key feature of delusions, namely their tenacious
persistence despite contradicting evidence. This tenacity of delu-
sions would be most plausibly explained by an excessive influence
of delusional beliefs on the perceptual interpretation of the sen-
sory evidence, which would equate to increased rather than di-
minished predictive signaling (Corlett et al., 2009). We
accommodate this apparent contradiction between the explana-
tions for the formation and the fixity of delusions within a new
model that draws on the hierarchical structure of the outlined
framework. According to our model, weakened predictive signal-
ing within sensory processing stages results in unstable sensory
representations. On the one hand, this leads to the experience of
a changing and unpredictable outer world, in which sensory
events become overly salient, yielding the emergence of delu-
sional misinterpretations. On the other hand, faced with the in-
stability of sensory representations, perceptual inference relies
more on predictions from higher-level nonsensory brain circuits
that encode beliefs. Thereby perception is sculpted into confor-
mity with delusional beliefs, accounting for the tenacious main-
tenance of delusions.

Here, we empirically tested this model of delusions in two behav-
ioral and one functional magnetic resonance imaging (fMRI) exper-
iment. Based on the idea that delusions constitute an extreme
expression of a continuously distributed phenotype (Meehl, 1962;
Freeman, 2006), we studied the relationship between the ten-
dency toward delusional ideation and perception in healthy in-



13702 - J. Neurosci., August 21,2013 - 33(34):13701-13712

dividuals. Using ambiguous visual stimuli A
to maximize the need for perceptual infer-
ence, we tested two main hypotheses: (1)
the tendency toward delusional ideation is
associated with weakened sensory predic-
tions, resulting in perceptual instability;
and (2) the tendency toward delusional
ideation is associated with a stronger in-
fluence of cognitive beliefs.
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One hundred five healthy individuals (age 18—
44, 53 female) participated in Behavioral Ex-
periments 1 and 2; four additional participants
were excluded from analysis due to technical
problems in data collection and analysis (see ~ Figure1.  Delusionalideation
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and perceptual stability. A, Schematicillustration of Behavioral Experiment 1. Sensory predictions

below). An independent group of 20 partici-  Wereinduced by repeated presentation ofan ambiguous DK that can be perceived as a sphere rotating either leftward or rightward.
pants (age 20—37 years, 11 female) underwent  The stimulus was presented repeatedly for 0.6 s interleaved by blank screens of 0.8 s duration. Upon each occurrence of the
fMRI; two additional participants were ex-  stimulus, participants reported the perceived rotation direction by button press. B, Perceptual time course from one exemplary
cluded from analysis because of technical individual. Duetothestabilizing effect of endogenous predictions that are automatically built up during intermittent presentation
problems in data collection (see below). of the ambiguous stimulus, participants tended to have the same percept across many successive presentation cycles. C, Correla-

All participants were naive regarding the tion between tendency toward delusional convictions and perceptual stability (r = —0.26, p = 0.004, product-moment corre-
purpose of the experiment, had normal or  lation, p value based on 10,000 permutations). Tendency toward delusional convictions was measured with a validated
corrected-to-normal vision, and no Axis I psy-  duestionnaire (Peters et al., 1999). Perceptual stability was calculated as the percept survival probability from one presentation
chiatric disorder (Structured Clinical Inter-  cycletothenext. Highervaluesindicate higher perceptual stability. Each dot represents one participant. The dashed line illustrates

view for Diagnostic and Statistical Manual of ~ thefitted regressionline.
Mental Disorders, Fourth Edition, Axis I Dis-

orders). Participants were paid €20 for their time and gave written in-
formed consent after all the procedures and possible consequences were
explained to them. The study was approved by the Ethics Committee of
the Charité University Medicine Berlin.

Measurement of delusional ideation

All participants completed the Peters et al. Delusion Inventory, a ques-
tionnaire designed to measure the tendency toward delusional ideation
in the general population (Peters et al., 1999). The 40 items cover a wide
range of delusion-like beliefs, including delusions of reference, control,
and persecution. For each item, dimensional ratings assessing associated
distress, preoccupation, and conviction are included in addition to a
dichotomous absence—presence statement, resulting in four distinct sub-
scores. To reduce the number of statistical tests, we adopted a two-step
approach to relate the tendency toward delusional ideation to the behav-
ioral effect of sensory predictions and higher-level beliefs in perceptual
inference. First, an overall score representing the sum of the four sub-
scores was correlated with the dependent variables derived from Behav-
ioral Experiments 1 and 2 (survival probability and belief-induced bias,
respectively; see below). Upon significance, the most predictive sub-
scale(s) were identified in a stepwise regression analysis using forward
selection and a criterion of p < 0.05.

Visual stimulation

In all experiments, visual stimuli were dot-kinematograms (DKs) that
are perceived as a sphere rotating in depth around a vertical axis. Stimuli
were presented using Matlab (MathWorks) and Cogent 2000 toolbox
(http://www.vislab.ucl.ac.uk/cogent.php). To produce stereoscopic vision
during the experimental induction of perceptual beliefs (see below), stimuli
were presented dichoptically through a mirror stereoscope in Behavioral
Experiments 1 and 2, or an MRI-compatible system (Schurger, 2009) in the
fMRI experiment. Our DK stimulus was an orthographic projection of a
sphere rotating around a vertical axis (Behavioral Experiments 1 and 2: di-
ameter, 4.1° of visual angle; rotation speed, 0.167 revolutions/s; fMRI exper-
iment: diameter, 5.1°, rotation speed, 0.056 revolutions/s). It consisted of 450
randomly distributed yellow square “dots” (Behavioral Experiments 1 and 2,
maximum 0.2 X 0.2% fMRI experiment, maximum 0.1 X 0.1°), moving
coherently leftward or rightward on a black background with a central fixa-
tion cross and framed by a white square. Animation frames were updated
every 40 ms, and a sequence of 8 s was looped repeatedly to produce contin-
uous motion. Dot lifetime was 1 s on average.

Depending on the experiment and the experimental run, the rotation
direction of the sphere was either ambiguous or unambiguous. The am-
biguous sphere rotating around the vertical axis consisted of two identi-
cal DKs presented to each eye and evoked the two possible, mutually
exclusive percepts of leftward or rightward rotation. To produce the
unambiguous sphere used for the experimental induction of perceptual
beliefs (see below), two slightly different DKs were displayed represent-
ing two different perspectives. The maximal offset between corre-
sponding dots presented to the two eyes was 0.5° of visual angle. This
interocular disparity minimizes the ambiguity of rotation direction. For
naive observers, the ambiguous and nonambiguous stimuli are nearly
indistinguishable. To mimic the spontaneous perceptual alternations
that occur during continuous viewing of the ambiguous sphere, the un-
ambiguous sphere alternated between both rotation directions with an
overall rate comparable to the subject’s switch rate but with different
dominance times (80 vs 20% on average).

Experimental design
Behavioral Experiment 1. This experiment was aimed at measuring the
influence of sensory predictions on perception to relate it to the tendency
toward delusional ideation. Such endogenous predictions are automati-
cally built up during repeated exposure to a stimulus and facilitate per-
ceptual inference at each recurrence of the stimulus (Friston, 2005). In
the case of ambiguous stimuli that are consistent with two possible, mu-
tually exclusive perceptual interpretations, the incorporation of these
predictions based on previous perceptual outcomes results in the stabi-
lization of appearance. In other words, when an ambiguous stimulus is
temporarily removed from view, the percept after reonset of the stimulus
strongly tends to be the same as the last percept before stimulus removal
(Orbach etal., 1963; Leopold et al., 2002). The stabilizing predictions are
robust to interfering visual stimulation (Maier et al., 2003), encode low-
level visual characteristics (Pearson and Brascamp, 2008), and can be
disrupted by applying transcranial magnetic stimulation to functionally
specialized visual areas (Brascamp et al., 2010), indicating that they are
implemented at low levels of the cortical hierarchy, that is, within sensory
cortices. Here, we used the survival probability of percepts across tem-
porary stimulus removals to quantify in each individual participant the
strength of lower-level sensory predictions in perceptual inference.

The ambiguous sphere stimulus (see Visual stimulation, above) was
shown repeatedly for intervals of 0.6 s interleaved by blank screens of 0.8 s
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Figure2.

Delusional ideation and belief-induced bias. 4, Schematicillustration of Behavioral Experiment 2 and the fMRI experiment. Higher-level cognitive beliefs were induced by a placebo-like

experimental manipulation. Participants viewed continuously a DK that is perceived as a rotating sphere and indicated changes in perceived rotation direction by button presses. In the initial and
final baseline phases and in the test phase, the rotation direction of the sphere was ambiguous, yielding bistable perception alternating spontaneously between leftward and rightward rotation
direction. In the learning phase, stereoscopic depth cues were surreptitiously added to the stimulus, which forced the sphere to rotate in one direction 80% of the time. In the learning and test phase,
participants wore transparent glasses, which they believed to contain polarizing filters and to bias their perception toward one rotation direction, depending on the orientation of the glasses. B,
Effect of beliefs on reported perception (*p << 0.001, paired ¢ test, p value based on 10,000 permutations). Bars show the mean phase duration of each percept normalized with respect to the mean
phase duration in the baseline runs. Error bars denote SE. €, Correlation between tendency toward delusional convictions and belief-induced bias (r = 0.26, p = 0.004, product-moment correlation,
p value based on 10,000 permutations). Tendency toward delusional convictions was measured with a validated questionnaire (Peters et al., 1999). Belief-induced bias was calculated as the ratio
of belief-congruent and belief-incongruent mean phase durations normalized with respect to the learning phase. Higher values indicate a stronger belief-induced bias. Each dot represents one

participant. The dashed line illustrates the fitted regression line.

duration for an overall duration of 20 min (Fig. 1A). Participants indi-
cated the rotation direction at each presentation cycle by button presses,
choosing between leftward and rightward rotation. To quantify the
strength of sensory predictions in perceptual inference, we calculated
the survival probability of percepts from each stimulus presentation to
the next. Thus, a higher survival probability indicates a more stable per-
ception, reflecting stronger sensory predictions. One participant was ex-
cluded from further analysis because he did not report a single perceptual
switch during the whole course of this experiment, rendering a true
estimate of his survival probability impossible.

Behavioral Experiment 2. To test for the relation between the tendency
toward delusional ideation and the effect of higher-level beliefs in per-
ceptual inference, in Behavioral Experiment 2 we used a placebo-like
manipulation to induce perceptual beliefs (Fig. 2A). Participants were
informed that they would perform an experiment on depth perception.
They now viewed the same sphere stimulus as in Behavioral Experiment
1 continuously and reported changes in perceived rotation direction
while again maintaining visual fixation. During the initial baseline phase,
the sphere was perceptually ambiguous, yielding bistable perception al-
ternating spontaneously between rightward and leftward rotation. In a
subsequent learning phase, we then induced perceptual beliefs using a
placebo-like manipulation (Sterzer et al., 2008). Participants now wore
glasses, which they believed to be polarizing filters. They were told that
they would view the same ambiguous stimulus as in the baseline phase
but that the polarizing glasses would bias their perception toward one
rotation direction. These glasses would contain two different filters so
that one eye would be only reached by horizontally polarized light and
the other eye only by vertically polarized light. Due to stereoscopic vision
induced by these glasses, participants’ perception would be biased to-
ward one rotation direction. The rotation direction would depend on
which eye looked through which filter and the orientation of the glasses
would be manually reversed between runs. In reality, the glasses were
completely transparent, but the stimulus was rendered unambiguous by
dichoptically induced disparity depth cues, which forced the sphere to
rotate in one direction for 80% of the time. The glasses and the predom-
inant rotation direction were reversed half way through the learning
phase. In the following test phase, we then probed whether the perceptual
beliefs induced by the glasses influenced perception of the ambiguous
sphere. Participants maintained the belief that the glasses would bias

their perception but were now again presented with the completely am-
biguous stimulus used in the baseline phase. The experiment ended with
afinal baseline phase, in which participants viewed the ambiguous sphere
again without the transparent glasses.

During each experimental run, the stimulus was presented continu-
ously for the duration of the run (240 s). The experiment started with two
initial baseline runs, during which the ambiguous sphere was presented,
followed by two unambiguous learning runs, two ambiguous test runs,
and two final ambiguous baseline runs. In the learning and test runs,
subjects wore the transparent glasses, which they believed to contain
polarizing filters. The actual (learning phase) or expected (test phase)
dominant rotation directions in each run were contingent on the orien-
tation of the transparent glasses and were switched between the runs so
that there was one learning run per orientation, and one test run per
orientation, respectively. Before each run, the experimenter made sure
that participants were aware of the actual orientation of the glasses by
asking the subjects which filter was on which eye. The association be-
tween orientations and rotation directions was counterbalanced across
participants to control for potential systematic effects of the glasses on
perception. The order of dominant directions across runs was pseudo-
randomized and balanced across participants, so that potential system-
atic effects of the dominant direction in the second learning run on the
following test runs (e.g., adaptation) were cancelled out. Participants
indicated perceptual transitions by button presses choosing between
three response options: leftward rotation, rightward rotation, and uncer-
tain perceptual state. As uncertain perceptual states only occurred at a
negligible amount of the total time (mean, 3.2 * 0.6% SEM), they were
discarded from further analysis.

Debriefing after the experiment revealed that most participants (83 of
105) had not noticed a difference between the visual stimulus in the
learning phase and in the test phase. Furthermore, the majority (16 of 22)
of those who had noticed a difference, had attributed it to subjective
factors, such as habituation or fatigue. Only six individuals reported that
they had suspected a physical stimulus manipulation and had therefore
not believed in an effect of the placebo glasses on their perception.

For each participant, we calculated the belief-induced bias by normal-
izing the ratio of belief-congruent and belief-incongruent mean phase
duration with respect to the ratio from the learning phase. Higher values
indicate a stronger belief-induced bias, hence a stronger effect of beliefs
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in perceptual inference. Three participants of Behavioral Experiment 2
were excluded from further analysis because of button malfunction.

fMRI experiment. To examine the neural correlates of the effect of
higher-level beliefs in perceptual inference, an independent group of
participants underwent the placebo-like manipulation of beliefs used in
Behavioral Experiment 2 during fMRI scanning. The design of the fMRI
experiment closely resembled the design of Behavioral Experiment 2 with
minor modifications in experimental run duration (212 s) and number
(4 initial ambiguous baseline runs, 2 unambiguous learning runs, 4 am-
biguous test runs, 4 final baseline runs). Similar to Behavioral Experi-
ment 2, debriefing after the experiment suggested that all participants of
the fMRI experiment had believed in an effect of the placebo glasses on
their perception: the majority (15 of 20) reported that they had not
noticed a difference between the visual stimulus in the learning phase and
in the test phase; and those who had noticed a difference had attributed it
to subjective factors, such as habituation or fatigue.

The fMRI experiment also included two additional localizer runs of
235 s each. These were aimed at the identification of areas in visual cortex
responsive to visual motion. To identify the voxels that maximally re-
sponded to the stimulus used in the main experiment, the same moving
ambiguous sphere stimulus was alternated with static images of the
sphere stimulus. Each localizer run comprised five stimulation blocks of
13.5 s duration per condition (moving dots and stationary dots). The
blocks were separated by rest periods of 9.0 s, in which only the fixation
cross and the fusion square were shown.

fMRI scanning was performed on a 3 T scanner (TRIO, Siemens)
equipped with a 12-channel head coil using a T2*-weighted two-
dimensional gradient-echo echo-planar imaging sequence (TR, 2260 ms;
TE, 25 ms; flip angle, 90°; matrix size, 64 X 64; FOV, 192 mm; voxel size,
3 X 3 X 3 mm). Thirty-eight slices parallel to the calcarine sulcus were
collected, covering the whole brain (slice thickness, 2.5 mm; interslice
gap, 0.5 mm). Data were acquired in 14 runs, each comprising 94 vol-
umes. Additionally, two functional localizer runs of 104 volumes each
were acquired. For anatomical reference, a structural image was collected
using a T1-weighted three-dimensional magnetization prepared rapid
gradient-echo sequence (TR, 1900 ms; TE, 2.52 ms; matrix size, 256 X
256; FOV, 256 mm; flip angle, 9% voxel size, 1 X 1 X 1 mm).

Two participants were excluded from further analysis of the fMRI data
because of excessive head movement (several shifts of >1.5 mm between
2 successive scans) and monocular vision associated with a lack of ste-
reoscopic depth perception, which impeded the induction of perceptual
beliefs during the learning phase. As in Behavioral Experiment 2, uncer-
tain perceptual states only occurred at a negligible amount of time
(mean, 1.6 * 0.6% SEM), and were therefore discarded from further
analysis.

Control for eye movements. Participants were instructed to maintain
visual fixation. To control for an effect of fixation quality on perception,
eye movements during the behavioral experiments were recorded using a
video-based eye tracker (MK2 High-Speed Camera, Cambridge Research
Systems; 100 Hz). To calculate a measure of fixation quality, the one-
dimensional time courses of gaze positions were linearly detrended. Gaze
positions were then transformed into a two-dimensional histogram of
their Helmholtz coordinates of a resolution 1 X 1 arcmin and smoothed
with a two-dimensional Gaussian kernel [full width at half maximum
(FWHM), 6 arcmin]. Fixation quality was calculated as the area included
by the contour line encompassing 95% of the eye positions. A smaller
contour line area corresponds to better fixation, whereas a larger area is
indicative of larger overall eye movements. For some participants, fewer
than half of gaze positions could be successfully tracked. Such partici-
pants were excluded from these control analyses.

fMRI data analysis

Multivoxel pattern analysis overview. To test the hypothesis that experi-
mentally induced beliefs altered the neural correlates of perception in
visual cortex, we used multivoxel pattern analysis (MVPA), as described
previously (Haynes and Rees, 2005; Brouwer and van Ee, 2007). To re-
move nonsteady-state effects caused by T1 saturation and stimulus-onset
effects, the first four scans were discarded. Preprocessing was performed
with SPM8 (www.fil.ion.ucl.ac.uk/spm). Images were slice-time cor-
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rected and spatially realigned to the first image. Importantly, no spatial
normalization or spatial smoothing was applied at this stage. Then the
raw blood-oxygen-level-dependent (BOLD) signal was extracted for ev-
ery scan. The resulting signal time courses were linearly detrended and
normalized to vectors of unit length. Each scan was then assigned to one
of the two percepts (leftward rotation and rightward rotation) according
to the perceptual dominance time course reported by the subjects. For
convenience, perceptual states indicated as uncertain were treated as the
preceding perceptual state, as they only occurred at an average of 1.6 *
0.6% of the total time. To account for the hemodynamic delay (44000
ms) and the time between a perceptual switch and the button press
(—1000 ms) the perceptual time courses were shifted +3000 ms in time.
The resulting label contained a 1 for each scan corresponding to a left-
ward rotation (“left”) and —1 for each scan corresponding to a rightward
rotation (“right”).

Classification was performed with a linear support vector machine
(SVM; Cortes and Vapnik, 1995) and the implementation LIBSVM
(http://www.csie.ntu.edu.tw/%7ecjlin/libsvim/). A training subset of the
fMRI and label data was used to train the classifier. The trained classifier
then generated predictions of perceptual states for each time point from
an independent test subset of fMRI data that was drawn from indepen-
dent experimental runs (see below for details). Because of sampling in-
accuracies and the stochastic nature of perceptual dominance time
courses, the number of volumes within the training dataset labeled as
“right” did not necessarily equal the number of volumes labeled as “left.”
Imbalanced training datasets are known to decrease the performance of
an SVM classifier by biasing its predictions toward the label with more
occurrences in the training data. We corrected for this bias by using
different cost parameters ¢, and ¢, for each class (Veropoulos et al., 1999),
after having confirmed the effectiveness of this correction in a surrogate
dataset (see below). The sum of the cost parameters was fixed at 1. The
class imbalance has also to be taken into consideration when assessing the
performance of a classifier. Since standard accuracy measures do not
account equally for positive and negative errors and thus tend to overes-
timate classifier performance when there is class imbalance in the data,
we applied a balanced accuracy measure (Velez et al., 2007) to prevent
such errors. We calculated the specific accuracy for each class (“left” and
“right”) by dividing the number of correctly predicted scans (e.g., pre-
dicted “right” and perceived “right”) by the number of all scans in this
class (e.g., perceived “right”). The arithmetic mean of the two class-
specific accuracies gave the balanced prediction accuracy.

To test whether the application of different cost parameters ¢, and ¢, for
each class improves classifier performance in an unbalanced dataset, we
generated a multivariate surrogate dataset. To mimic the class imbalance
observed in our real data, each participant’s real class label derived from
his or her perceptual time course in the baseline phase was used for data
creation. For each of the 720 scans, a 2000-dimensional vector was ran-
domly drawn from one of two multivariate normal distributions, de-
pending on the class membership of the scan. The mean vectors of the
two distributions were separated by an Euclidean distance of 2; the cova-
riance matrices of both distributions were the unity matrix. The resulting
720 X 2000 (scans X voxels) surrogate data matrix was used to train and
test two SVM classifiers: one “standard classifier” using the same cost
parameter c for both classes and one “weighted classifier” using different
cost parameters ¢, and ; for each class. Using a runwise cross-validation
scheme, the balanced decoding accuracy was calculated for each classi-
fier. This procedure was repeated 10 times and the decoding accuracies
were averaged separately for each classifier across these repetitions, yield-
ing two values for each participant. The comparison of these values
showed a significant advantage for the “weighted classifier” compared
with the “standard classifier” (66.39 vs 64.96%, . = 1.43%, o = 0.27%,
t(19) = 23.45, p < 0.001, paired ¢ test), confirming the effectiveness of the
use of weighted cost parameters.

MVPA: searchlight analysis. Before our critical MVPA, we verified in a
whole-brain “searchlight” (Kriegeskorte et al., 2006) approach that we
could identify the neural correlates of perceived rotation direction dur-
ing viewing of a constant physical stimulus (Fig. 3A). For each voxel v;, we
defined a small spherical cluster (radius, 10 mm) centered on v;. The
fMRI data from this cluster were then used for training and testing
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Schematicillustration of the MVPA. A, MVPA searchlight analysis. For a given voxel in the brain, a local cluster of the surrounding voxels was defined. For each of the voxels in the cluster,

the raw fMRI signal time courses were extracted, yielding a pattern activation matrix for each run, in which each line represents one voxel and each column one scan. Each column of this matrix was
labeled according to the perceptual time course. The labeled pattern activation matrices from a subset of runs (1, 7 of 8 baseline runs; Il, all baseline runs) were used to train a classifier (SYM). The
trained classifier was then tested on an unlabeled pattern activation matrix from another independent subset of runs (I, remaining baseline run; Il, all test runs) and predicted a perceptual state for
each scan. Prediction accuracy was derived from the comparison of the predicted and the real perceptual time course. This procedure was repeated for every voxel in the brain, resulting in voxelwise
accuracy maps. B, MVPA in visual cortex. From a mask comprising occipital lobe and functionally defined hMT/V5, selection was made of the 2000 voxels that were most informative about the
perceived rotation direction in the training phase as defined by a t test. For each of these voxels, the raw fMRI signal time courses were extracted, yielding a pattern activation matrix for each run,
in which each line represents one voxel and each column one scan. Each column of this matrix was labeled according to the perceptual time course. These labeled pattern activation matrices from
all baseline runs were used to train a classifier (SVM). The trained classifier was then tested on an unlabeled pattern activation matrix from the test runs and predicted a perceptual state for each scan.

The summed predictions for each of both rotation directions were then used to calculate the predicted effect of beliefs.

the classifier. This procedure was repeated for every voxel in the brain,
resulting in a voxelwise accuracy map for each subject. These maps were
then spatially normalized to the Montreal Neurological Institute (MNI)
template and spatially smoothed with a Gaussian kernel (FWHM, 8
mm). In a paired ¢ test, these maps were compared with chance level
(50%). The obtained t maps were used for statistical inference and dis-
play purposes. Results were considered statistically significant at p <
0.05, familywise error-corrected (FWE-corrected) for multiple compar-
isons across the whole brain or within a priori regions of interest in visual
cortex (see below).

Two “searchlight” analyses were conducted. We first asked whether
decoding of perceived rotation direction was possible in the baseline
phase, in which participants viewed the ambiguous sphere in the absence
of perceptual beliefs. The data from the baseline phase only were used in
a runwise cross-validation scheme. We then probed whether rotation
direction could also be decoded from scans acquired during the test
phase, when perception was biased by the participant’s beliefs. The clas-
sifier was trained on all eight runs from the baseline phase and tested on
all four runs from the test phase.

MVPA: visual cortex. The main purpose of MVPA was to quantify the
effect of beliefs on perception at the neural level (Fig. 3B). Analysis was
spatially restricted to visual cortex, as we were mainly interested in de-
coding from sensory stimulus representations. For this purpose, a mask
that consisted of occipital cortex and the human motion complex
hMT/V5 on the occipitotemporal junction was generated for each par-
ticipant, as the analyses were conducted with spatially unnormalized
data. First, an anatomical mask for the occipital lobe from the Wake
Forest University (WFU) PickAtlas (http://www.nitrc.org/projects/wfu
pickatlas/) was warped to the participants’ brains by applying the inverse

transformation matrix resulting from the spatial normalization of the
structural scan to the MNI template. Second, hMT/V5 was identified on
the basis of the contrast “motion > stationary” from the localizer runs for
each participant separately. A bilateral cluster on the occipitotemporal
junction was identified at a threshold of p < 0.05 (uncorrected)
and manually delineated in MRIcron (http://www.cabiatl.com/mricro/
mricron/index.html). The voxels for the MVPA were selected from these
masks of visual cortex, which contained between 3928 and 5663 voxels.

First, we compared the prediction accuracy between the baseline phase
and the test phase. The data used for training and testing in the search-
light analyses differed in amount and proximity in time, which could
imply differences in prediction accuracy due to generalization problems.
To correct for this phenomenon, we matched training and test data as
closely as possible: the first four baseline runs were used for training a
classifier, which was then tested separately on the last four baseline runs
and the four test runs. The absolute decoding accuracies were then com-
pared in a paired ¢ test. We then tested whether the content-specific
representations of perceived rotation directions in visual cortex were
biased by perceptual beliefs. In this case, a classifier that predicts the
reported perceptual state should predict more expected percepts than
unexpected percepts. To minimize the risk of spurious findings, classifier
performance was optimized with regard to the prediction accuracy using
the baseline runs only. First, different voxel selection methods were com-
pared. Different numbers of voxels (200, 500, 1000, 2000, and 3000 vox-
els) were selected by different procedures (most activated voxels during
the localizer runs, most motion-sensitive voxels during the localizer runs,
and voxels with the highest  values in a t test comparing rightward
rotation to leftward rotation in the training dataset). The best perfor-
mance was achieved with 2000 voxels selected by a ¢ test comparing
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rightward rotation to leftward rotation. Another issue that was addressed
in the optimization procedure was the temporal shift of the class label of
each scan (“left” or “right”; see above). Because both hemodynamic delay
and time between a perceptual switch and the button press might vary
between participants, different labels with time shifts ranging from 0 to
6000 ms in steps of 500 ms were generated and used for classification. The
shift that yielded the highest runwise cross-validation accuracy was then
chosen for each participant. The optimized classifier reached a mean
runwise cross-validation accuracy of 63.02% during the baseline. It is
important to note that the optimization procedure was performed exclu-
sively on the baseline runs and thus could not impose any systematic bias
on our critical analysis, i.e., the decoding of rotation directions in the
independent test runs. The optimal parameters were then used for a
classifier that was trained on all eight baseline runs and tested on all four
test runs.

The predictions of this classifier were used to calculate the predicted
effect of beliefs. For this purpose, the proportion of predictions for each
class (e.g., “right” and “left”) was corrected according to the class-specific
cross-validation accuracy from the independent baseline runs. The ratio-
nale behind this correction was that a classifier with a prediction accuracy
<100% arithmetically underestimates the difference between the true
proportions of the classes. The extent of this underestimation error scales
as a function of class-specific prediction accuracies. As the accuracies in
the test phase did not differ from the baseline phase (see above), in the
test phase the relation between predicted and perceived percepts for one
class (e.g., “left”) can be approximated by L, = acc;" L, + (1 — acc,) - (1 —
L,), where L, is the predicted proportion of “left” percepts, L, is the true
proportion of “left” percepts, acc;and acc, are the class-specific accuracies
for “left” and “right” derived from testing the classifier on the indepen-
dent baseline dataset. Thus, the true proportion of percepts perceived as
“left” (and analogously for “right”) was calculated as L, = (L, — 1 +
acc,)/(acc; — acc,). The difference of the expected and the unexpected
proportion gave the predicted effect of beliefs. Again, it is important to
note that the values for the class-specific accuracies that were used for this
correction were known from previous testing of the classifier on the
independent baseline dataset, so that nonindependence errors in our
critical analysis of the test runs were precluded.

Statistical parametric mapping analysis of belief-related activity. Follow-
ing the idea that higher-level nonsensory brain circuits may be involved
in generating the observed influence of beliefs on visual information
processing, we used a standard univariate statistical approach to test for
an association of beliefs with brain activity. fMRI data from the experi-
mental learning and test runs were analyzed using statistical parametric
mapping (SPM8). After discarding the first four volumes, images were
slice-time corrected and spatially realigned to the first volume. Each
participant’s structural T1 image was coregistered to an individual mean
EPI image. Transformation parameters were derived from normalizing
the coregistered structural image to a MNI template, and the derived
parameters were then applied to normalize the EPI volumes. Normalized
images were smoothed with a Gaussian kernel (FWHM, 8 mm).

Images from the test runs were analyzed in an event-related manner
using the general linear model. On the first level, belief-congruent and
belief-incongruent perceptual switches were modeled separately as re-
gressors of interest. Other button presses indicating uncertainty were
included as regressors of no interest. To account for the period between a
perceptual switch and a button press, 1000 ms were subtracted from the
times of the button presses. The evoked hemodynamic responses to the
estimated perceptual switches were modeled as stick functions convolved
with the canonical hemodynamic response function implemented in
SPMS8 and its first temporal derivative. Additional regressors of no inter-
est were the six movement parameters as well as one constant term per
experimental run. For each participant, a contrast image that compared
the parameter estimates for belief-congruent and belief-incongruent
perceptual switches was computed for the learning and the test phase
separately and used for group level inference.

The effect of beliefs on BOLD signal was assessed in a second-level
analysis. For the learning and the test phase separately, the individual
contrast images (“belief-congruent > belief-incongruent”) were corre-
lated with the behavioral belief-induced bias calculated as the ratio of

Schmack et al. @ Delusions and Perceptual Inference

belief-congruent and belief-incongruent mean phase duration from the
test phase normalized with respect to the ratio from the learn phase. This
analysis focused on orbitofrontal cortex (OFC), as previous reports have
consistently implicated this region in mediating the effect of beliefs and
expectations on sensory processing (Petrovic et al., 2002, 2005; Wager et
al., 2004; Bar et al., 2006; Kveraga et al., 2007; Summerfield and Koechlin,
2008). OFC was specified by a mask from a publication-based proba-
bilistic MNI atlas (http://neuro.imm.dtu.dk/services/jerne/brede/
WOROI_685.html; access date March 12, 2011) and used as a binary
mask at the threshold of 90% probability (417 voxels). Results were
considered statistically significant at p < 0.05, FWE-corrected for
multiple comparisons across all voxels within the OFC mask.

SPM correlation analysis of delusional ideation and functional connec-
tivity. To test our prediction that in individuals prone to delusions, com-
pared with individuals less prone to delusions, perceptual inference relies
more on predictions from higher-level brain circuits that encode beliefs,
we investigated the correlation between the tendency toward delusional
ideation and functional connectivity between OFC and other brain re-
gions. For this purpose, we analyzed psychophysiological interactions
(PPIs) in SPM8, again separately for the learning and the test phase. PPI
is defined as the change in contribution of one brain area to another with
the experimental or psychological context (Friston et al., 1997). It com-
putes whole-brain connectivity on a voxel-by-voxel basis between the
time series of a seed region and the time series of all other voxels, mod-
ulated by a context stimulus.

The seed region in OFC was defined using a sphere with a radius of 20
mm centered on the group maximum from the analyses of belief-related
activity. After preprocessing (see above), fMRI time series were extracted
from individual peak voxels within this sphere (“belief-congruent >
belief-incongruent”) and deconvolved to generate the neuronal signal
for the seed region (Gitelman et al., 2003). The PPI was then defined as
the element-by-element product of the neuronal time series and a vector
coding for the effect of beliefs. A general linear model was set up for each
subject, which included the following regressors of interest: the time
series of the seed region (the physiological variable), the convolved
stimulus stick function (the psychological variable: “belief-congruent >
belief-incongruent”) and the reconvolved interaction term (the psycho-
physiological variable). Additional regressors of no interest were the
convolved stick functions of button presses indicating uncertainty, six
head movement parameters, and one constant for each run. Contrasts of
interest for the PPI were created.

In a second-level analysis, the individual contrast images for the PPI
were correlated with the conviction score from the delusional question-
naire. Results were considered statistically significant at p < 0.05, FWE-
corrected for multiple comparisons across the whole brain or within our
region-of-interest in visual cortex, the motion-sensitive area hMT/V5.
To define this region, the data from the localizer runs were used. The first
four scans were discarded. In SPM8, the data were preprocessed applying
slice-time correction, motion adjustment, spatial normalization to the
MNI template, and spatial smoothing with a Gaussian Kernel (FWHM,
8 X 8 X 8 mm). A first-level analysis then included two regressors of
interest (motion and stationary) and the six movement parameters as
regressors of no interest. For the identification of the motion-sensitive
area hMT/V5, the individual contrast images “motion > stationary”
were subjected to a second-level one-sample ¢ test. Using MRIcron, a
bilateral cluster on the occipitotemporal junction was identified and
manually delineated (threshold p < 0.001 uncorrected, 409 voxels).

Regions-of-interest in visual cortex. To define regions-of-interest in vi-
sual cortex, the data from the localizer runs were used. The first four
scans were discarded. In SPM8 the data were preprocessed applying slice-
time correction, motion adjustment, spatial normalization to the MNI
template, and spatial smoothing with a Gaussian kernel (FWHM, 8 X
8 X 8 mm). A first-level analysis then included two regressors of interest
(motion and stationary) and the six movement parameters as regressors
of no interest. For the identification of the motion-sensitive area
hMT/V5 the individual contrast images “motion > stationary” were
subjected to a second-level one-sample ¢ test. Using MRIcron, a bilateral
cluster on the occipitotemporal junction was identified and manually
delineated (threshold p < 0.001 uncorrected, 409 voxels). For the iden-
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tification of more posterior occipital visual cortex regions (i.e., early
visual areas) that responded to the stimulus, the individual contrast im-
ages “motion > baseline” were subjected to a second-level one-sample ¢
test. Using MRIcron, a bilateral cluster in occipital cortex was identified
and manually delineated (threshold p < 0.001 uncorrected, 841 voxels).

Results

Behavioral Experiment 1: delusional ideation is associated
with perceptual instability

In Behavioral Experiment 1, we asked whether the tendency to-
ward delusional ideation is associated with weakened lower-level
sensory predictions in perceptual inference. The ambiguous sphere
stimulus was presented intermittently and the survival probability of
a percept from one stimulus presentation to the next was used to
quantify in each individual participant the strength of lower-level
sensory predictions in perceptual inference.

As reported previously (Orbach et al., 1963; Leopold et al.,
2002; Maier et al., 2003; Pearson and Brascamp, 2008), the sur-
vival probability of percepts across temporary stimulus removals
was high (91.33 * 0.87% SEM; see Fig. 1B for an exemplary
perceptual time course) but variable between participants. Across
individuals, this tendency of percept stabilization was inversely
correlated with the overall delusions questionnaire score (r =
—0.26, p = 0.008, product-moment correlation, p value based on
10,000 permutations). The dimension “delusional conviction”
alone accounted best for this correlation (Fig. 1C;r = —0.26, p =
0.004, stepwise linear forward regression, p value based on 10,000
permutations), showing that individuals with a stronger ten-
dency toward delusional convictions exhibited less perceptual
stabilization. To test whether interindividual differences in the
feedforward sensory signal due to eye movements were related to
the tendency of perceptual stabilization, we analyzed the eye-
tracking data collected during the experiment. Valid eye-tracking
data were obtained in 66 participants. Fixation quality was not
significantly correlated with the tendency of perceptual stabiliza-
tion expressed as the percept survival probability (r = —0.02,
p = 0.40, product-moment correlation, p value based on 10,000
permutations), indicating that there was no influence of eye
movements on perceptual stability. Thus, these findings confirm
our first hypothesis that the tendency toward delusional ideation
is associated with perceptual instability and suggest, in line with
previous accounts (Hemsley, 1993, 2005; Heinz, 2002; Kapur,
2003; Corlett et al., 2009; Fletcher and Frith, 2009), that the for-
mation of delusional beliefs might be related to an attenuated
effect of sensory predictions in perceptual inference.

Behavioral Experiment 2: delusional ideation is associated
with a stronger belief-induced bias on reported perception
Behavioral Experiment 2 tested whether the tendency toward
delusional ideation is associated with a stronger effect of higher-
level cognitive beliefs in perceptual inference. Beliefs were in-
duced using a placebo-like manipulation (Sterzer et al., 2008).
Participants first viewed the ambiguous sphere stimulus contin-
uously and reported perceptual changes between leftward and
rightward rotation. In a learning phase, beliefs regarding the
dominant rotation of the sphere were induced with transparent
glasses. Participants were made to believe that the glasses con-
tained polarizing filters that would bias their perception toward
one direction, while in fact the sphere stimulus was surrepti-
tiously disambiguated with 3D cues to yield strong dominance
of one rotation direction. In a subsequent test phase, we then
probed the effect of the induced perceptual belief on perception
of the ambiguous sphere.
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As intended by the disambiguation of the stimulus, belief-
congruent percepts in the learning phase were perceived for lon-
ger average phase durations than belief-incongruent percepts
(difference of normalized percept durations p = 1.65, o = 0.75,
t=22.5,p < 0.001, paired ¢ test, p value based on 10,000 permu-
tations). Importantly, in the following test phase, perception
of the ambiguous sphere was also biased toward the belief-
congruent rotation direction (difference of normalized percept
durations u = 0.14, o0 = 0.35, t = 4.2, p < 0.001, paired t test, p
value based on 10,000 permutations; Fig. 2B), which in the ab-
sence of disambiguation 3D cues can be attributed only to the
participants’ beliefs. Strikingly, the strength of the belief-induced
perceptual bias in the test phase was related to the tendency to-
ward delusional ideation, as revealed by a positive correlation
between the ratio of belief-congruent and belief-incongruent
perceptual phase durations and the overall score from the delu-
sion questionnaire (r = 0.26, p = 0.005, product-moment
correlation, p value based on 10,000 permutations). Again, the
dimension “delusional conviction” alone predicted the percep-
tual effect best (r = 0.26, p = 0.004, stepwise linear forward
regression, p value based on 10,000 permutations; Fig. 2C), show-
ing that in individuals with a stronger tendency toward delu-
sional convictions, perception was more strongly biased by
beliefs. Importantly, the strength of the belief-induced perceptual
bias was negatively correlated with survival probability from Be-
havioral Experiment 1 (compare Fig. 14, r = —0.19, p = 0.03,
product-moment correlation, p value based on 10,000 permuta-
tions). This finding supports our idea that in those individuals
who are more prone to delusional ideation and in whom sensory
representations are less stable, perceptual inference rests more
upon cognitive beliefs.

To investigate whether eye movements might account for the
reported belief-induced perceptual bias, we analyzed the eye-
tracking data collected during the experiment. Valid eye-tracking
data for the entire experiment could be obtained from only 17
participants due to technical problems imposed by the transpar-
ent glasses that were used in the learning and test phase. The effect
of beliefs was highly significant in this subsample (difference of
normalized percept durations u = 0.18, o = 0.56, t = 2.0, p =
0.03, p value based on 10,000 permutations), and fixation quality
did not differ significantly between baseline and test phase (dif-
ference of area in square degrees u = —1.53, 0 = 8.48,t = —0.75,
p = 0.25, paired ¢ test, p value based on 10,000 permutations),
rendering it unlikely that the belief-induced perceptual bias was
due to eye movements. When we restricted the analysis to the
baseline phase only, for which eye movements could be recorded
in 55 participants, we still did not find an effect of eye movements
on perception: fixation quality in the baseline phase was not sig-
nificantly correlated with mean percept duration (r = 0.01,
p = 0.40, product-moment correlation, p value based on 10,000
permutations). Together and in line with previous reports (van Dam
and van Ee, 2005), we did not find any evidence for an influence of
eye movements on perception of the ambiguous stimulus.

Our behavioral data thus far show that in individuals with
higher delusion scores and lower perceptual stability reported
perception of the ambiguous stimulus was more strongly influ-
enced by experimentally induced beliefs. An important question
arises about whether these participants only reported belief-
congruent percepts more readily, or whether their beliefs actually
biased sensory processing of the stimulus via predictive signals
from higher-order cortical areas, as predicted by our model of
delusions. To address this issue, we examined the neural corre-
lates of the perceptual effect of beliefs in a new cohort of
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relation, p value based on 10,000 permuta-
tions; Fig. 4B), replicating our findings from
Behavioral Experiment 2 in an independent
sample.

In our analysis of the fMRI data, we
first tested whether beliefs influenced the
sensory processing of the ambiguous
stimulus. We used MVPA, a highly sen-
sitive analytical tool that has been suc-
cessfully applied to decode conscious
perception from fMRI signals even when
the contents of awareness change during
constant physical stimulation (Haynes
and Rees, 2005; Kamitani and Tong, 2006; Brouwer and van Ee,
2007). In a whole-brain searchlight approach (Kriegeskorte et al.,
2006; Fig. 3A), we verified that perceived rotation direction can
be decoded from fMRI signal patterns. A SVM classifier (Cortes
and Vapnik, 1995) was trained on a subset of fMRI data from the
baseline phase to discriminate between perceived rightward and
leftward rotation at each time point and then tested on an inde-
pendent subset of fMRI data from the baseline phase and the test
phase. Note that during these phases the ambiguous stimulus was
constantly presented and that decoding thus related to purely
perceptual changes. Voxelwise accuracy maps resulting from the
searchlight analysis were computed and tested against chance
level. When testing the classifier on fMRI data from the baseline
phase (i.e., in the absence of beliefs), perceived rotation direction
could be decoded with above-chance accuracy from visual cortex,
including bilateral early occipital visual areas and extending an-
teriorly to the motion-sensitive area hMT/V5 [Fig. 54, left occip-
ital (—18, —91, 10), t;9) = 7.15, p < 0.001; right occipital (18,
—94,10), 1,9, = 4.37, p = 0.015; left hMT/V5 (—48, —76, 10),
taey = 6.02, p < 0.001; all p values FWE-corrected within func-
tionally defined visual cortex regions-of-interest; a cluster in right
hMT/V5 did not survive correction for multiple testing (33, —79,
1), t19) = 2.75, p = 0.006, uncorrected]. Notably, when the same
classifier was applied to the test phase, in which perception was
strongly biased by beliefs, the regional pattern of decoding accu-
racy closely resembled the one resulting from the first analysis of
the baseline phase only [Fig. 5B, left occipital (—30, —94, 7), t(;, =
5.51, p = 0.002; right occipital (12, —97, 1), t,4) = 4.32, p =
0.020; left hMT/V5 (—48, =70, 1), t,9) = 3.95, p = 0.024; right

tion (*p << 0.001, paired ¢ test, p value based on 10,000 permutations). Bars show the mean phase duration of each percept
normalized with respect to the mean phase duration in the baseline runs. Error bars denote SE. B, Correlation between tendency
toward delusional convictions and belief-induced bias as reported by the participants (r = 0.34, p = 0.08, product-moment
correlation, p value based on 10,000 permutations). Behavioral belief-induced bias was calculated as the ratio of reported belief-
congruent and belief-incongruent mean phase durations in the test phase normalized with respect to the learning phase. Ten-
dency toward delusional convictions was measured with a validated questionnaire (Peters et al., 1999). Each dot represents one
participant. The dashed line illustrates the fitted regression line. C, Correlation between tendency toward delusional convictions
and belief-induced bias as predicted by MVPA in visual cortex (r = 0.40, p = 0.04, product-moment correlation, p value based on
10,000 permutations). An optimized classifier was trained on the baseline runs to predict perception from fMRl activation patterns
invisual cortex (compare main text) and tested on the test and learning runs. Predicted belief-induced bias was then calculated as
the ratio of predicted belief-congruent and belief-incongruent mean phase durations in the test phase normalized with respect to
the learning phase. Each dot represents one participant. The dashed line illustrates the fitted regression line.

Figure 5.  Whole-brain decoding of perceived rotation direction using an MVPA searchlight
approach. Colorsindicate t values from a voxelwise paired t test comparing decoding accuracy to
chance level. 4, Decoding accuracy of a classifier trained and tested on the data from the base-
line runsin a runwise cross-validation scheme. B, Decoding accuracy of a classifier trained on the
data from all baseline runs and tested on the data from all test runs. Please note that A and Bare
not directly comparable as the data used for training and testing differed in amount and prox-
imity in time. The t value thresholds corresponding to p << 0.05, FWE-corrected across the
whole brain are 5.62 (4) and 5.80 (B).

hMT/V5 (51, =70, 4), t(,6) = 3.59, p = 0.047, all p values FWE-
corrected within functionally defined visual cortex regions of in-
terest). Decoding accuracy was also above chance in right
precentral gyrus [(36, —7, 52), t(;4 = 6.81, p = 0.02, FWE-
corrected within whole brain], most likely due to motor
responses.
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Figure 6.  Effect of experimentally induced beliefs on neural correlates of perceived motion
direction in visual cortex as revealed by MVPA. 4, Mean cumulative dominance times predicted
by the classifier for the belief-congruent versus the belief-incongruent rotation direction during
the test runs. Error bars denote SEM. *p << 0.005, two-tailed paired t test. B, Correlation of the
behavioral and the dominance difference predicted by the classifier (r = 0.70, p < 0.001,
product-moment correlation, p value based on 10,000 permutations). Dominance difference
was calculated as the difference between dominance times for the belief-congruent and the
belief-incongruent rotation direction. Each gray dot represents one participant. White crosses
mark three potential outliers that deviated >2 SDs from the group mean in the behavioral or
predicted dominance difference. The dashed line illustrates the fitted regression line for the
entire group. Exclusion of the three potential outliers yielded similar results.

Hence, we could establish that subjectively perceived rotation
direction is represented in fMRI activation patterns in visual cor-
tex regardless of the belief-induced perceptual bias. Most critical
to our research question, however, we sought to quantify the
effect of beliefs on perception at the neural level. We reasoned
that, if experimentally induced beliefs altered the sensory pro-
cessing of the ambiguous stimulus, this should be reflected in
fMRI signal patterns in visual cortex and enable us to decode the
belief-induced bias in perception using MVPA. We restricted
the analysis to those brain regions that are primarily involved in the
sensory processing of the stimulus, that is, visual cortex compris-
ing occipital cortex and the functionally defined motion-sensitive
area hMT/V5 (Fig. 3B). Again, an SVM classifier was trained on a
subset of fMRI data from the baseline phase to discriminate be-
tween perceived rightward and leftward rotation at each time
point. When testing the classifier separately on an independent
subset of fMRI data from the baseline and test phase, there was no
significant difference in decoding accuracy (u = —0.2%, o =
5.0%, t(19y — —o.14, P = 0.89, paired t test, p value based on 10,000
permutations). Consistent with this, the optimized classifier pre-
dicted significantly more expected than unexpected percepts
during the test phase (Fig. 6A; 55.4 vs 44.6%, u = 10.9%, o =
14.2%, t(,9) = 3.42, p = 0.003, paired ¢ test, p value based on
10,000 permutations). Strikingly, a correlation analysis across
participants showed that the dominance difference that we could
decode from visual cortex correlated significantly with the dom-
inance difference expressed in behavioral reports (r = 0.70,
p <0.001, product-moment correlation, p value based on 10,000
permutations; Fig. 6B). Excluding three potential outliers that
differed >2 SDs from the group mean yielded similar results (r =
0.66, p = 0.002, product-moment correlation, p value based on
10,000 permutations). These findings strongly suggest that par-
ticipants did not merely report what they believed but that infor-
mation processing in visual cortex was altered in accord with
their beliefs. Importantly, and corroborating at the neural level
our behavioral finding of an association between the tendency
toward delusional ideation and the belief-induced perceptual
bias, the tendency toward delusional ideation correlated signifi-
cantly with the belief-induced bias as decoded from visual cortex
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Figure7. Belief-related neural activity in learn and test phase (t = 5.14,p = 0.009and t =
4.16, p = 0.045, both FWE-corrected). A, B, Axial and sagittal slices show voxels in which the
switch-related activity (belief-congruent vs belief-incongruent perceptual switches) in the
learning phase (A) and in the test phase (B) predicted the behavioral belief-induced perceptual
bias. For display purposes, t maps are thresholded at p << 0.005, k > 5 voxels.

(r = 0.40, p = 0.04, product-moment correlation, p value based
on 10,000 permutations; Fig. 4C; this analysis was performed
with the dimension “delusional conviction,” which had shown
the strongest correlation effects in our behavioral experiments).

fMRI experiment: delusional ideation is associated with
enhanced connectivity between orbitofrontal and visual
cortex

We next asked which brain circuits may be involved in generating
the observed influence of beliefs on visual information process-
ing. Placebo studies suggest that the OFC acts to generate and
maintain experimentally induced beliefs that in turn modulate
activity in sensory brain areas (Petrovic et al., 2002, 2005; Wager
et al., 2004). Moreover, feedback signals from the same region
have been implicated in the expectation-mediated facilitation of
perceptual decision making and object recognition (Bar et al.,
2006; Kveraga et al., 2007; Summerfield and Koechlin, 2008).
Thus we conjectured that perceptual beliefs might be associated
with enhanced OFC activity. For the learning and the test phase
separately, we tested whether fMRI activity evoked by the belief-
congruent percept, compared with the belief-incongruent per-
cept, was related to the strength of the belief-induced perceptual
bias. In line with previous work on the placebo effect in pain and
emotion perception (Petrovic et al., 2002, 2005; Wager et al.,
2004), we indeed found the belief-induced perceptual bias to be
associated with fMRI responses in the left OFC. Interestingly, this
effect was observed both during the learning phase [Fig. 7A;
(=21, 17, —11), t(14) = 5.14, p = 0.009, FWE-corrected within a
priori-defined OFC region of interest] and the test phase [Fig. 7B;
(—24], 23, —17), t(15, = 4.16, p = 0.045, FWE-corrected within
OFC region of interest]. Across the whole brain, no other clusters
showed a significant effect in either the learning or the test phase.
Thus, these results indicate that OFC is critically involved in the
generation and maintenance of perceptual beliefs.

One central claim of our model was that in individuals with
delusions, perceptual inference relies more on predictions from
higher-level brain circuits that encode beliefs. Consequently, we
reasoned that the tendency toward delusional ideation should be
associated with enhanced functional coupling between OFC and
visual cortex. In a voxelwise connectivity analysis using a psycho-
physiological interaction approach (Friston et al., 1997), we
tested for a correlation between the tendency toward delusional
ideation and changes in functional connectivity between OFC
and other brain regions during perception of belief-congruent
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versus belief-incongruent percepts. This
analysis was performed with the dimen-
sion “delusional conviction,” which had
shown the strongest correlation effects in
our behavioral experiments. For the
learning phase (compare Fig. 2A), in
which the rotation direction was unam-
biguous and the need for perceptual infer-
ence thus minimized, this analysis did not
show any significant effects, not even at a
lenient statistical threshold of p < 0.005
(uncorrected). Strikingly, in the following
test phase, where the stimulus was com-
pletely ambiguous, the tendency toward de-
lusional convictions was associated with
stronger belief-dependent connectivity be-
tween OFC and bilateral motion-sensitive
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Figure 8.  Correlation of delusions and belief-related connectivity between OFC and bilateral hMT/V5 in test phase (left r =
0.49, p = 0.003; right r = 0.4, p = 0.035, both FWE-corrected). Axial and sagittal slices show voxels in which the psychophys-
iological interaction [OFC X (belief-congruent — belief-incongruent perceptual switches)] correlated with the conviction score
from a validated delusions questionnaire (Peters et al., 1999). For display purposes, t maps are thresholded at p << 0.005, k > 5
voxels.

area hMT/V5 in visual cortex [Fig. 8; (—33,

~79,11), t1g) = 5.62,7 = 0.49, p = 0.003 and (39, —64, 10), £,5) =
4.24,r = 0.44, p = 0.035, both FWE-corrected within function-
ally defined visual cortex region of interest]. In accord with our
second hypothesis, these findings show that, faced with ambigu-
ous sensory input, participants with high delusion scores exhibit
enhanced functional coupling of higher-level areas in OFC with
lower-level sensory areas in visual cortex, providing the neural
basis for a stronger influence of beliefs on perceptual inference in
delusion-prone individuals.

Discussion

Our current study provides evidence along several lines for a
comprehensive model of delusional beliefs based on a Bayesian
framework of perceptual inference and belief formation. First, in
our sample of healthy individuals, delusional ideation was asso-
ciated with perceptual instability, indicating weakened sensory
predictions. This finding is in line with a growing body of evi-
dence indicating alink between delusions and weakened effects of
endogenous predictions on action and perception (Blakemore et
al., 2000; Schneider et al., 2002; Dakin et al., 2005; Lindner et al.,
2005; Shergill et al., 2005; Uhlhaas et al., 2006; Dima et al., 2009;
Synofzik et al., 2010; Teufel et al., 2010; Voss et al., 2010; Sanders
et al., 2013). With recourse to previous accounts (Heinz, 2002;
Kapur, 2003; Hemsley, 2005; Corlett et al., 2009, 2010; Fletcher
and Frith, 2009), we therefore suggest that attenuated predictive
signaling within sensory processing stages provides the starting
point for maladaptive learning processes that yield the emergence
of delusional beliefs. Second, to the best of our knowledge, this is
the first experimental demonstration of an increased influence of
beliefs on perception in delusion-prone individuals, which in
contrast to previous findings (Blakemore et al., 2000; Schneider
etal., 2002; Dakin et al., 2005; Hemsley, 2005; Lindner et al., 2005;
Shergill et al., 2005; Uhlhaas et al., 2006; Dima et al., 2009; Syn-
ofzik et al., 2010; Teufel et al., 2010; Voss et al., 2010; Sanders et
al., 2013) offers an explanation for the persistence of delusional
beliefs. At the neural level, this was paralleled by an association of
the tendency toward delusional ideation and enhanced func-
tional connectivity between frontal areas and visual areas encod-
ing perception. Importantly, the effect of beliefs on perception
was reflected in fMRI signal patterns, showing for the first time
that higher-level cognitive beliefs not only bias reported percep-
tion but alter information processing in visual cortex. Thus, we
propose that excessive predictive signaling from higher-level cor-
tical areas encoding beliefs to lower-level sensory areas shapes
perception in accord with delusional beliefs, which may consti-

tute the critical mechanism for the tenacious persistence of delu-
sional beliefs. Third, weaker perceptual stability was directly
associated with a stronger influence of beliefs on perception. Cru-
cially, this establishes a link between the explanations for the
formation and the fixity of delusional beliefs: when faced with
unstable sensory representations that arise from weak predictions
within lower-level sensory processing stages, perceptual infer-
ence seems to rely more strongly on predictions from higher-level
nonsensory areas encoding beliefs.

Essentially, our findings are consistent with the idea that de-
lusional beliefs result from an aberration in the signaling of pre-
diction error (Heinz, 2002; Kapur, 2003; Corlett et al., 2009, 2010;
Fletcher and Frith, 2009). More specifically, a lack of precision in
the prediction error signal (Fletcher and Frith, 2009; Corlettetal.,
2010) at lower levels of the cortical hierarchy might impede the
appropriate implementation of reliable sensory predictions. This
would be paralleled by unstable sensory representations,
which is in line with our observation of an association between
the tendency toward delusional ideation and decreased per-
ceptual stability. From a conceptual perspective (Friston,
2005), the consequences of a decreased precision of the predic-
tion error signal are twofold. On the one hand, as suggested pre-
viously (Heinz, 2002; Kapur, 2003; Corlett et al., 2009, 2010;
Fletcher and Frith, 2009), the noise in the prediction error signal
engages maladaptive learning by inappropriately updating
higher-level predictions. The experience of expected and irrele-
vant sensory events as surprising and relevant initiates a search
for explanation and leads to the formation of delusional beliefs.
On the other hand, sensory prediction instability that results
from imprecise prediction error signaling at lower levels biases
perceptual inference toward higher-level predictions. Faced with
sensory signals that are constantly indicated as chaotic and un-
predictable, perception relies more strongly on internal sources
of information, such as cognitive beliefs, which might be the
critical mechanism for the persistence of delusional beliefs. This
is in accord with our finding of an association between the ten-
dency toward delusional ideation and a stronger belief-induced
perceptual bias. It has been proposed that in the framework of
perceptual inference, the role of attention can be conceptualized
as optimizing the precision of sensory signals (Feldman and Fris-
ton, 2010). Similar to attention, other high-level predictions
about the state of the world, such as beliefs or expectations, may
also serve to optimize the precision of sensory signals. Along these
lines, our findings suggest that exaggerated high-level predic-
tions in delusion-prone individuals may represent an attempt to
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optimize imprecise prediction error signaling at sensory process-
ing levels, thereby also adding to the ongoing debate regarding
the relationship between expectations and attention in percep-
tual inference (Summerfield and Egner, 2009). In summary, the
imprecise prediction error signal at lower levels of the cortical
hierarchy triggers two distinct adaptive processes accounting for
the fundamental characteristics of delusional beliefs: the attempt
to flexibly respond to the exaggerated noise in the sensory repre-
sentations through the modification of higher-level predictions
yields the formation of delusional beliefs, while the attempt to
impose stability on unstable sensory representations through re-
liance on higher-level predictions results in the maintenance of
delusional beliefs. Although it is conceivable that the two pro-
cesses occur simultaneously, it is likely that additional situational
factors, such as general arousal, have an influence on which of the
two processes is preferred.

Delusions have been proposed to constitute an extreme ex-
pression of a continuously distributed phenotype (Meehl, 1962).
In line with this continuity view of psychosis, varying degrees of
delusional ideation are observed in the general, nonclinical pop-
ulation (Freeman, 2006). Subclinical delusional ideation is pre-
dictive of later psychosis (Chapman et al., 1994), and is associated
with the same epidemiological and environmental risk factors as
psychotic disorder (van Os et al., 2009), indicating that delusional
ideation and clinical delusions can be explained in terms of sim-
ilar underlying mechanisms. Therefore, we suggest that our find-
ings linking altered perceptual inference with delusional ideation
in healthy individuals indeed inform the understanding of delu-
sions. Importantly, our approach enables us to safely conclude
that the observed alterations of perceptual inference are not re-
lated to psychotropic medication or other consequences of psy-
chotic disorder, but rather to the tendency toward unfounded
beliefs itself. Our findings thus illustrate how interindividual dif-
ferences in perception relate to interindividual differences in be-
lief formation and maintenance and provide a promising starting
point for future work on physiological and pathological beliefs.

While we did not study delusions in a clinical sense, our cur-
rent findings offer a comprehensive and plausible explanation for
the emergence and persistence of unfounded beliefs. They thus
contribute substantially to the understanding of the mechanisms
that jointly govern beliefs and perception both in health and in
psychosis.
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