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Differences in Adaptation Rates after Virtual Surgeries
Provide Direct Evidence for Modularity
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Whether the nervous system relies on modularity to simplify acquisition and control of complex motor skills remains controversial. To
date, evidence for modularity has been indirect, based on statistical regularities in the motor commands captured by muscle synergies.
Here we provide direct evidence by testing the prediction that in a truly modular controller it must be harder to adapt to perturbations
that are incompatible with the modules. We investigated a reaching task in which human subjects used myoelectric control to move a
mass in a virtual environment. In this environment we could perturb the normal muscle-to-force mapping, as in a complex surgical
rearrangement of the tendons, by altering the mapping between recorded muscle activity and simulated force applied on the mass. After
identifying muscle synergies, we performed two types of virtual surgeries. After compatible virtual surgeries, a full range of movements
could still be achieved recombining the synergies, whereas after incompatible virtual surgeries, new or modified synergies would be
required. Adaptation rates after the two types of surgery were compared. If synergies were only a parsimonious description of the
regularities in the muscle patterns generated by a nonmodular controller, we would expect adaptation rates to be similar, as both types of
surgeries could be compensated with similar changes in the muscle patterns. In contrast, as predicted by modularity, we found strikingly
faster adaptation after compatible surgeries than after incompatible ones. These results indicate that muscle synergies are key elements
of a modular architecture underlying motor control and adaptation.

Introduction
Human motor skills are remarkably complex because they re-
quire coordinating many muscles acting on many joints (Bern-
stein, 1967). The nervous system might achieve motor
coordination by combining basic control modules shared across
skills and task conditions (Bizzi et al., 2008). To date, evidence for
modularity has come mainly from the observation of low dimen-
sionality in the muscle activity patterns recorded during a variety
of motor behaviors in different species. Indeed, muscle patterns
can be reconstructed by combinations of a small number of mus-
cle synergies, coordinated recruitment of muscle groups with
specific activation patterns (Tresch et al., 1999; d’Avella et al.,
2003, 2006; Hart and Giszter, 2004; Ivanenko et al., 2004; Ting
and Macpherson, 2005; Torres-Oviedo and Ting, 2007; Overduin
et al., 2008, 2012; Dominici et al., 2011). However, low-
dimensional output might also be observed in a nonmodular

controller due to task characteristics or biomechanical con-
straints (Todorov, 2004; Kutch and Valero-Cuevas, 2012).

Direct evidence for modularity would come from testing an
experimental manipulation that can distinguish a modular con-
troller from a non-modular one (d’Avella et al., 2008; Tresch and
Jarc, 2009; d’Avella and Pai, 2010). Here we tested a manipulation
of the mapping between muscle activations and hand forces that
could make such a distinction. To generate a given force, a con-
troller must find an appropriate muscle pattern. In a nonmodular
controller, no further structure is assumed. In contrast, in a mod-
ular controller using muscle synergies, the motor command is
produced by a weighted combination of muscle synergies, each
specifying a specific balance of muscle activations, and the con-
troller must find appropriate combination weights. Consider a
surgical rearrangement of the tendons of all the muscles contrib-
uting to force generation and altering the force component pro-
duced by a given activation of each muscle. A special class of such
surgeries could be used to distinguish the two types of controllers.
All the surgeries are benign, in that it would still be possible to
produce any target force after surgery with an appropriate muscle
pattern. However, some surgeries are incompatible with the syn-
ergies. Figure 1 illustrates this concept using an idealized arm
with two pairs of antagonist muscles. In the intact arm, a hypo-
thetical synergy would recruit two muscles generating forces in
the direction of the summed forces of the individual muscles.
After the surgery, the individual muscle forces would cancel each
other, and the synergy would no longer generate any force. A
modular controller would then be unable to generate forces in all
directions without new or modified synergies. Thus, modularity

Received Jan. 9, 2013; revised May 21, 2013; accepted May 27, 2013.
Author contributions: D.J.B., R.G., T.E., D.K.P., and A.d. designed research; D.J.B., R.G., and A.d. performed

research; D.J.B., R.G., T.E., D.K.P., and A.d. analyzed data; D.J.B., D.K.P., and A.d. wrote the paper.
This work was supported by the Human Frontier Science Program Organization (RGP11/2008), the European

Community’s Seventh Framework Programme (FP7/2007–2013-Challenge 2-Cognitive Systems, Interaction, Ro-
botics, grant agreement No 248311-AMARSi), the Canada Research Chairs Program, the Natural Sciences and Engi-
neering Research Council of Canada, Canada Foundation for Innovation, the Canadian Institutes of Health Research,
NIH, and the Peter Wall Institute for Advanced Studies. We thank F. Lacquaniti, E. Bizzi, and R. Ajemian for helpful
comments on earlier versions of this manuscript, and D. Borzelli for help with the experimental apparatus.

The authors declare no competing financial interests.
Correspondence should be addressed to Andrea d’Avella, Fondazione Santa Lucia, Via Ardeatina 306, 00179

Rome, Italy. E-mail: a.davella@hsantalucia.it.
DOI:10.1523/JNEUROSCI.0122-13.2013

Copyright © 2013 the authors 0270-6474/13/3312384-11$15.00/0

12384 • The Journal of Neuroscience, July 24, 2013 • 33(30):12384 –12394



predicts that adaptation to incompatible surgeries is harder than
adaptation to compatible surgeries, as the latter only requires
recombining existing synergies.

We constructed such surgeries noninvasively in a virtual en-
vironment in which human subjects performed a reaching task
using myoelectric signals to control the simulated force applied
on a virtual mass. We then tested the hypothesis that the control-
ler involved in the generation of forces at the hand is modular by
comparing adaptation rates after compatible and incompatible
virtual surgeries.

Materials and Methods
We asked naive participants to reach targets on a virtual desktop by
displacing a cursor (i.e., a virtual spherical handle) according to either the

force applied on a physical handle (force con-
trol) or the force estimated from the EMG ac-
tivity recorded from many shoulder and arm
muscles (myoelectric or EMG control). Ini-
tially, the reaching task was performed under
force control and, for each individual partici-
pant, the force and EMG data collected were
used to estimate an EMG-to-force matrix by
multiple linear regressions. The same EMG
data were also used to identify a synergy matrix
by nonnegative matrix factorization. Under
EMG control, we could arbitrarily modify the
EMG-to-force map, thus performing virtual
surgeries on the musculoskeletal system. We
could then compare the effects of a compatible
virtual surgery with those of an incompatible
one.

Participants. Sixteen right-handed naive
subjects (mean age, 24.2 � 2.4 years, SD; eight
females) participated in the main experiment
(n � 8) and in a control experiment (n � 8)
after giving written informed consent. All pro-
cedures were conducted in conformance with
the Declaration of Helsinki and were approved
by the Ethical Review Board of Santa Lucia
Foundation.

Experimental setup. Each subject sat in front
of a desktop on a racing car seat with their torso
immobilized by safety belts and their right
forearm inserted in a splint, immobilizing
hand, wrist, and forearm. The center of the
palm was aligned with the body midline at the
height of the sternum, and the elbow was flexed
by �90°. The subject’s view of their hand was
occluded by a 21 inch LCD monitor inclined
with its surface approximately perpendicular
to the subject’s line of sight when looking at
their hand (Fig. 2A). After calibration, the
monitor could display a virtual desktop match-
ing the real desktop; a spherical cursor match-
ing, at rest, the position of the center of the
palm and moving on a horizontal plane; and
spherical targets on the same plane (Fig. 2B). A
steel bar at the base of the splint was attached to
a 6 axis force transducer (Delta F/T Sensor; ATI
Industrial Automation) positioned below the
desktop to record isometric forces and torques.
Surface EMG activity was recorded from 13
muscles acting on the shoulder and elbow: bra-
chioradialis (BracRad), biceps brachii short
head (BicShort), biceps brachii long head (Bi-
cLong), triceps brachii lateral head, triceps
brachii long head (TriLong), infraspinatus, an-
terior deltoid, middle deltoid, posterior deltoid

(DeltP), pectoralis major, teres major, latissimus dorsi, and middle tra-
pezius. EMG activity was recorded with active bipolar electrodes (DE 2.1;
Delsys), bandpass filtered (20 – 450 Hz), and amplified (gain 1000, Bag-
noli-16; Delsys). Force and EMG data were digitized at 1 kHz using an
analog-to-digital PCI board (PCI-6229; National Instruments). The vir-
tual scene was rendered by a PC workstation with a refresh rate of 60 Hz
using custom software. Cursor position information was processed by
a second workstation running a real-time operating system and trans-
mitted to the first workstation. Cursor motion was simulated in real time
using an adaptive mass-spring-damper (MSD) filter (Park and Meek,
1995). Either the actual force recorded by the transducer force (force
control) or the force estimated in real time from the recorded and recti-
fied EMGs (EMG control) using a linear mapping (see below, EMG-to-
force matrix) was applied to a critically damped virtual mass fixed to the

Figure 1. Concept of incompatible surgery. Illustration of a tendon transfer surgery that makes a putative muscle synergy
unable to generate any force. A, An idealized arm with two pairs of antagonist muscles at two joints (m1 to m4), each generating
a force in a specific direction at the end point (f1 to f4), is controlled by a muscle synergy recruiting two muscles simultaneously (m1

and m2). The activation of the synergy generates a force that is the sum of the forces generated by each constituent muscle (fsyn �
f1 � f2). B, A tendon transfer surgery affecting the force generated by two muscles. C, After the surgery, one of the muscles
participating to the synergy (m1�) generates a force in a direction that cancels the force of the other synergistic muscle (m2). The
synergy no longer generates any force (f�syn � f�1 � f�2 � 0).

Figure 2. Experimental setup and protocol. A, Subjects sat in front of a desktop and applied forces on a transducer attached to
a forearm, wrist, and hand splint. A flat monitor occluded the subject’s hand and displayed a virtual scene colocated with the real
desktop. B, Transparent spheres positioned on a horizontal plane with centers at the same height as the center of the palm
indicated force targets that the subjects were instructed to reach with a smaller spherical cursor moving on the same plane
according to the force applied (force control) or estimated from EMGs recorded from 13 arm and shoulder muscles (EMG control; see
Materials and Methods). C, Subjects were instructed to perform a center-out reaching task in which they had to maintain the cursor
in a central start location for 1 s, reach a target as soon as it appeared at one of eight peripheral locations, and maintain the cursor
at the target for 0.2 s. D, Each subject performed a single experimental session consisting of 16 trials of maximum voluntary force
generation in eight directions, 72 trials of reaching to targets in eight directions at three force magnitudes (10, 20, and 30% MVF)
in force control, and the following blocks of 24 trials each in EMG control: one block of familiarization (FAM), two series of 24 blocks
for each surgery type (6 baseline blocks, 12 surgery blocks, 6 washout blocks), and 6 additional baseline blocks.
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cursor’s position. To maintain fast response to changes in force while
reducing the effect of myoelectric noise, the simulated mass was adapted
dynamically as a function of the rate of change of the magnitude of the
recorded force (ḟ ) according to the following sigmoidal function:

m� ḟ � � � mmax�1 �
1

1 � e�aḟ� � b for 0 � ḟ � ḟ max,

b for ḟ � ḟ max,

(1)

where mmax is the asymptotic mass, a is the slope parameter, and b is the
offset (mmax � 1 kg, a � 0.1, b � 0.05 kg, and ḟ max � 50 Ns �1 during
EMG control). Thus, when the subject generated a constant force, e.g.,
when trying to hold the cursor in fixed position, the simulated mass was
large, and the MSD filtering was more effective in reducing cursor mo-
tion due to myoelectric noise. In contrast, in response to a change of force
output, e.g., when the subject tried to quickly reach the target, the simu-
lated mass was small, shortening the delay introduced by the filter and
making the cursor more responsive.

Experimental protocol. Subjects initially performed two blocks of trials
in force control and the rest of the experiment in EMG control. In the
first force control block, the mean maximum voluntary force (MVF)
along eight directions (separated by 45°) in the horizontal plane was
estimated as the mean of the maximum force magnitude recorded across
16 trials in which subjects were instructed to generate maximum force in
each direction.

Subjects were then instructed to move the cursor quickly and accurately
from the rest position to a target in one of the eight directions by applying
forces on the splint. At the beginning of each trial (Fig. 2C), subjects were
requested to maintain the cursor within a transparent sphere at the central
start position for 1 s (tolerance of 2% MVF). Next, a “go” signal was given by
displaying a transparent target sphere while the start sphere disappeared.
Subjects were instructed to reach the target as quickly as possible and to
remain there for 0.2 s (tolerance of 2% MVF). After successful target acqui-
sition, the cursor and the target disappeared, indicating the end of the trial.
Trials had to be completed within 2 s from the go signal.

In the second force control block, subjects performed 72 trials to tar-
gets positioned at force magnitudes corresponding to 10, 20, and 30% of
MVF (random order within cycles of eight directions). After this block,
there was a 5 min pause to process the recorded data to construct the
myoelectric controller and the virtual surgeries. All subsequent EMG
control blocks (Fig. 2D) consisted of 24 trials with targets at 20% MVF in
random order within cycles of eight directions. The first EMG control
block served to familiarize subjects with EMG control. Then subjects
performed two series of blocks of compatible and incompatible virtual
surgeries, respectively (see below, Virtual surgeries and adaptation diffi-
culty section). Each series consisted of 24 blocks: 6 baseline blocks, fol-
lowed by 12 virtual surgery blocks, followed by 6 washout blocks. In
between the two series, subjects rested for 10 min; they were also allowed
to rest at any time during the experiment. After the two series there were
six additional blocks without surgery. The experimental protocol for the
control experiment (see below) consisted of the same block structure and
order with compatible and incompatible force transformations instead
of virtual surgeries.

EMG-to-force mapping. If the arm is in a fixed posture, the force gen-
erated at the hand is approximately a linear function of the activation of
muscles acting on shoulder and elbow:

f � H m, (2)

where f is the generated two-dimensional force vector, m is the 13-
dimensional vector of muscle activations, and H is a matrix relating
muscle activation to force (dimensions 2 	 13). The EMG-to-force ma-
trix (H ) was estimated using multiple linear regressions of each applied
force component, low-pass filtered (second-order Butterworth; 1 Hz
cutoff), with EMG signals recorded during the initial force control block
(dynamic phase, i.e., time from target go until the target has been
reached), low-pass filtered (second-order Butterworth; 5 Hz cutoff) and

Figure 3. Examples of EMG-to-force matrix, synergies, and virtual surgeries. A, EMG-to-
force matrix H estimated for Subject 2 from EMG and force data recorded during the generation
of planar isometric forces. Each column of H, representing the planar force generated by one
muscle, is illustrated by a colored arrow (1, brachioradialis; 2, biceps brachii short head; 3, biceps
brachii long head; 4, triceps brachii lateral head; 5, triceps brachii long head; 6, infraspinatus; 7,
anterior deltoid; 8, middle deltoid; 9, posterior deltoid; 10, pectoralis major; 11, teres major; 12,
latissimus dorsi; 13, middle trapezius). B, Muscle synergies (matrix W ) are identified by non-
negative matrix factorization from the EMG data. Each column of W, a vector specifying a
specific pattern of relative level of muscle activation, is illustrated by color-coded horizontal
bars. C, Forces associated with each muscle synergy (i.e., columns of the matrix product H W )
span the entire force space. D, Forces generated by muscles after a compatible virtual surgery
obtained by recombination of the original forces as after a complex rearrangement of the
tendons (Tc). E, Synergy forces after the compatible surgery still span the force space. F, Muscle
forces after an incompatible surgery generated by a rotation matrix (Ti) that maps a vector in
the column space of W into a vector in the null space of H. G, Such rotation aligns the forces
associated with all synergies in the same direction; thus synergy forces after the incompatible
surgery do not span the entire force space.
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normalized to the maximum EMG activity during the generation of
MVF. We verified that the choice of filter parameters for the estimation
of the H matrix did not affect the quality of the force reconstruction
during EMG control by investigating different force and EMG cutoff
frequencies. Figure 3A illustrates the columns of the EMG matrix (i.e.,
the force associated with each muscle, hi) estimated in Subject 2.

Synergy extraction and number of synergies. Muscle synergies were
identified by nonnegative matrix factorization (Lee and Seung, 1999)
from EMG patterns recorded during force control from the go signal to
target acquisition (dynamic phase):

m � W c, (3)

with W an M 	 N synergy matrix whose columns are vectors specifying
relative muscle activation levels, and c an N-dimensional synergy activa-
tion vector where N is the number of synergies and M is the number of
muscles. EMG patterns were first low-pass filtered (second-order Butter-
worth filter; 5 Hz cutoff frequency) and rectified, their baseline noise
level was then subtracted, and finally they were normalized to the maxi-
mum EMG activity of each muscle recorded during the generation of
MVF. Baseline noise was estimated at the beginning of the experiment
and updated periodically throughout the experiment while the subject
was relaxed. For each possible N from 1 to 13, the extraction algorithm
was repeated 10 times, and the repetition with the highest reconstruction
R 2 was retained. The value N was then selected according to two criteria.
The first criterion was a fixed threshold on the fraction of data variation
explained by the synergies: N was selected as minimum number of syn-
ergies explaining at least 90% of the data variation. The second criterion
was the detection of a change in slope in the curve of the R 2 value as a
function of N. A series of linear regressions were performed on the por-
tions of the curve included between N and its last point (13). The value N
was then selected as the minimum value for which the mean squared error of
the linear regression was 
10�4 (d’Avella et al., 2006). In case of mismatch
between the two criteria, we used the criterion that selected the set of syner-
gies with preferred directions (the direction of the maximum of the cosine
function best fitting the directional tuning) of the synergy activation coeffi-
cients (Eq. 3, c) distributed more uniformly and, in particular, with the
smallest number of similar preferred directions. Thus, we arranged the pre-
ferred direction vectors on a unit circle, we considered all adjacent pairs, and
we selected the set of synergies with the smallest number of pairs with an
angular difference below 20°. Figure 3B illustrates the synergies extracted
from Subject 2, and Figure 3C the forces associated with those synergies by
the EMG-to-force matrix (fi � H wi) estimated in the same subject (Fig. 3A).

Virtual surgeries and adaptation difficulty. We constructed virtual sur-
geries that were either compatible or incompatible with the synergies as
simulated rearrangements of the tendons. Such virtual surgeries were not
fully equivalent to a true tendon transfer, since the pattern of proprio-
ceptive responses after the virtual surgery did not change, but they pro-
vided compelling visual feedback on the effect that such a surgery would
have had on a manipulated object. Virtual surgeries were performed
during EMG control by altering the EMG-to-force mapping (H ), as after
a simulated rearrangements of the tendons, with a rotation in muscle
space (H� � H T; Fig. 3 D, F ). For each subject, compatible and incom-
patible virtual surgeries were constructed according to the identified
synergies in force control. Both types of virtual surgeries allowed the
generation of any planar force with a new muscle activation vector, m�.
However, only for compatible surgeries could all force directions be gen-
erated by recombining the existing synergies (Eq. 3, c�; Fig. 3E). Incom-
patible surgeries, in contrast, were constructed such that muscle
activation vectors obtained by synergy combinations could only generate
forces in one dimension (Fig. 3G). Thus, if the controller was modular,

Figure 4. Construction of compatible and incompatible virtual surgeries. A, Venn diagram illustrating the different subspaces of the muscle space used for the construction of the virtual surgeries:
the column space of the synergies R(W ) (cyan set), the null space of the EMG-to-force matrix N(H ) (orange set), and the common subspace of N(H ) and R(W ) (magenta set). w and w� represent
generic vectors in the column space of the synergies, and n represents a vector in N(H ) that is not in R(W ). B, A compatible rotation in muscle space maps a vector w in R(W ) (cyan plane) that is not
in N(H ) (orange arrow) into a second vector w� in R(W ). C, An incompatible rotation in muscle space, in contrast, maps a vector w in R(W ) that is not in N(H ) (orange plane) into a vector n in N(H )
that in not in R(W ) (cyan plane).

Table 1. Summary of individual characteristics and results

Subject
IDa

Age
(years) Sex

Height
(cm)

No. of
synergies

R 2 of
synergy
reconstruction

Idiff

(Tc )
Idiff

(Ti )

R 2 of force
reconstruction by
H matrix and EMGs

1 24 M 185 4 0.91 1.33 1.32 0.75
2 20 M 178 4 0.95 1.33 1.33 0.89
3 25 M 180 4 0.92 1.24 1.23 0.77
4 27 F 162 4 0.93 1.51 1.50 0.84
5 24 F 164 4 0.91 1.26 1.25 0.72
6 22 F 178 5 0.96 1.38 1.38 0.84
7 26 F 164 5 0.91 1.49 1.48 0.75
8 24 F 178 4 0.91 1.38 1.35 0.84
9 26 M 177 4 0.92 1.33 1.43 0.83

10 25 F 162 4 0.96 1.68 1.40 0.82
11 21 F 167 4 0.92 1.23 1.32 0.84
12 27 M 168 3 0.91 1.34 1.33 0.82
13 25 M 172 4 0.95 1.20 1.17 0.85
14 28 M 183 4 0.90 1.28 1.26 0.81
15 21 F 161 5 0.91 1.56 1.55 0.77
Mean 24.3 � 2.4 171.9 4.1 0.92 1.37 1.35 0.81
� SD �8.4 �0.5 �0.02 �0.14 �0.11 �0.05
aSubjects 1 to 8 participated in the virtual surgery experiment, and Subjects 9 to 15 in the force transformation
control experiment. M, Male; F, female.
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i.e., synergies generated the muscle patterns, we expected adaptation to
an incompatible surgery to be slower because it requires not only adapt-
ing the synergy coefficients (c�), as for a compatible surgery, but also
learning new synergy vectors (W�). In contrast, if synergies were only a
parsimonious description of the regularities in the muscle patterns se-
lected by a nonmodular controller, we expected no differences in learn-
ing difficulty if the two surgeries required similar changes of the muscle
activations (m�) to compensate for the surgeries.

Construction of compatible and incompatible virtual surgeries. Virtual
surgeries were constructed with specific muscle space rotations. Compat-
ible rotations (Tc) were chosen as rotations in the subspace spanned by
the synergies. In contrast, incompatible rotations (Ti) rotated a vector of
the same synergy subspace into the null space of H. Specifically, we first
identified three subspaces of the M-dimensional muscle space. As the
number of synergies ( N) is in general larger than the dimension of the
force space (D � 2), the null space of H [dimension M � D; Fig. 4A,
orange, labeled N(H ), illustrated as a set in the Venn diagram; B, illus-
trated as a vector; C, illustrated as a plane] share a common subspace
(dimension N � D, magenta set) with the subspace generated by the
synergies [dimension N; Fig. 4, cyan, R(W )]. Thus, using singular value
decomposition of the matrix Wo

T N � U S V T, where Wo is an ortho-
normal basis of the range of W, N is an orthonormal basis of the null
space of H, and S has N � D nonzero singular values, we can identify two
orthonormal bases Wc � Wo [u1, . . ., uN � D] and Nc � N [v1, . . ., vN � D]
of the common subspace between synergies and null space, an orthonor-
mal basis Wnc � Wo [uN � D � 1, . . .,uN] of the subspace of synergy
vectors not in the null space, and an orthonormal basis
Nnc � N [vN � D � 1, . . .,vM � D] of null space vectors not generated by
synergy combinations. Then, the compatible rotation Tc was constructed
such that a vector w in the span of Wnc is rotated onto a second vector w�

of the same subspace (Fig. 4 A, B, green arrow). Any two noncollinear
vectors w and w� in the span of Wnc could be chosen, and we simply
randomly selected two distinct vectors of Wnc. In this way, the forces
associated with the synergies are altered, but all force directions can be
generated by recombining the same synergies. In contrast, the incom-
patible rotation Ti rotates a vector w in the span of Wnc onto a vector
n in the span of Nnc (Fig. 4 A, C, red arrows). In this way, the muscle
patterns generated by synergy combinations along w do not produce
any force after the surgery, and synergy combinations can generate
forces only in one dimension (Fig. 3G).

We used rotations in muscle space (i.e., transformations of the muscle
activity according to an orthonormal matrix T, TT T � T TT � 1, where
1 is the identity matrix) because they are invertible transformations that
do not change the norm of the muscle pattern. However, in general, any
pairs of transformations Tc and Ti such that H Tc, H Ti, and H Tc W span
the force space and H Ti W does not span the force space (i.e., it does not
have full rank) would be appropriate. To construct a rotation in the
M-dimensional muscle activation space that maps a vector a into a (non-
collinear) vector b (both vectors of unit length), we performed the fol-
lowing procedure: (1) We constructed an orthonormal basis of the
M-dimensional muscle space Q � [q1, q2, . . ., qM] by orthogonal-
triangular decomposition (Matlab function qr) of [a, b] � Q R. (2) We
computed the angle � between a and b (cos� � aT b � R12; sin� � R22)
and the rotated basis vectors QR � [q1

r, q2
r, . . ., qM

r]: q1
r � cos� q1 �

sin� q2; q2
r � �sin� q1 � cos� q2; and qi

r� qi for i � 3. . .M. (3) We
constructed the rotation matrix T � QRQT. In the compatible case, a �
w and b � w�, whereas in the incompatible case a � w and b � n.

Finally, to make the changes in the muscle patterns required to com-
pensate the two types of surgeries similar, for each subject, the compati-
ble rotation angle was chosen such that a difficulty index (Idiff), defined as

Figure 5. Example of cursor trajectories. Trajectories of the cursor on the horizontal plane during individual trials of Subject 2 are shown for different targets (color coded) before undergoing a virtual surgery
(baseline; first column), immediately after a virtual surgery (second column), at the end of the exposure to the virtual surgery (third column), and after undoing the virtual surgery (washout; last column), for
compatible (first row) and incompatible (second row) virtual surgeries. The motion of the cursor was simulated in real time as that of a mass attached by a damped spring to the center of the real handle under
the force applied to the handle estimated from the recorded EMGs (see Materials and Methods). Trajectories are shown from the target “go” signal until the end of the trial.
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the average change across muscles and force targets in muscle activity
required to perform the task after the surgery, was close in the two cases
(Table 1). Specifically the difficulty index was defined as follows:

Idiff � �
i�1

13 �
k�1

8

� mik � m�ik �, (4)

where mik is the activity of the ith muscle for the kth force target, nor-
malized to the maximum across force targets before the surgery, and m�ik

the same activity after the surgery. For each force target k, the muscle
activation vectors mk and m�k were computed as the minimum norm,
nonnegative solution of the equations fk � H mk and fk � H T m�k,
respectively.

Compatible and incompatible force transformations. For each muscle
activation m, a muscle rotation T generates a force transformation of f �
H m onto f� � H m� � H T m. To assess whether differences in the force
transformations associated with compatible (Tc) and incompatible (Ti)
muscle rotations could affect adaptation rates, we conducted a control
experiment in which subjects were required to adapt to force transfor-
mations close to those generated by compatible and incompatible virtual
surgeries. We approximated the force transformation generated by a
muscle rotation T as a linear force transformation f� � V f, with V � H T
H� (where H� is the pseudoinverse of H ). Force transformations were
constructed from compatible and incompatible muscle rotations, which
were generated in exactly the same way as for virtual surgeries. Note that
all force transformations are compatible with the synergies because they
do not affect the ability of synergies to span the entire force space. If the
controller were nonmodular and adaptation after an incompatible muscle
rotation were slower because of the nature of the force transformation, we
would expect adaptation to an incompatible force transformation (Vi �H Ti

H�) to also be slower than the adaptation to a compatible force transforma-
tion (Vc � H Tc H�). In contrast, if the controller were modular and differ-
ences in force transformations did not affect adaptation difficulty, we would
expect similar adaptation rates.

Data analysis. Task performance was quantified by the angular devia-
tion of the initial movement direction of the cursor with respect to target
direction and by the fraction of trials in which the cursor reached and
remained in the target within the instructed time intervals. The angular
deviation was computed as abs(�target ��cursor), where �target is the target
direction, and �cursor is the direction of the displacement between the
position of the cursor at movement onset and at the first subsequent peak
of its tangential velocity. Taking the absolute value avoided cancellations
when averaging the values of the angular deviations across targets with
different signs for the difference between target direction and cursor
initial direction. Learning rates of both performance measures were es-
timated for each subject and type of perturbation by a single exponential
fit of block averages. We verified that all results were not affected by
calculating the angular error using the position of the cursor at 100 ms
after movement onset instead of the position at the first velocity peak.
Finally, we quantified the changes of the synergistic organization of
muscle patterns throughout the experiment by reconstructing them
as combination of the synergies extracted at the beginning of the
experiment (force control block) and computing a reconstruction R 2

value for each block. The reconstruction of the muscle patterns of
each block was performed using the nonnegative matrix factorization
algorithm initialized with the synergies extracted at the beginning of
the experiments and updating only to the combination coefficients
(d’Avella et al., 2006).

Statistical analysis. Differences in performance measures and learning
rates between blocks or perturbation types were assessed by t test statis-
tics (paired, two-tailed) after verifying the normality of the distributions
(Lilliefors test). One of the eight subjects participating in the control
experiment was unable to properly follow the instructions and to per-
form the task even in the initial force control block and was excluded
from the analysis.

Results
Adaptation to compatible virtual surgeries is faster than
adaptation to incompatible virtual surgeries
We compared adaption rates to novel compatible and incompat-
ible surgeries constructed using a virtual environment. Naive
participants (n � 8; Table 1) reached targets on a virtual desktop
by displacing a cursor according to either the force applied on a
physical handle (force control) or the force estimated from the

Figure 6. Comparison of task performance changes during virtual surgery and control ex-
periments. A, Angular error of the initial movement direction with respect to the target direc-
tion, averaged across subjects and blocks of 24 trials (solid lines; shaded areas indicate SEM) for
compatible virtual surgery (green), incompatible virtual surgery (red), compatible control
(cyan), and incompatible control (magenta) experiments. B, Fraction of trials in which the
cursor did not reach and hold on the target, averaged across subjects and blocks of 24 trials.
Differences between compatible and incompatible conditions in both performance measures
were significant at the end of the exposure to the perturbation (surgery block 12) in the virtual
surgery experiments, but not in the control experiments.
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EMG activity recorded from many shoulder and arm muscles
(myoelectric or EMG control). A linear model (Eq. 2) estimated
during the initial block of trials performed in force control ade-
quately captured the relationship between EMG and force (R 2 �
0.80 � 0.06, mean � SD; n � 8), and all subjects were able to
perform the task immediately after switching to EMG control.

Before undergoing a virtual surgery, using EMG control, sub-
jects displaced the cursor from a central start location to one of
eight targets arranged on a circle along approximately straight
paths (Fig. 5, first column). Immediately after a surgery, regard-
less of its type, cursor movements were poorly controlled as the
muscle patterns normally used to generate a force toward the
target directed the cursor in a different direction (Fig. 5, second
column). Task performance, quantified by the angular error of
the cursor’s initial movement direction with respect to the target
direction and by the fraction of trials in which the cursor did not
reach and hold the target position in the available time, was sig-
nificantly worse in the first block after the surgery than in the last
block preceding it (p 
 10�4, t test, for both surgery types and
both performance measurements; Fig. 6A,B, red, green; Table 2).
With practice, subjects improved their ability to generate new
muscle patterns, and both performance measures improved.
However, the improvement was clearly smaller after the incom-
patible than after the compatible virtual surgery, with a signifi-
cantly faster learning rate (single exponential fit; see Materials
and Methods) during the compatible perturbation (p 
 10�4 for
initial direction error; p � 0.005 for fraction of unsuccessful tri-
als; t test). Some targets could not be reached even after many
trials of practice with the incompatible surgery (Fig. 5, third col-
umn). The number of unsuccessful trials did not significantly
decrease after the incompatible surgery (p � 0.102, comparison
between the first and last block, t test), whereas it did decrease
significantly after the compatible surgery (p 
 10�4). On aver-
age, the performance in the last block after the compatible sur-
gery was significantly better than after the incompatible surgery
(p � 0.026, for initial direction error; p � 0.003 for fraction of
unsuccessful trials; t test). In the washout phase, clear negative
aftereffects were observed after undoing the compatible virtual
surgery. For most targets, the initial cursor movement in the first
movement in the washout of the compatible virtual surgery (Fig.
5, fourth column) was deviated in the opposite direction with
respect to the target than in the first movement after the pertur-
bation was introduced (Fig. 5, second column). Such negative
aftereffects were not apparent in the mean angular deviation of
the first washout block (Fig. 6, averaged across targets and sub-
jects), because, to prevent cancellations when averaging across
targets with different signs for the difference between target di-
rection and initial movement direction, the angular deviation
was defined as the absolute value of the angular difference (see
Materials and Methods). To quantify negative aftereffects, we
computed the ratio between the signed initial angle error in the
first eight trials after surgery and in the first eight trials in
the washout. The average ratio across targets and subjects for the

compatible virtual surgery (0.66 � 0.45, mean � SD) was signif-
icantly different from the ratio for the incompatible surgery
(0.36 � 0.32; p � 0.04, t test; n � 8). In sum, these results revealed
a stronger adaptation to the compatible surgery than to the in-
compatible one, as predicted by modularity.

Compatible and incompatible force transformations show
similar adaptation rates
We wondered whether the observed difference in learning rate
after compatible and incompatible surgeries might be due only to
differences in the forces at the hand required after the two types of
surgeries and could have been observed in a nonmodular con-
troller as well. We conducted a control experiment with naive
participants (n � 7) in which we perturbed the virtual force
generation with hand force transformations (see Materials and
Methods) instead of virtual surgeries based on muscle space ro-
tations. These force transformations approximated the change in
force generated by the virtual surgeries, but only affected the
forces computed with the unperturbed EMG-to-force mapping
and did not affect the ability of synergies to span the entire force
space. Participants adapted to force transformations with smaller
initial directional error and number of unsuccessful trials than
after muscle rotations since the first perturbation block (Fig.
6A,B, purple, cyan), indicating that force transformations were
generally easier to learn, not surprisingly, as force transforma-
tions act on a 2-dimensional force space, whereas muscle rota-
tions on a 13-dimensional muscle space. More importantly,
participants did not show significant differences in adaptation
rates (single exponential fit, p � 0.54 for initial direction error,
p � 0.386 for fraction of unsuccessful trials; t test) or in either
error measure between the two types of force transformations in
the last perturbation block (p � 0.21 for initial direction error,
p � 1 for fraction of unsuccessful trials; t test; Table 3). We thus
concluded that the differences in adaptation rates observed with
virtual surgeries were not due to differences in the nature of the
force transformations associated with muscle rotations, but de-
pended on the difficulty in altering the coordination of the mus-
cle activations required to generate novel patterns not captured
by the muscles synergies usually used to perform the task.

Muscle patterns diverge from synergy structure during
incompatible surgery
Performance improvements after incompatible surgeries, even if
they occurred significantly more slowly than after compatible
surgeries, were associated with changes in the muscle patterns
that could not be captured by the original muscle synergies. This
would be expected if an exploration of novel coordination pat-
terns or an organization of new synergies were occurring. Syner-
gies identified before any perturbations were introduced could
reconstruct the muscle patterns observed during the exposure to
muscle rotations and force transformations. Figure 7A shows an
example of muscle patterns (gray area) for different reaching
trials to one target recorded throughout an experimental session

Table 2. Summary of performance measures of the main experiment

Main experiment
Perturbation
type

1st block after
surgery (mean � SD)

Last block after
surgery (mean � SD)

Baseline before
surgery (mean � SD)

Adaptation rate parameters,
y � Ae��x

� A

Angular error (in degrees) Compatible 59.0 � 11.6 24.9 � 9.6 9.3 � 3.5 0.094 � 0.031 57.9 � 12.7
Incompatible 60.5 � 19.9 44.8 � 16.9 9.5 � 1.4 0.025 � 0.033 59.9 � 18.7

Unsuccessful (%) Compatible 83.8 � 11.7 38.5 � 17.4 19.8 � 19.9 0.074 � 0.045 80.2 � 16.1
Incompatible 87.5 � 12.6 75.0 � 14.8 10.9 � 8.0 0.013 � 0.017 87.3 � 14.7
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and their reconstruction (solid line) by
combinations of the synergies extracted
from the first baseline experimental block
(B, left). These synergies captured the mus-
cle patterns before, during, and after the
compatible virtual surgery, as well as right
after the incompatible virtual surgery (Fig.
7A, first to sixth columns). However, at the
end of the incompatible virtual surgery
phase (seventh column), the baseline syner-
gies could not capture all the muscle wave-
forms activated for the specific target.
Specifically, the synergy reconstruction pre-
dicted a higher than observed activation of
BracRad and a lower than observed activa-
tion for BicShort, BicLong, TriLong, and
DeltP. These discrepancies between ob-
served and reconstructed muscle activations
persisted right after the removal of the in-
compatible virtual surgery in the first move-
ment of the first washout block (Fig. 7A,
eighth column). In contrast, the synergies
extracted from the last block after the in-
compatible virtual surgery (Fig. 7B, right)
could reconstruct the muscle patterns of
that block and those recorded in the first
washout block, but they did not capture all
preceding patterns. Thus, the muscle pat-
terns at the end of the incompatible virtual
surgeries were captured by synergies that
were different from those extracted before
any surgery. We then quantified the change
of muscle pattern organization throughout
the experiment by assessing how well the
baseline synergies reconstructed the muscle
patterns recorded in all other blocks (Fig. 8).
On average, across all subjects, we found a
significant reduction of the muscle pattern
reconstruction quality at the end of the ex-
posure to incompatible virtual surgery with
respect to compatible virtual surgery (p �
0.007, comparison between the last compat-
ible and last incompatible virtual surgery
block, p � 0.72 comparison between the
first compatible and first incompatible vir-
tual surgery block, t test; first block after
compatible virtual surgery, 0.78 � 0.19,
mean � SD; last compatible block, 0.78 �
0.07, mean�SD; first block after incompat-
ible virtual surgery, 0.75 � 0.12, mean �
SD; last incompatible block, 0.54 � 0.17,
mean � SD). These results support the no-
tion that a specific adaptation process is in-
volved in overcoming incompatible
surgeries and that this process is active when
the set of synergies usually used for a task
becomes ineffective.

Discussion
Several studies have investigated the adap-
tive processes occurring after a change in
the mapping between motor commands
and visual feedback, such as those induced

Figure 7. Examples of muscle pattern reconstruction by baseline synergies and synergies extracted from the last block
after the incompatible surgery. A, Muscle patterns recorded in Subject 2 for different trials (different columns) to one target
(direction 225°; gray areas) throughout an experimental session and their reconstruction by the synergies extracted from
the initial baseline block (solid lines) and by the synergies extracted from the last block after incompatible surgery (dotted
lines). The vertical lines indicate the time of movement onset (1), the time of the first peak of the cursor tangential velocity
(2), and the time of target acquisition (3). The corresponding cursor trajectories and events (1–3) are shown for each trial
above the muscle activation waveforms. TriLat, Triceps brachii lateral head; InfraSp, infraspinatus; DeltA, anterior deltoid;
DeltM, middle deltoid; PectMaj, pectoralis major; TerMaj, teres major; LatDorsi, latissimus dorsi; TrapMid, middle trape-
zius. B, Synergies extracted from the initial force control block (left, as in Fig. 3B) and extracted from the last block after the
incompatible surgery (right) for the same subject and used for the muscle pattern reconstruction in A. Synergy vectors are
normalized to their maximum muscle activation.
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by looking through prisms when throwing (Martin et al., 1996),
by rotating the direction of movement of a hand-controlled cur-
sor on a computer screen during reaching (Krakauer et al., 2000),
and by remapping finger joint angles into cursor positions
through a linear transformation (Mosier et al., 2005). These stud-
ies have suggested that motor adaptation involves adjustments in
the parameters of internal models of the body and the environ-
ment driven by sensory prediction errors (Shadmehr et al., 2010)
as well as changes of the control policies due to reward and rep-
etition (Krakauer and Mazzoni, 2011; Wolpert et al., 2011). In
contrast with previous adaptation studies that altered the sensory
feedback associated with motion or force, we altered the effect of
muscle activation patterns using myoelectric control. Such an
approach allowed us, for the first time, to probe the structure of
the internal model of the musculoskeletal system by assessing its
capability to overcome simulated virtual surgeries that involved
complex rearrangements of tendons and to provide direct sup-
port to the modular control hypothesis.

A modular organization may allow the CNS to rapidly acquire
and efficiently control motor skills, overcoming the complexity
inherent in the coordination of the many degrees of freedom of
the musculoskeletal system (Bernstein, 1967). Adequate, yet pos-
sibly suboptimal, control policies for generating a muscle activa-
tion pattern driving an end effector onto a visual target, as in our
task, and, in general, for accomplishing a variety of different goals
may be constructed by combining a small number of modules
(Berniker et al., 2009; McKay and Ting, 2012). Modules such as
muscle synergies may capture regularities in the sensorimotor
mappings shared across tasks and conditions, reducing the num-

ber of parameters to be selected to generate a motor command
and to be adjusted to compensate for a perturbation or to acquire
a new skill. Thus, the dimensionality of the motor commands
generated by a modular controller is expected to be constrained
by the number of modules and, if the number of modules is
smaller than the maximal dimensionality, to provide an observ-
able signature of modularity. Indeed many previous studies have
shown that the muscle patterns recorded in a variety of condi-
tions and behaviors can be reconstructed by the combinations of
a number of muscle synergies much smaller than the maximal
dimensionality, in the spatial and in the temporal domains, of the
motor commands (Ting and McKay, 2007; Bizzi et al., 2008;
d’Avella and Pai, 2010; Lacquaniti et al., 2012; d’Avella and Lac-
quaniti, 2013). However, task constraints and biomechanical de-
mands might also give rise to low-dimensional motor commands
independently of modularity (Todorov, 2004; Tresch and Jarc,
2009; Kutch and Valero-Cuevas, 2012) and the observation of
low dimensionality does not provide, per se, definitive evidence
for modularity. Our approach, in contrast, allows for directly
testing a causal prediction coming from a suboptimal character-
istic of modularity: as modularity allows efficient learning of con-
trol policies by reducing the number of parameters, it also
constrains the policies that can be learned with the modules.
Thus, our observation that adapting to perturbations that are
incompatible with muscle synergies is much harder than adapt-
ing to compatible perturbations provides evidence for modular-
ity deriving from a test of a causal manipulation of the controller
rather than from a parsimonious description of its output.

Our results suggest that two distinct adaptive processes with
different learning rates operate in a modular controller. A fast
process may be responsible for reducing the error between the
force generated by the synergy combination and the force target
by adjusting the synergy activation coefficients, i.e., adapting the
sensorimotor transformation, possibly implemented in the cere-
bellum (Shadmehr and Krakauer, 2008; Taylor et al., 2010; Galea
et al., 2011). In our task, such a process is effective in gradually
reducing the force error when adapting to compatible virtual
surgeries, and it is likely that the same process is involved in
adaptation to visuomotor (Martin et al., 1996) and dynamic
(Shadmehr and Mussa-Ivaldi, 1994) perturbations. Indeed, in
the washout phase after compatible virtual surgeries, clear nega-
tive aftereffects were observed, indicating that a modification in
the internal model had occurred. In contrast, incompatible sur-
geries remap synergy forces along a single dimension, and no
adjustment of the synergy activation coefficients can reduce the
force error in all directions. For this special class of perturbations,
a second slower process may be responsible for changing the
structure of the synergies to recover their capability of generating
forces in all directions. Such a process may require exploring new
muscle coordination patterns and acquiring new task-specific
synergies. New synergies may be stored in the motor cortex and
expressed through the corticospinal connectivity (Kargo and
Nitz, 2003; Gentner and Classen, 2006; Rathelot and Strick, 2006;

Table 3. Summary of performance measures of the control experiment

Control experiment
Perturbation
type

1st block after
surgery (mean � SD)

Last block after
surgery (mean � SD)

Baseline before
surgery (mean � SD)

Adaptation rate parameters,
y � Ae��x

� A

Angular error (in degrees) Compatible 22.0 � 14.5 12.4 � 5.7 9.7 � 4.2 0.039 � 0.030 18.8 � 9.7
Incompatible 20.3 � 8.0 15.3 � 5.1 9.8 � 4.7 0.020 � 0.022 19.0 � 9.0

Unsuccessful trials (%) Compatible 47.6 � 15.4 39.3 � 18.3 28.6 � 11.6 0.027 � 0.052 45.7 � 15.9
Incompatible 49.4 � 17.7 39.3 � 15.9 21.4 � 11.6 0.006 � 0.032 42.3 � 17.6

Figure 8. Reconstruction quality of muscle patterns by synergy combinations during virtual
surgeries. Synergy reconstruction error (R 2) averaged across subjects and blocks of 24 trials
(solid lines; shaded areas indicate SEM) for compatible surgery (green), incompatible surgery
(red), compatible control (cyan), and incompatible control (magenta) experiments. The recon-
struction quality was significantly reduced only during the exposure to incompatible surgeries,
indicating a reorganization of the muscle patterns.
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Reis et al., 2009; Gentner et al., 2010; Overduin et al., 2012).
Synergy learning might be engaged only when the existing syner-
gies are unable to perform a task, such as after a major change in
the musculoskeletal system due to injury or when learning a new
motor skill. Indeed, modification of existing synergies or organi-
zation of new synergies may be a key neural mechanisms under-
lying skill acquisition, a process that typically occurs on much
longer time scales than motor adaptation (Reis et al., 2009). Thus,
differences in skill learning difficulty may be related to synergy
compatibility. Processes with different learning rates and differ-
ent capacities for retention have been proposed to explain savings
and anterograde interference (Smith et al., 2006). However, mul-
tirate processes have been characterized in adaptation tasks that
likely only require recombining existing synergies, and they
might be distinct from the process involved in learning new syn-
ergies. In contrast, adjusting existing muscle synergies or orga-
nizing new synergies may be a form of structural learning in
sensorimotor control (Braun et al., 2009). Finally, generalization
during adaptation to mechanical perturbations suggests that
changes in internal models may be represented by linear combi-
nations of motor primitives that map state variables, such as
end-effector position and velocity, into motor commands (Thor-
oughman and Shadmehr, 2000; Donchin et al., 2003; Sing et al.,
2009). Muscle synergies may also function as motor primitives for
constructing sensorimotor transformations and for representing
changes in internal models through the mechanisms of synergy re-
combination and synergy reorganization.

Myoelectric control was used in two previous studies to inves-
tigate how muscle coordination is affected by simulated changes
in limb biomechanics (de Rugy et al., 2012a,b) and to examine
muscle covariation while learning to coordinate pairs of muscles
(Nazarpour et al., 2012). The observation of habitual rather than
optimal patterns of muscle activity after simulated muscle paral-
ysis or increased noise reported by de Rugy et al. (2012b) is fully
compatible with the organization and modulation of muscle syn-
ergies. However, that study did not directly test modularity and
was not designed for that purpose. The study by Nazarpour et al.
(2012) tested the flexibility of the patterns of trial-by-trial cova-
riation in the activity of an arbitrary pair of finger and wrist
muscles around a single target level of activity, and not the flexi-
bility of the muscle synergies underlying the modulation of a
large number of elbow and shoulder muscles across multiple tar-
get directions. While it is not clear whether the shaping of trial-
by-trial covariation in repetitions of the same task and the
modulation of muscle patterns across task conditions share the
same mechanisms, the notion of flexible muscle synergies is in
line with our idea of an adaptive process underlying synergy ex-
ploration and reorganization after an incompatible virtual sur-
gery. However, our results suggest that flexibility is present in a
modular architecture both in the synergy combinations and in
the synergy structure, yet it is expressed at different time scales.

In the long term, understanding the role of modularity in
motor learning may lead to effective neurorehabilitation, usable
neural interface systems, and novel biologically inspired adaptive
controllers for skilled robots. The ability to distinguish motor
impairments caused by neurological lesions due to abnormal
synergy recruitment (Cheung et al., 2009) or to altered synergy
organization (Cheung et al., 2012) might be used to develop
novel diagnosis tools and effective rehabilitation protocols (Safa-
vynia et al., 2011). Specifically, rehabilitation exercises in a virtual
environment with myoelectric control could exploit synergy-
based feedback to promote recovery of functional synergy re-
cruitment and synergy reorganization, and be a low-cost

alternative to robot-assisted therapy. Moreover, one of the key
challenges for neural interface systems, such as those using neural
signals recorded from the motor cortex to control a computer
cursor or a robotic arm (Hatsopoulos and Donoghue, 2009), is to
make them more useful aids to people with disabilities by im-
proving the ease with which a user can learn to operate them.
Decoding muscle synergy recruitment from neural recordings
might result in interfaces that are easier to learn than those based
on decoding movement intentions or kinematic plans, as the
motor cortex is organized to recruit synergies (Rathelot and
Strick, 2006; Overduin et al., 2012), and recombining existing
synergies is faster than learning new ones. Finally, today’s robots
have very limited and inflexible motor skills that are not acquired
through practice and must be preprogrammed. The modular or-
ganization of biological movement may provide inspiration for
the design of adaptive robot control architectures that can
quickly learn new and richer motor skills by reusing and recom-
bining modules implementing basic skills.

Notes
Supplemental movies for this article is available at http://www.cs.ubc.
ca/research/modularity/. Supplemental Movie 1 illustrates the steps in-
volved in constructing compatible and incompatible virtual surgeries.
Examples are based on the data of Subject 2. Supplemental Movie 2
shows examples of cursor kinematics throughout a virtual surgery exper-
iment. The displacement of the cursor during different phases of the
experimental session of Subject 2 is illustrated as shown to the subject.
This material has not been peer reviewed.
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