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TrkB Signaling Directs the Incorporation of Newly Generated
Periglomerular Cells in the Adult Olfactory Bulb
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In the adult rodent brain, the olfactory bulb (OB) is continuously supplied with new neurons which survival critically depends on their
successful integration into pre-existing networks. Yet, the extracellular signals that determine the selection which neurons will be
ultimately incorporated into these circuits are largely unknown. Here, we show that immature neurons express the catalytic form of the
brain-derived neurotrophic factor receptor TrkB [full-length TrkB (TrkB-FL)] only after their arrival in the OB, at the time when inte-
gration commences. To unravel the role of TrkB signaling in newborn neurons, we conditionally ablated TrkB-FL in mice via Cre
expression in adult neural stem and progenitor cells. TrkB-deficient neurons displayed a marked impairment in dendritic arborization
and spine growth. By selectively manipulating the signaling pathways initiated by TrkB in vivo, we identified the transducers Shc/PI3K to
be required for dendritic growth, whereas the activation of phospholipase C-y was found to be responsible for spine formation. Further-
more, long-term genetic fate mapping revealed that TrkB deletion severely compromised the survival of new dopaminergic neurons,
leading to a substantial reduction in the overall number of adult-generated periglomerular cells (PGCs), but not of granule cells (GCs).
Surprisingly, this loss of dopaminergic PGCs was mirrored by a corresponding increase in the number of calretinin+ PGCs, suggesting
that distinct subsets of adult-born PGCs may respond differentially to common extracellular signals. Thus, our results identify TrkB
signaling to be essential for balancing the incorporation of defined classes of adult-born PGCs and not GCs, reflecting their different mode

of integration in the OB.

Introduction

The olfactory bulb (OB) of rodents is the target destination of
new interneurons that are generated in the subependymal
zone (SEZ) of the lateral ventricles throughout adulthood
(Lledo et al., 2008). Immature neurons leaving the walls of the
ventricle migrate for several days along a scaffold composed by
glial cells (Lois et al., 1996) and blood vessels (Snapyan et al.,
2009), forming the so-called rostral migratory stream (RMS),
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before entering the OB. There, they leave the RMS and start to
migrate radially before incorporating into the OB circuitry
(Lledo et al., 2006). While the vast majority of new neurons
become granule cells (GCs; Carleton et al., 2003), a predefined
proportion of them (Merkle et al., 2007) continue to migrate
through the mitral layer (ML) and external plexifom layer
(EPL) to reach the OB glomeruli, where they become periglo-
merular cells (PGCs), and finally connect to the pre-existing
circuitry (Belluzzi et al., 2003). A key question still open about
adult neurogenesis consists in unraveling the molecular mech-
anisms controlling the selection of those neurons that func-
tionally incorporate into the mature network. In the dentate
gyrus (DG) of the hippocampus, where all adult-generated
neurons virtually acquire the same identity (van Praag et al.,
2002), new granule cells are gradually added to the pre-
existing population of neurons, finally accounting for ~8-
10% of the total number of cells (Lagace et al., 2007; Ninkovic
et al., 2007; Imayoshi et al., 2008). Intriguingly, in the OB the
mode of functional incorporation seems to change according
to the layer (granular or glomerular) targeted by new arriving
neurons: GCs mostly replace pre-existing neurons in the GC
layer (GCL), whereas new PGCs become gradually added to
previously generated neurons in the glomerular layer (GL;
Ninkovic etal., 2007; Imayoshi et al., 2008; Adam and Mizrahi,
2011). We hypothesized that this distinct mode of integration
could reflect either the existence of layer-specific microenvi-
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ronments or, alternatively, a cell-type-specific dependence
upon ubiquitous extracellular signals.

A key factor secreted in response to neuronal activity is the
neurotrophin brain-derived neurotrophic factor (BDNF; Poo,
2001). Interestingly, BDNF is expressed both in the SEZ and
within the sites of ultimate integration of newborn neurons in the
OB (Bath et al., 2008; Galvao et al., 2008). We have recently
shown that BDNF and its high-affinity tyrosine kinase receptor
TrkB critically regulate the maturation and synaptic integration
of newly generated neurons in the adult DG (Bergami et al,,
2008), a finding that potentially implies a similar role for TrkB
signaling in neurons integrating in the OB. However, while shar-
ing inputs from both mitral and tufted cells, adult-born neurons
are substantially subjected to different inputs depending on
whether they are incorporated in the GCL or GL (Shepherd,
2004). While GCs become the target of centrifugal inputs from
the olfactory cortex, PGCs also receive inputs from olfactory sen-
sory neurons (OSNs), the latter known to express BDNF (Clev-
enger et al., 2008; Feron et al., 2008). Given this distinctive
innervation of GCs and PGCs, the activity-dependent supply of
neurotrophins from the pre-existing network could significantly
vary among the GCL and GL, raising the question whether this
diversity can contribute to the particular incorporation of one or
the other class of adult-generated neurons. Here, we present ev-
idence for a physiological role of full-length TrkB (TrkB-FL) dur-
ing the stages of newborn neurons integration. By conditionally
manipulating the expression of TrkB-FL in adult neural stem
cells (NSCs) and their progeny, we show that TrkB signaling
regulates the degree of connectivity in integrating neurons, par-
ticularly in PGCs, by sculpting their dendritic complexity and
spine density. Moreover, deletion of TrkB compromised the sur-
vival of dopaminergic PGCs, indicating a critical role of BDNF
signaling in balancing the turnover of adult-born PGCs.

Materials and Methods

Animals. All animals and experimental procedures were used according
to our institutional, Italian, and European Union guidelines. Adult male
WT mice (C57BL/6) were obtained from Charles River Laboratories. We
generated TrkB'*¥'°*_Cre mice by crossing TrkB'**'** mice (provided by
Rudiger Klein, Max Planck Institute of Neurobiology, Martinsried, Ger-
many) with Glast:CreER > mice (provided by Magdalena Gétz, Helm-
holtz Center Munich, Neuherberg, Germany) and R26R mice expressing
the B-galactosidase reporter gene.

Viral vectors. We used murine Moloney leukemia virus-based vectors,
in which gene expression is driven by the chicken B-actin promoter
(CAG; van Praag et al., 2002), to express the following: GFP, DsRed,
Cre-GFP fusion protein, TrkB WTTrkBFFF, TrkB S, and TrkBPC re-
ceptors (provided by Robert Blum, Institute for Clinical Neurobiology,
University of Wiirzburg, Wiirzburg, Germany). The final virus titer was
~5-8 X 107 particles/ul.

Stereotactic surgery. The dorsal skulls of anesthetized (100 mg/ml ket-
amine plus 20 mg/ml xylazine in saline solution) 2- to 3-month-old male
mice were exposed, and 0.5 ul of retrovirus was injected into each hemi-
sphere (coordinates from bregma: anteroposterior +0.8 mm, lateral
+1.2 mm, ventral 1.7 mm) by using a manual syringe pump (Narishige).
Mice were allowed to recover and were housed in standard cages until the
day they were killed.

Tamoxifen and BrdU administration. One milligram of tamoxifen (Tx;
Sigma) dissolved in corn oil (Sigma) was injected twice a day for 5 consecu-
tive days. For assessing proliferation, 100 mg/kg 5-bromodeoxyuridine
(BrdU; Sigma) was injected intraperitoneally every 2 h for a total of four
times to label the majority of dividing progenitors the day before the mice
were killed. For label-retaining experiments, BrdU was administered in
drinking water (1 mg/ml) for a total duration of 3 months before mice were

killed.
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Immunohistochemistry. Dissected brains were sectioned with a vibroslicer
(Campden) for thick sections (100 pwm). Alternatively, brains were incu-
bated overnight in 30% sucrose solution (Sigma) before embedding them in
Tissue-Tek compound (Sakura) for cryostat sectioning (30—50 um thick).
Slices were rinsed in PBS, treated with 0.5% Triton X-100 (Sigma) for 5-10
min, blocked with 3% bovine serum albumin (Sigma) in PBS for 10 min and
incubated overnight free floating (vibratome sections) or on slides (cryostat
sections) with the following primary antibodies: rabbit anti-TrkB-FL (1:200;
catalog #sc-12, Santa Cruz Biotechnology), rabbit anti-TrkB-T (1:200; cata-
log #sc-119, Santa Cruz Biotechnology), rat anti-BrdU (1:1000; catalog
#ab6326, Abcam), guinea-pig anti-doublecortin (DCX; 1:500; catalog
#AB5910, Millipore), rabbit anti-doublecortin (1:1000; catalog #ab18723,
Abcam), chicken anti-Bgal (1:1000; catalog #ab9361, Abcam), rabbit anti-
Bgal (1:1000; catalog #55976, MP Biomedicals), chicken anti-GFP (1:1000;
catalog #A10262, Invitrogen), rabbit anti-GFP (1:1000; catalog #A11122,
Invitrogen), rabbit anti-RFP (1:1000; catalog #600-401-379, Rockland),
mouse anti-calretinin (CR; 1:1000; catalog #MAB1568, Millipore), rabbit
anti-caspase-3 (Casp3) active (1:500; catalog #G7481, Promega), mouse
anti-tyrosine hydroxilase (TH; 1:1000; catalog #MAB318, Millipore), rabbit
anti-calbindin (CB; 1:500; catalog #ab1778, Millipore), rabbit anti-Tbr2 (T-
box transcription factor; 1:1000; catalog #MAB1615, Millipore), chicken
anti-proBDNF  (1:300; catalog #AB9042, Millipore), rabbit anti-
neurofilament H (1:300; catalog #AB1989, Millipore), mouse anti-NeuN
(1:200; catalog #MAB377, Millipore). The specificity of anti-TrkB antibodies
was assessed in immunostaining experiments prior incubation of samples
with relative blocking peptides (for TrkB-FL sc-12, sc-12 peptide; for TrkB
sc-119, sc-119 peptide; Santa Cruz Biotechnology). After washing in PBS,
slices were then incubated for 2 h at room temperature with the appropriate
Alexa Fluor-conjugated secondary antibodies (Jackson Immunoresearch)
diluted in blocking buffer. For BrdU detection, sections were first processed
for all other antigens (primary and secondary antibodies), then treated with
2N HCl for 30 min at 37°C followed by 15 min of 0.1 M tetra-borate buffer,
pH 8.5. After extensive washing, sections were incubated 5 min with DAPI
(Invitrogen) and then mounted with Acqua Polymount (Polyscience Inc.).

In situ hybridization. Mice were treated with injections of BrdU
(100 mg/kg, i.p.; Sigma) twice a day for 3 consecutive days and were
killed 21 d later. After brain fixation (PFA 4% in PBS), in situ hybrid-
ization was performed on cryostat sections (20 wm thick) following
standard protocols and using an anti-digoxigenin antibody (1:2000,
Roche). Mouse TrkB (Klein et al., 1989) and BDNF (Hofer et al.,
1990) digoxigenin-labeled riboprobes were generated by in vitro tran-
scription (transcription kit, catalog #10999644001, Roche) from plas-
mids provided by L. Tessarollo (Center for Cancer Research, National
Cancer Institute (Frederick, MD) and E. Castren (University of Hel-
sinki, Helskinki, Finland).

Western blot analysis. For assessing the specificity of used anti-TrkB
antibodies, HEK-293 cells were grown in DMEM (Sigma) supplemented
with 10% FCS (Sigma) and transfected with 1 ug of DNA using Lipo-
fectamine 2000 (Invitrogen). Antibodies specificity was controlled by
Western blot analysis on cells transfected with (1) control vector (GFP
encoding), (2) HA-tagged (at the N-terminal domain) full-length TrkB
¢DNA (from mouse, provided by R. Blum, University Hospital of Wiir-
zburg, Wiirzburg, Germany), and (3) rat cDNA for TrkB-T1 (Rose et al.,
2003). Forty-eight hours after transfection, cell lysates were collected
(0.5% Triton X-100 and 0.5% deoxycholate in PBS) and protein extracts
were resolved by SDS-PAGE. Signal detection was performed using the
ECL detection system (GE Healthcare) after incubation with the follow-
ing primary antibodies: rabbit anti-TrkB (FL) 1:300 (sc-12, Santa Cruz
Biotechnology), rabbit anti-TrkB 1:300 (sc-119, Santa Cruz Biotechnol-
ogy), mouse anti-HA 1:1000 (MMS-101R, Covance), and mouse anti-3-
actin 1:5000 (A2228, Sigma).

Confocal microscopy and quantitative analysis. Confocal imaging was
performed using a laser-scanning motorized confocal system (Al,
Nikon) equipped with an Eclipse Ti-E inverted microscope and four laser
lines (405, 488, 561, and 638 nm). Z-stack series were acquired by using
either a 20X air objective [numerical aperture (NA) 0.75; Nikon] or a
40X oil-immersion objective (NA 1.3; Nikon) and by choosing an inter-
stack interval of 2 uwm (for the 20X objective) or 0.5-1 wm (for the 40X
objective), respectively.



11466 - J. Neurosci., July 10, 2013 - 33(28):11464 11478

Cell counting. For quantifying the number of BrdU+ cells in the SEZ,
comparable coronal sections between experimental groups were acquired.
Image] software (National Institutes of Health) was used to count, stack by
stack, BrdU+ nuclei among gal stained nuclei, and cell density was calcu-
lated. For quantification of cell migration, an upright fluorescence micro-
scope (Nikon) with a 40X oil-immersion objective was used to visually
quantify the number of reporter single- or double-positive cells with respect
to their distribution along the RMS. Radial migration within the OB was
quantified on assembled large confocal images (usually 8 X 8 fields by using
a20X objective) of entire OB coronal slices. Based on the DAPI staining, the
OB was subdivided off-line in Image] into concentric regions of interest
(ROIs) consisting of the RMS, internal GCL (defined as the portion of GCL
between the RMS and the external GCL), and external GCL (defined as the
portion of GCL covering the area extending from the mitral cell layer to a
virtual line positioned 200 um deeper toward the RMS). Reporter+ cells
were then classified following their distribution between these ROIs. A sim-
ilar method of quantification was used for calculating the density of Bgal+
cells in TrkB*"*-Cre and TrkB'**'*-Cre mice. In this case, large images of
OB sections were acquired, and ROIs corresponding to the GCL and GL
were manually drawn slice by slice. Image] was then used for counting the
number of cells located in these ROIs, and cell density was calculated. The
same procedure was applied for quantifying the density of cells positive for
specific markers in the GL and for assessing the amount of apoptosis.

Morphometric analysis. Single-labeled neurons were acquired by con-
focal microscopy (z-series interstack of 0.5 wm) with a 40X oil-
immersion objective (NA 1.3) and 2D projections of the acquisitions
were obtained. Reconstruction and measurements of dendrites were ob-
tained by using the neurite tracing software Neuron] (http://www.
imagescience.org/meijering/software/neuronj). Reconstructed traces
were then used for Sholl analysis (Ghosh laboratory, http://biology.ucsd.
edu/labs/ghosh/software) by establishing a 2 wm interval between con-
centric circles.

Spine density analysis. Second-order branches (considered in their en-
tire length) of the superficial dendritic tree extending into the EPL were
selected for quantification in GCs. For PGCs, both first- and second-
order dendrites were considered. Selection of neurons and dendrites was
based on the integrity of individual branches and uniform expression of
DsRed (assessed by confocal microscopy) between branches of the same
neuron and among experimental groups of neurons. Spines were usually
imaged by acquiring the selected dendrites by confocal microscopy using
a 63X oil objective (NA 1.3) with a digital zoom of 3. An interstack of 0.2
um between focal planes was used for acquisitions, and images were then
processed by deconvolution using the Huygens Professional 3.0 software
(Scientific Volume Imaging, http://www.svi.nl). The number of spines
was counted using Image] on deconvolved projections, and spine density
was obtained by dividing the number of spines by the length of the
dendritic segments.

Electro-olfactogram recordings. Electro-olfactogram recordings were
performed as previously described (Franceschini et al., 2009). Briefly, the
mouse head was cut sagittally to expose the medial surface of the olfac-
tory turbinates, and recordings were measured at the surface of the ol-
factory epithelium (OE) in response to odorant stimuli in vapor phase.
Each odorant (amylacetate, cineole, and acetophenone; Sigma) was pre-
pared in DMSO at a concentration of 1 M. Vapor-phase odorant stimuli
were generated by placing 0.9 ml of the odorant solution in a 10 ml glass
test tube capped with a rubber stopper. For stimulation, a 100 ms pulse of
the odorant vapor at 8 psi was injected into a continuous stream of
humidified air.

Statistical analysis. Statistical analysis was performed using GraphPad
Prism software; significance was assessed with the Student’s ¢ test for
pairs of datasets, while one-way ANOVA and appropriate post hoc tests
were used for multiple datasets. Data are expressed as the mean = SEM.

Results

Cell- and region-specific expression of TrkB within the
SEZ-RMS-OB system

We first examined the expression pattern of TrkB mRNA and
protein in the RMS/OB system of adult mice. In situ hybridiza-
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tion revealed a widespread expression of TrkB mRNA in the cor-
tex, hippocampus, anterior olfactory nucleus (AON), and OB
(Fig. 1A). Relatively low levels of mRNA were detected in the
lateral SEZ (in comparison with other areas; Fig. 1B), while sub-
stantial TrkB mRNA expression was visible at every layer of the
OB (Fig. 1C). It is well known that different variants of TrkB
receptor are expressed in the CNS (Klein et al., 1989, 1990). We
therefore analyzed the protein distribution of the full-length
TrkB, which contains the intracellular catalytic domain (TrkB-
FL), in comparison with that of truncated TrkB (TrkB-T), lacking
the catalytic domain (Fig. 1 D, E; Minichiello, 2009). To this aim,
we used commercially available antibodies recognizing either
TrkB-FL or TrkB-T, with prior assessment of their specificity by
Western blot (Fig. 1F). Notably, while TrkB-FL expression was
prominent in the OB, particularly in the GCL, ML, and GL (Fig.
1G), TrkB-T expression was almost exclusively confined to the
RMS and was virtually absent from the superficial layers of the
OB (Fig. 1H).

Given this clear regionalization in the expression of the two
main isoforms of TrkB within the RMS/OB system, we sought to
investigate whether TrkB plays a role during the migration, mat-
uration, and integration of adult-generated neurons into the OB
network. We thus focused on the expression pattern of this re-
ceptor starting from the stage of neuroblast in the SEZ until the
acquisition of a mature neuronal morphology and during the
process of integration in the OB. To label newly generated neu-
rons, we injected a GFP-encoding retrovirus into the SEZ of
8-week-old mice (Brill et al., 2009) and analyzed TrkB protein
expression in GFP+ cellsat 5 d postinjection (dpi; Fig. 2A), atime
when transduced newborn neurons could be observed both in the
SEZ and migrating along the entire RMS (Fig. 2B—-G). We could
identify a strong immunoreactivity for TrkB-T in the SEZ of the
lateral ventricle, mostly colocalizing with GFAP+ fibers and not
with GFP+/GFAP— transduced cells (Fig. 2B,C). In contrast,
virtually no immunoreactivity for TrkB-FL was detected within
the SEZ (Fig. 2D, E). We then explored the expression of TrkB in
the RMS and observed a pattern of immunoreactivity similar to
that described in the SEZ: TrkB-T was strongly expressed and
mostly confined to GFAP+ fibers intermingling with GFP+ mi-
grating neurons (Fig. 2F), while the expression of TrkB-FL was
virtually absent (Fig. 2G). Therefore, neuronal precursors and
immature migrating neurons originating from the SEZ are de-
void of TrkB expression, while GFAP+ cells both in the SEZ and
RMS selectively express TrkB-T.

To investigate the expression of TrkB mRNA and protein in
differentiated GCs and PGCs, we analyzed OB sections at the time
when transduced neurons completed their migration and started
to synaptically integrate, at 21 d after their generation (Belluzzi et
al., 2003; Kelsch et al., 2008). TrkB mRNA was detected in BrdU-
labeled newborn neurons in the GCL (Fig. 2H ). In contrast to the
SEZ and RMS, the pattern of TrkB immunoreactivity in the GCL
appeared significantly changed. Indeed, newborn GCs previously
labeled by retrovirus injection into the SEZ (Fig. 2A) were still
devoid of TrkB-T protein (Fig. 21,]), but they expressed signifi-
cant levels of TrkB-FL (Fig. 2K,L). Similarly, newborn PGCs
expressed TrkB mRNA (Fig. 2M ) and were specifically immuno-
reactive for TrkB-FL (Fig. 2N—P). Together, these data suggest
that newly generated neurons upregulate TrkB-FL only after ex-
iting the RMS and during their process of morphological and
synaptic maturation, a time window occurring between the sec-
ond and third week after their generation.
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used TrkB antibodies by Western blot analysis. HEK-293 cells were alternatively transfected with one of the indicated plasmids: a control vector, a vector encoding for TrkB-FL (HA tagged) or a vector
encoding for TrkB-T1. Cell lysates were blotted against TrkB-FL or TrkB-T antibodies or against an HA antibody. G, Immunoreactivity for TrkB-FL in the RMS/OB system assessed with an antibody
specifically recognizing the TrkB-FL isoform and validation of the staining by using a specific blocking peptide. Scale bar, 200 em. H, Immunoreactivity for TrkB-Tin the RMS/0B system assessed with
an antibody specifically recognizing the TrkB-T isoform and validation of the staining by using a specific blocking peptide. Scale bar, 200 m. V, Ventricle; Cx, cortex; Hip, hippocampus; AON, anterio
olfatory nucleus; OB, olfactory bulb; RMS, rostral migratory stream; SEZ, sub-ependymal zone; CC, corpus callosum; EPL, external plexifom layer; GL, glomerular layer; MCL, mitral cell layer; GCL,

granule cell layer; Str, striatum.

Deletion of TrkB-FL does not perturb the turnover of
adult-generated GCs in the OB

Given the selective upregulation of TrkB-FL in newborn neurons
only upon exiting the RMS, we addressed the question of whether
this receptor could have a role in the morphological maturation
of GCs and their integration into the OB network. To this aim, we
conditionally ablated TrkB-FL in adult SEZ progenitors by cross-
ing Glast::CreER "™ (Mori et al., 2006) with TrkB'*'°* mice, in
which the second exon of the trkB tyrosine kinase domain is

flanked by loxP sites (Minichiello et al., 1999). In the resulting
mice, Tx treatment activates the Cre recombinase-ER "> fusion
protein (CreER ™?) and leads to the selective and permanent de-
letion of TrkB-FL in the cell lineage originating from Glast-
expressing stem and progenitor cells, as well as parenchymal
astrocytes (Mori et al., 2006; Ninkovic et al., 2007), leaving the
expression of truncated isoforms unaltered (Minichiello et al.,
1999; Bergami et al., 2008). To monitor recombined cells and
their neuronal progeny over time, we also crossed the resulting
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mouse line with ROSA26 (R26R) reporter mice, in which the
Rosa26 locus encodes the expression of Bgal following Cre-
mediated recombination (Soriano, 1999). In these mice (hereaf-
ter referred as to TrkB“"-Cre and TrkB'**°*-Cre mice), the
majority (>80%) of newly generated neuronal precursors, iden-
tified by the marker DCX, express Bgal in the SEZ and proximal
RMS (Fig. 3A,B), confirming the high rate of recombination
(Ninkovic etal., 2007). Also, as shown for wild-type mice (Fig. 2),
no expression of TrkB-FL was observed in Bgal+/DCX+ cells in
the SEZ/RMS (Fig. 3B). Consistent with the lack of TrkB-FL ex-
pression in the SEZ, the rate of proliferation as evaluated by BrdU
incorporation at 14 d post-Tx treatment (dptx) did not change
between TrkB*/¥-Cre and TrkB'®/'**-Cre mice (Fig. 3C-E), in-
dicating that deletion of TrkB-FL did not perturb the prolifera-
tive steps of neurogenesis.

We further examined any cell-autonomous contribution of
TrkB-FL in the migration of newly generated neurons along the
RMS and through the GCL of the OB. Although no TrkB-FL
immunoreactivity was observed in migrating neurons (Fig. 2G),
TrkB-FL expression could be present at levels below the detect-
ability threshold of this method. Therefore, TrkB'**'°* mice were
injected with a CreGFP-expressing retrovirus together with a
DsRed-only-encoding virus, and neurons that were single or
double transduced were compared for their capability to properly
migrate along the RMS (Fig. 3F). We first performed a time
course analysis at early time points (3, 5, and 7 dpi) after viral
transduction by examining the distribution of transduced neu-
rons throughout the SEZ and both proximal and distal parts of
the RMS (Fig. 3G). In agreement with previous studies (Galvao et
al., 2008; Snapyan et al., 2009), we found no overt changes in the
migration of newborn neurons lacking TrkB-FL compared with
controls at any of the analyzed time points (Fig. 3H). Likewise,
analysis of control and TrkB-deficient neurons at 12 dpi, the time
when they reached the edge of the GCL (Fig. 31,]), revealed no
differences in their relative distribution within the OB (Fig. 3K),
indicating that both chain migration through the RMS and radial
migration through the GCL were not significantly affected by
TrkB-FL deletion in adult-generated neurons.

Previous studies have investigated the contribution of adult-
generated neurons to the maintenance of the existing OB net-
work depicting a scenario in which new GCs constantly replace
pre-existing GCs within the GCL (Ninkovic et al., 2007; Imayoshi
et al., 2008). To address the question of whether TrkB-FL could
have a role for the proper integration/replacement of GCs, we
first compared the morphological development of new GCs be-
tween TrkB“*-Cre and TrkB'>"**-Cre mice. A substantial re-
duction in the expression levels of TrkB-FL was observed in
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(Figure legend continued.) immunoreactivity for TrkB-FL in the RMS at 5 dpi. Right panels show
enlargement (single stacks) of the boxed area (iv). Scale bar, 50 wm. H, In situ hybridization
performed following BrdU label-retaining experiments (animals were analyzed at 3 weeks after
BrdU treatment) showing the distribution of TrkB mRNA in adult-born GCs of the 0B. High
magnification images on the right show TrkB mRNA in an individual BrdU+ newborn GCin the
GCL. Scale bar, 50 pum. 1, Expression of TrkB-Tin GCs at 21 dpi. Scale bar, 50 pum. J, Enlargement
of the area (v) boxed in I showing lack of TrkB-T expression. Scale bar, 50 m. K, Expression of
TrkB-FLin GCs at 21 dpi. Scale bar, 50 wm. L, Enlargement of the area (v) boxed in K. Scale bar,
50 wm. M, Analysis of TrkB mRNA in adult-born PGCs labeled with BrdU. High magnification
images on the right show TrkB mRNA in an individual BrdU+ newborn PGC. Scale bar, 50 m.
N, Expression pattern of TrkB-FL (left) and TrkB-T (right) in the GL. Scale bar, 50 um. 0, Expres-
sion of TrkB-FL in adult-born PGCs at 21 dpi. Scale bar, 50 m. P, Enlargement of the area (vi)
boxed in 0 showing colocalization between GFP+ PGCs and TrkB-FL. Scale bar, 50 wm. V,
Ventricle; D, dorsal; R, rostral; inj., injection.
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Bgal+ neurons exiting the RMS of TrkB'*"**-Cre mice by 21
dptx, demonstrating the loss of TrkB-FL in these cells upon re-
combination (Fig. 4A4). To monitor the extension of dendritic
branches and protrusions in these cells, we injected a DsRed-
encoding retrovirus into the SEZ of Tx-treated TrkB*/"-Cre and
TrkB'*/'°*_Cre mice, and analyzed the morphological features of
labeled neurons in the GCL at 21 dpi (Fig. 4B), a time point
mirroring the acquisition of morpho-functional hallmarks in
newly generated GCs (Whitman and Greer, 2007; Nissant et al.,
2009). Sholl analysis (Sholl, 1953) revealed that the dendritic tree
of TrkB-deficient neurons was not significantly altered compared
with control neurons, both in terms of branching and total length
(Fig. 4B-D). However, neurons lacking TrkB-FL displayed a sig-
nificant reduction in the spine density of superficial dendrites
located in the EPL (Fig. 4 B, E). To assess for the specificity of this
phenotype, we analyzed whether and how these morphological
properties could be influenced by the different signaling path-
ways activated by TrkB-FL. Therefore, we injected Tx-treated
TrkB'*1*.Cre mice with retroviruses encoding for specific iso-
forms of the TrkB receptor including the wild-type (TrkB "™, for
rescuing experiments) and the catalytically inactive form of
TrkB-FL (TrkB ™, mutated in the autophosphorylation site) and
two isoforms selectively mutated in either (1) tyrosine 515 of the
catalytic domain, which mediates the activation of the PI3K sig-
naling pathway by interacting with the docking molecule Shc
(Minichiello, 2009; TrkB®'); or (2) tyrosine 816, which is re-
sponsible for the induction of phospholipase C-y (PLCy) signal-
ing (Minichiello, 2009; TrkB*"%; Fig. 4F). Interestingly, all
isoforms lead to no significant changes in the extent of dendritic
arborization of newborn neurons (Fig. 4C,D). However, while
TrkB"“" could rescue spine density in TrkB knock-out adult-
born GCs, neurons transduced with TrkB ¥ and TrkB - retro-
viruses displayed a reduction in spine growth similar to that
observed in DsRed-only transduced neurons in TrkB'*/°*-Cre
mice (Fig. 4E), suggesting that disruption of TrkB-mediated
PLCy signaling specifically affected spine growth in newborn
GCs.

Based on these results, we tested the hypothesis of whether a
reduction in spine density, suggestive of impaired integration,
would affect the incorporation rate or turnover of newborn neu-
rons in the GCL. We designed an experimental plan aimed at
highlighting differences in the survival and turnover of neurons
generated during adulthood and during aging. TrkB'*/**-Cre
mice and control littermates were treated with Tx at 2 months of
age and were analyzed at different points along a time course
lasting 9 months (Fig. 4G). As previously reported (Lagace et al.,
2007; Ninkovic et al., 2007; Imayoshi et al., 2008), control mice
displayed a gradual increase in the total number of reporter+
GCs during the first 3 months post-Tx treatment (mptx), after
which a plateau was reached (Fig. 4 H,I). Unexpectedly, we could
observe the same number of reporter+ GCs at all investigated
time points in either the presence or absence of TrkB-FL (Fig.
4H,I), suggesting that interfering with TrkB signaling did not
affect either the short-term or the long-term survival of adult-
born GCs. Next, we investigated whether TrkB-FL could have a
function in maintaining the correct self-replacement of adult-
generated GCs (Imayoshi et al., 2008) and addressed the contri-
bution of distinct temporal phases of neurogenesis to the total
pool of this population of cells in TrkB mutant mice. We treated
the last two groups of animals (killed at 6 and 9 mptx) with BrdU
during their last 3 months of life (Fig. 4G) to selectively label GCs
generated within these time windows, and analyzed the corre-
sponding proportion of single-labeled (Bgal+/BrdU—) versus
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double-labeled cells (Bgal+/BrdU+; Fig.
4]). Consistent with a general reduction
in neurogenesis with aging, the number of
Bgal+/BrdU+ cells generated in control
mice during the period 6—9 mptx was
substantially lower compared with the
number of cells generated between 3 and 6
mptx (Fig. 4K). Strikingly, we found no
differences in the relative densities of
Bgal+ cells between TrkB““-Cre and
TrkB*¥°*_Cre mice, which both showed
similar numbers of GCs being integrated
during the preceding 3 months of life
(Bgal+/BrdU+) or before the onset of
BrdU treatment (Fig. 4K).

TrkB-FL is required for the
morphological maturation and
turnover of newly generated PGCs

A minor proportion of adult-generated
neurons populates the GL of the OB
(Lledo et al., 2008). However, neuronal
turnover in this layer follows different dy-
namics compared with the GCL (Nink-
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Figure3.  Genetic deletion of TrkB-FL does not alter prolifer-
ation of NSCs in the SEZ and migration of immature neurons to
the 0B. A, Experimental protocol used for Tx induction of
TrkB"* -Cre mice. B, Overview of the SEZ and initial part of
the RMS showing the distribution of TrkB-FL and Bgal + cells
in TrkB“™ -Cre mice 15 dptx. Note the absence of TrkB-FL
immunoreactivity in the SEZ and RMS. Right panels show en-
largements of the boxed areas (SEZ and RMS). Scale bar, 50
m. €, Experimental protocol used for evaluating cell prolifer-
ation in the SEZ. Mice were treated with Tx for 5 d, killed at 15
dptx, and treated with BrdU the day before being killed. D,
Confocal pictures showing the distribution of BrdU+ cells in
the SEZ of Tx-treated TrkB /" and TrkB '™ Cre mice at 15
dptx. Bottom panels show magpnifications corresponding to
the boxed areas. Scale bar, 50 um. E, Quantification of Bgal +
and Bgal — cellsamong BrdU+- cellsin the SEZ of control and
TrkB mutant mice (n = 3 mice). F, Experimental paradigm
(left) used for evaluating the tangential migration of adult-
born neurons. TrkB ™/ mice were analyzed at 3, 5, and 7 dpi
following coinjection of a retrovirus encoding for Cre-GFP (fu-
sion protein) together with DsRed-encoding virus. Pictures
show single- and double-transduced neurons migrating along
the RMS after coinjection of Cre-GFP and DsRed retroviruses.
Scale bar, 20 um. G, Schematic illustrating the subdivision of
newborn neuron’s migration pathway in three different re-
gions (1, 2, 3) used for quantifying the distribution of trans-
duced cells in TrkB '™ mice following stereotactic injection
into the SEZ. H, Distribution of CreGFP-expressing cells (TrkB
knock-out cells) and DsRed-only-expressing cells (controls) at
3 (n = 3 mice, 470 cells), 5 (n = 3 mice, 280 cells), and 7 dpi
(n = 3 mice, 752 cells). /, Experimental design used for eval-
uating the radial migration of newborn neurons in TrkB '/
mice. Mice were coinjected with Cre-GFP and DsRed retrovi-
ruses and analyzed at 12 dpi.J, Picture showing Cre-GFP trans-
duced cells (arrowheads) and DsRed transduced cells located
in the GCL at 12 dpi. Scale bar, 50 wm. K, Graph showing the
distribution of transduced cells at 12 dpi within the 0B. For
quantification, the OB was subdivided in regions correspond-
ing to the RMS-0B, innerand outer GCL (n = 4 mice, 843 cells).
V, Ventricle; D, dorsal; R, rostral.
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Figure4.  TrkB-FL deletion in newborn GCs impairs spine growth but does not alter neuronal tumover. 4, Pictures of the OB core region depicting the distribution of Bgal+ neurons and the expression of
TrkB-FLin TrkB */*~Cre and TrkB'*/"**Cre mice at 21 dptx. Scale bar, 100 um. B, Pictures showing the dendritic arborization of DsRed + transduced newborn GCsin Tx-treated TrkB */*-Cre and TrkB '™/"**(re
mice at 21 dpi. Insets show high magnification images of spines present along second-order superficial dendrites located in the EPL (boxed areas). Scale bar, 10 pum. €, Sholl analysis of GCs at 21 d following
transduction with the indicated viral vectors either in Tx-treated TrkB*/*Cre or TrkB'®™*-Cre mice (n = 10—15 neurons/condition). D, Histogram showing the total denditic length of the newborn GCs
analyzed in € (n = 1015 neurons/condition). £, Spine density of the neurons analyzed in €. Quantification was performed along second-order dendritic segments located in the EPL (7 = 1015 neurons/
condition; two dendritic segments/neuron). *p << 0.05. F, Schematic showing the TrkB full-length receptor (TrkB ") with indication of the tyrosines (Y), which were mutated into phenylalanines to obtain the
following TrkB mutants: (1) a TrkB mutated in the Y-triplet required for auto-phosporilation (TrkB "); (2) a TrkB isoform selectively mutated in the tyrosine 515 responsible for initiating the Shc/PI3K pathway
(TrkB *"); and (3) a TrkB mutated in the tyrosine 816, responsible for initiating the PLC-y pathway (TrkB ™). On the bottom are shown the different DsRed-expressing retroviral constructs encoding for the
indicated TrkBisoforms. G, Experimental plan designed for assessing the long-term turnover of adult-generated GCs. Mice were treated with Txand analyzed at 21 dptx, 42 dptx, 3 mptx, 6 mptx, and 9 mptx. Mice
analyzed at 6 and 9 mptxwere also cotreated with BrdU during the last 3 months of life. H, Images showing the overall number of Bgal + GCs at 21 dptxand 9 mptxin TrkB "/*~Cre and TrkB ®'°*-Cre mice. Insets
show high magnification images of the boxed areas. Scale bars: H, 200 m; H, inset, 50 pm. /, Quantification of Bgal+ GCs for each indicated time point (n = 3 mice). J, Density of Bgal+/BrdU— and
double-positive cells in a representative area of the GCL at 6 mptxin TrkB “"*~Cre and TrkB'*/1**Cre mice following BrdU treatment as indicated in G (n = 3 mice). Scale bar, 30 wm. K, Density of BrdU+ and
BrdU— GCs among the total number of Bgal+ GCs at 6 and 9 mptx (n = 3 mice).
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ovic et al., 2007; Adam and Mizrahi, 2011). The distribution of
TrkB-FL protein in this region was found to be largely confined to
the borders of glomeruli where the majority of newborn PGCs
integrate (Fig. 2N). Single-cell analysis of Tx-induced TrkB'*¥
lox-Cre mice confirmed the loss of TrkB-FL expression from
Bgal+ PGCs (Fig. 5A).

We examined the density of reporter+ cells within the GL
during a time course ranging from 21 dptx to 9 mptx, as described
before for the GCL (Fig. 4G). The total number of PGCs in con-
trol mice increased over time without reaching any visible plateau
(Fig. 5B, C), suggesting a model in which the majority of supplied
neurons are continuously added to pre-existing adult-generated
neurons (Ninkovic et al., 2007; Adam and Mizrahi, 2011). Inter-
estingly, we could detect a significant reduction in the density of
Bgal+ PGCs in TrkB'*¥/°*-Cre mice compared with control lit-
termates at 21 dptx (37.6 * 7.6% of reduction) and 42 dptx
(27.2 = 3.2% of reduction; Fig. 5C), indicating that TrkB signal-
ing plays a role in the incorporation of adult-born PGCs. Such
decrease in cell density became less evident at 3 mptx (21.2 *
3.0% of reduction) and virtually disappeared at 6 mptx (8.9 *
2.1% of reduction) and 9 mptx (4.8 * 0.3% of reduction; Fig.
5C). We then investigated the mechanisms responsible for this
recovery of cell density in TrkB'>'**-Cre mice at 6 and 9 mptx by
pretreating mice with BrdU during the last 3 months before they
were killed (Fig. 4G). At both analyzed time points, only a minor-
ity of adult-born PGCs was double positive for BrdU (Bgal+/
BrdU+) in control mice (31.0 = 4.1% and 24.8 * 3.6% at 6 and
9 mptx, respectively), supporting the idea that neurons generated
in older animals contribute to a lesser extent compared with
earlier-born adult-generated PGCs to the total number of adult-
generated PGCs (Fig. 5D,E). Although the density of Bgal+
PGCs in TrkB'*'*-Cre mice appeared similar to that of TrkB*/*-
Cre mice at later analyzed time points (Fig. 5C), we noticed a
significant increase in the corresponding number of newly gen-
erated PGCs that had been incorporated specifically during these
stages (Bgal+/BrdU+; 54.6 = 3.5% and 40.6 * 4.2% at 6 and 9
mptx, respectively; Fig. 5D, E). This increase appeared to be re-
sponsible for the apparent recovery of the total density of PGCs
(Fig. 5C-E), suggesting that either the dependence of newborn
PGCs on TrkB signaling (and TrkB ligands) declined with age or
that the pre-existing network might favor the progressive incor-
poration of those specific classes of PGCs whose integration does
not necessitate the activation of TrkB-FL.

To address this point, we analyzed the cellular composition of
Bgal+ PGCs at 42 dptx, the time when TrkB'®'**-Cre mice
showed a clear deficit in cell density, and at 9 mptx, when this
phenotype virtually disappeared (Fig. 5C). We quantified the rel-
ative proportions of TH-positive (TH+), CB-positive (CB+),
and CR-positive (CR+) cells among PBgal+ cells, representing
the three main subgroups of PGCs integrating in the adult OB
(Lledo et al., 2008). At 42 dptx, we observed a substantial reduc-
tion in the number of TH+ and CB+ cells in TrkB'*/°*-Cre
mice compared with control mice (Fig. 5F), indicating that the
loss of TrkB-FL preferentially impaired the incorporation of
these cells but not that of CR+ cells. Moreover, at 9 mptx the
density of CR+ cells in TrkB-deficient mice was considerably
increased compared with controls, in sharp contrast to TH+
cells, which were still markedly reduced in number (Fig. 5F,G).

We then assessed whether the reduced density of PGCs, and in
particular of TH+ cells, observed in TrkB lox/lox_(ore mice was due
to a failure of neuronal integration into the pre-existing network.
We first injected Tx-induced TrkB*/*-Cre and TrkB'**'**-Cre
mice with a control virus encoding DsRed and analyzed the mor-
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phological properties of PGCs at 21 dpi (Fig. 5H). Contrary to
neurons of the GCL (Fig. 4B-D), deletion of TrkB-FL produced a
clear impairment in dendritic branching compared with TrkB-
expressing newborn PGCs (Fig. 51,K). This phenotype was res-
cued in neurons transduced with the TrkB™7T retrovirus (Fig.
4F), and it was reproduced by injecting a TrkB " F-expressing
virus (Fig. 51, K), indicating that functional TrkB-FL is necessary
for the development of dendrites in PGCs. Conspicuously, this
dendritic impairment was also observed following injection of
TrkB *"“-encoding virus in Tx-induced TrkB'**'*-Cre mice (Fig.
51,K), suggesting that the main signaling pathway involved in
dendritic growth was that activated by Shc. In contrast, the use of
TrkB"““-encoding virus resulted in a specific impairment of
spine growth (Fig. 5]), similar to the phenotype observed in GCs.
Together, our results indicate that adult-born PGCs, and pre-
dominantly TH+ cells, depend on TrkB-FL signaling for their
morphological maturation and stable incorporation into the OB
network.

Region- and layer-specific expression of BDNF in the

adult OB

To gain insights into the pattern of BDNF expression in the adult
OB, we first assessed the distribution of its mRNA by in situ
hybridization. We observed BDNF mRNA expression within the
ML and GL (Fig. 6A), where principal neurons (mitral and tufted
cells) and other glutamatergic short-axon cells normally reside
(Shepherd, 2004). Indeed, high-magnification analysis within
these two layers confirmed a significant expression of BDNF
mRNA in Tbr2-positive cells, labeling mitral and tufted cells
(Mizuguchi et al., 2012; Fig. 6A). Next, we investigated the pat-
tern of BDNF protein expression by immunostaining. High levels
of BDNF protein were observed within the ML and GL (Fig. 6B),
according to BDNF mRNA distribution. Coimmunostaining for
Tbr2 and BDNF confirmed the high expression of this neurotro-
phin in glutamatergic neurons within the ML, i.e., mitral cells
(Mizuguchietal., 2012), and in numerous cells bordering the GL,
presumably tufted and other glutamatergic cells (Fig. 6B-D), in-
dicating that local glutamatergic neurons may contribute to the
local supply of BDNF.

Adult-generated olfactory bulb neurons are densely inner-
vated by axonal fibers arising from glutamatergic projection neu-
rons located in the AON and piriform cortex (PC; Whitman and
Greer, 2007; Panzanelli et al., 2009; Deshpande et al., 2013).
These corticofugal projections may therefore be an additional
source of BDNF for neurons undergoing maturation. By exam-
ining these two cortical areas, we found high levels of BDNF
mRNA (Fig. 6E) and protein expression (Fig. 6F). In addition,
within the OB, BDNF immunoreactivity was found in axonal
fibers crossing the GCL (Fig. 6G), the area mostly innervated by
corticofugal projections. Together, these results indicate the ex-
istence of a regionalized expression of BDNF in the adult OB and
suggest that both long-distant projection neurons (AON and PC)
and local glutamatergic neurons contribute to create a local gra-
dient of BDNF, thus presumably regulating the maturation pro-
cess of newly generated neurons.

Failure of integration results in apoptosis of adult-born
neurons at different levels of the OB network

To estimate the rate of neuronal loss following TrkB deletion in
TrkB'*¥/'°*_Cre mice, we performed an assay for active Casp3 and
assessed the number of apoptotic cells. Analysis of mice at 42 dptx
revealed few positive cells per section in both TrkB*“/*-Cre and
TrkB'*1°*.Cre mice (Fig. 7A), the majority of which were re-
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porter negative, likely indicating basal levels apoptosis in pre-
existing neurons. Considering the change in shape of the OB and
its relative substructures along the frontal—caudal axis, we quan-
tified the number of Casp3+ cells, taking into account their dis-
tribution not only between the different layers of the OB (RMS-
OB, GCL, and GL), but also through the rostral—caudal axis (Fig.
7B). We initially compared the density of Casp3+ cells that were
reporter negative, which was very similar between the two exper-
imental groups (Fig. 7C), thus suggesting that Tx-mediated Cre
recombination did not produce non-cell-autonomous altera-
tions in neuronal viability within the OB. Conversely, we ob-
served a marked increase in the total number of newborn cells
undergoing apoptosis (Casp3+/Bgal+) in TrkB'**'**-Cre com-
pared with control mice, particularly in sections corresponding
to the medial portion of the OB (Fig. 7D). Interestingly, the in-
crease in Casp3+/Bgal+ cells appeared to be heterogeneous
through layers and the rostro—caudal axis, following a pattern
gradually shifting from the RMS-OB in caudal sections, to the
GCL in medial sections, and toward the GL in more rostral sec-
tions (Fig. 7D), presumably reflecting regionalized gradients of
BDNF present throughout the OB (Fig. 6).

OB glomeruli receive afferent projections from OSNs situated
in the olfactory neuroepithelium (OE), which senses external
odorant molecules and in turn signals to the olfactory cortex via
the OB (Shepherd, 2004). Since the OE is one of the sites outside
the CNS where adult neurogenesis persists (Leung et al., 2007),
we analyzed this region for alterations that could potentially con-
tribute to the observed phenotype in Tx-induced TrkB'*/'°*-Cre,
Forty-two days post-Tx treatment, we observed no visible recom-
bination occurring in the OE, either in progenitor cells [kera-
tin5+ (k5)] or in OSNs [olfactory marker protein (OMP+); Fig.
7E). Next, we assessed the functionality of the OE by recording
electro-olfactograms in acute preparations after local stimulation
of the nasal turbinates (Franceschini et al., 2009) with three dif-
ferent odorants (amylacetate, cineole, and acetophenone; Fig.
7F,G). Notably, the voltage changes induced by the odorants
were comparable between TrkB““-Cre and TrkB'®°*-Cre
mice, with no significant alteration detected (Fig. 7H ), suggesting
that the impairments in morphological maturation and survival
of adult-born PGCs observed in TrkB'*'**-Cre mice was pre-
sumably not due to changes in OSNs activity. Altogether, our
data indicate a cell-autonomous role for TrkB signaling in the
integration and survival of adult-born PGCs.

Discussion
Turnover of adult-generated neurons has been proposed to
play a role in the experience-dependent plasticity of the OB,
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(Figure legend continued.) ~ Tx treatment. Scale bar, 100 wm. €, Absolute density of Bgal +
PGCs quantified starting from 21 dptx to 9 mptx (n = 3 mice). *p < 0.05. D, Distribution of
Bgal+/BrdU— and double-positive PGCs in the GL at 6 mptx. E, Proportion of BrdU+ and
BrdU — PGCs among the total number of Bgal + PGCs at 6 and 9 mptx (n = 3 mice). *p << 0.05.
Scale bar, 50 wm. F, Density of TH+, (B+, and CR+ cells among Bgal + cells in the GL at 42
dptx and 9 mptx (n = 3 mice). *p < 0.05. G, Representative pictures obtained at 9 mptx
showing the relative changes in density of Bgal+/TH+, Bgal+/(B+, and Bgal+/C(R+
neurons between TrkB"/*-Cre and TrkB '/'°*-Cre mice. Scale bar, 50 um. H, Picture showing a
newly generated PGC and relative spines at 21 dpi with a DsRed-encoding retrovirus. Scale bar,
10 pm. I, Branch number of neurons transduced with the indicated viral vectors at 21 dpi in
Tx-treated TrkB™/"-Cre or TrkB'™™*Cre mice (n = 1015 neurons/condition). *p < 0.05.J,
Spine density quantified along first- and second-order dendrites of the same neurons analyzed
in I (n = 1015 neurons/condition, one to three dendritic segments analyzed per neuron).
*p < 0.05. K, Reconstruction of representative PGCs at 21 d following transduction with the
indicated viral constructs in Tx-treated TrkB“/¥-Cre or TrkB '™'™Cre mice. Scale bar, 30 wm.
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particularly by contributing to discrimination and memory
retention of odorant molecules (Mouret et al., 2009; Alonso et
al., 2012). Such proposed functions are likely related to the
constant replacement of pre-existing neurons with newcom-
ers, a mechanism possibly providing unique degrees of net-
work plasticity, as well as to the permanent integration of
selected neurons that are characterized by high rates of syn-
apse formation and remodeling (Mizrahi, 2007; Livneh et al.,
2009), and thus may allow for the consolidation of specifically
active information channels. In this study, we present clear
evidence that the morphological integration and stable incor-
poration of new PGCs into the network is regulated by TrkB
signaling. Newly generated PGCs lacking TrkB-FL displayed a
marked reduction in the complexity of their dendritic tree and
exhibited fewer spines than control neurons. We identified
Shc/PI3K as the signaling cascade responsible for PGCs’ den-
dritic development, while TrkB signaling via PLCy was re-
quired for spine formation. The morphological and synaptic
impairments observed in TrkB-deficient neurons were pre-
cisely coincident with the time of their functional integration
(Carleton et al., 2003; Kelsch et al., 2008), reflecting the prin-
ciple that neurotrophic factors play a key role during the first
steps of integration into the pre-existing circuitry (Bergami
and Berninger, 2012). These morphological symptoms ob-
served following deletion of TrkB in PGCs, and in particular
the reduction in spine growth, were likely to be responsible for
a failure in synaptic integration and the consequent reduced
survival.

The peculiar pattern of apoptosis observed in TrkB'**"'**-Cre
mice, i.e., the differences between the more central and deep
regions of the OB compared with rostral and more superficial
ones, is particularly intriguing. This pattern could reflect the ex-
istence of a gradient of BDNF along the rostro—caudal axis of the
OB (Bath et al., 2008), resulting in regional differences in the
availability of the neurotrophin. We showed that both local (mi-
tral and tufted cells) and long-distance projection neurons (AON
and PC) are among the main sources of BDNF for the OB. How-
ever, synapses formed by centrifugal projections, whether tran-
sient or stable, are believed to be established onto adult-born
neurons before these receive inputs by local mitral and tufted cells
(Whitman and Greer, 2007; Panzanelli et al., 2009). This tempo-
ral and spatial pattern of connectivity correlates well with the
pattern of cell death observed in TrkB'**/'**-Cre mice (Fig. 7D),
with neurons found in apoptosis already from their first steps of
integration into the GCL, a region that is densely innervated by
corticofugal projections (Fig. 6G). These results suggest that TrkB
signaling is already required from this early stage of integration,
when new neurons begin to receive their first synaptic inputs
(Belluzzi et al., 2003; Carleton et al., 2003; Panzanelli et al., 2009;
Deshpande et al., 2013). Interestingly, TH+ newborn neurons
appeared particularly affected by the lack of TrkB, as demon-
strated by their substantial depletion from the GL of TrkB'*¥/!**-
Cre mice even at late stages following Tx induction. Given the
proposed unique function of TH+ neurons among other types of
PGCs in modulating interglomerular circuits and mitral/tufted
cell excitability (Kiyokage et al., 2010), it is intriguing to speculate
that a long-lasting impairment in the survival of adult-generated
dopaminergic PGCs may alter the local network and thus odor
information processing (Alonso et al., 2012).

By means of genetic fate mapping (Ninkovic et al., 2007;
Imayoshi et al., 2008) and in vivo two-photon microscopy (Adam
and Mizrahi, 2011), recent studies described a scenario in which
new PGCs become gradually added to pre-existing cells, thus
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Al DAPI Tbr2 I BDNF mRNA Tbr2

Figure 6.  Regionalized expression of BDNF in the OB. 4, In situ hybridization showing the enrichment in BDNF mRNA within the ML and GL. Glutamatergic neurons were revealed with anti-Tbr2
immunostaining. High magpnification images on the right show BDNF mRNA in individual Tbr2+ neurons located in the GL and ML. Scale bars: left, 100 wm; right, 15 wm. B, Representative
micrographs showing the distribution of BONF immunoreactivity within the superficial layers of the OB. BDNF protein was mostly concentrated in the ML and GL and was (Figure legend continues.)
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Figure7.

Conditional deletion of TrkB-FL in adult-born neurons leads to a cell-autonomous impairment of neuronal survival. 4, Representative section of the OB (see DAP! staining in the inset)

immunostained for active Casp3 and showing the presence of Casp3+/[3gal— cells (arrowheads) in Tx-treated TrkB**-Cre mice. Scale bar, 100 wm. Bottom, A magnification of a Bgal+/
Casp3+ cell (boxed area). Scale bar, 200 m. B, Schematicillustrating the sectioning of the OB used for quantifications in relation to the rostro— caudal axis. Sections were divided into five groups
along the axis. €, Density of (Bgal — /Casp3 + cells along the rostro— caudal axis and between the different layers of the OB (RMS-0B, GCL, and GL) in Tx-treated TrkB */*-Cre and TrkB ''**Cre mice
at42 dptx (n = 3 mice). D, Density of Bgal+/Casp3+ cells quantified as in € (n = 3 mice). *p << 0.05; **p << 0.01. E, Representative confocal picture showing a portion of the OF at 42 dptx in
TrkB "*-Cre mice immunostained for k5 (identifying progenitor cells), OMP, and Bgal. Scale bar, 20 um. F, Micrograph showing the preparation used for recording electro-olfactograms from the
OE.Roman numbersindicate individual turbinates; the locations in which recordings were usually performed (1, 2) are shown. D, Dorsal; A, anterior. G, Representative electro-olfactogram recordings
obtained from the OF of TrkB *"*'-Cre and TrkB'"°*-Cre mice at 42 dptx in response to 100 ms pulses (top traces) of amylacetate, cineole, and acetophenone. H, Histogram showing the average
voltage amplitude recorded following stimulation with the three individual odorant molecules (n = 3-5 mice).

producing an overall increase (per month) of 2-4% of the total
number of PGCs (Lagace et al., 2007; Adam and Mizrahi, 2011).
The rate of neuronal incorporation, as well as synapse formation
in adult-born neurons, is precisely refined by odor stimulation/
deprivation (Yamaguchi and Mori, 2005; Livneh et al., 2009;
Sawada et al., 2011) and therefore responds to olfactory sensory
activity. It may therefore be reasonable to assume that activity-
dependent secreted factors, such as BDNF (Poo, 2001), could
play a critical role in this neuronal recruitment. Supporting this
hypothesis, BDNF signaling has been implicated in the genera-
tion, migration, and survival of new neurons in the adult SEZ/
RMS/OB (Young et al., 2007; Bath et al., 2008; Galvao et al., 2008;
Snapyan et al., 2009). However, experiments have yielded con-
flicting results, particularly with regard to the role of BDNF in
regulating survival of newborn neurons (Bath et al., 2008; Galvéao
et al., 2008). Here, we found no evidence that proliferation di-
rectly depends on the activation of TrkB-FL in stem and progen-
itor cells. Instead, rather than TrkB-FL, cells in the SEZ express
TrkB-T and the low-affinity neurotrophin receptor p75™™
(Young et al., 2007; Galvao et al., 2008), suggesting that the spa-
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(Figure legend continued.) ~ found to colocalize with Tbr2+ neurons, labeling mitral and
tufted cells. Scale bar, 100 em. €, High magnification image of area 1 boxed in B, illustrating a
portion of the GL and BDNF expression in Thr2+ neurons (yellow asterisks). Scale bar, 15 pm.
D, High magnification image of area 2 boxed in B, illustrating a portion of the ML and BDNF
expression Thr2+ mitral cells (yellow asterisks). Scale bar, 15 um. E, In situ hybridization
showing abundant BDNF mRNA expression in the AON and PC. Scale bar, 100 pm. F, Pictures
showing BDNF immunoreactivity in neurons of the AON and PC. Scale bar, 50 ,m. G, Overview
of the OB showing the immunoreactivity for neurofilament-H (NF-H), which, in addition to
mitral cells, labels centrifugal cortical fibers innervating the GCL. Bottom panels show the pres-
ence of BDNFimmunoreactivity in NF-H+ fibers crossing the GCL. Scale bars: bottom, 200 pum;
top, 50 em. D, Dorsal; R, rostral.

tiotemporal expression of BDNF receptors along the SVZ/
RMS/OB path may serve for distinct functions. Notably,
experiments conducted on postnatal TrkB knock-out cells trans-
planted into the SEZ of wild-type adult mice led to the conclusion
that BDNF does not cell-autonomously control neuronal migra-
tion via TrkB (Galvao et al., 2008), a finding that we confirmed by
deleting TrkB-FL specifically in adult-born neurons. Additional
insights about the BDNF effects on adult neurogenesis were pro-
vided using TrkB heterozygous and BDNF mutant mice in which
BDNF activity-dependent secretion is impaired (Bath et al,
2008). In these mice, the overall number of newborn GCs was
shown to be particularly affected (Bath et al., 2008). Opposite to
this study, however, we detected no alterations in the number of
GCs up to 9 months after conditional deletion of TrkB-FL despite
clear impairment in spine growth, suggesting that a general re-
duction of BDNF protein or secretion in the SEZ/RMS/OB sys-
tem might impair either migration or survival of newborn
neurons in a non-cell-autonomous manner (Snapyan et al.,
2009).

The time window when we noticed the morphological im-
pairments both in GCs and PGCs caused by TrkB deletion
coincides with the critical period characterized by an en-
hanced propensity for synaptic plasticity in newly generated
neurons (Nissant et al., 2009), a feature that could be critically
modulated by BDNF secretion at the synaptic level. In this
respect, it is remarkable that the local availability of BDNF
seems to differ significantly between the layers of the OB, with
the ML and GL particularly enriched in BDNF protein levels.
This regionalized pattern of BDNF expression correlates well
with the reduced spine density observed both in GCs and
PGCs following TrkB-FL deletion, suggesting that BDNF/
TrkB signaling plays a role during synapse formation between
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newborn neurons and mitral or tufted cells. Moreover, the
high immunoreactivity for BDNF detected in the GL, likely
revealing not only BDNF expression in local neurons but also
in OSN axonal projections (Clevenger et al., 2008; Feron et al.,
2008), indicates that newborn PGCs, and predominantly
TH+ cells, are particularly dependent on TrkB signaling for
their morphological maturation (extension of dendrites) and
synaptic integration (spine growth). During the course of
their maturation, BDNF may represent a limiting factor for
the survival of these neurons and for their stable incorporation
into the network, suggesting the existence of active mecha-
nisms of competition between cohorts of newborn neurons as
proposed for the DG (Tashiro et al., 2006; Bergami et al.,
2008).

The identification of a role for TrkB in contributing to the
turnover of PGCs mirrors the diverse modes of incorporation
of adult-generated neurons in the GCL and GL. Strikingly, the
missing fraction of TH+ cells generated at younger stages
following TrkB-FL deletion was never recovered, thus creating
a permanent imbalance in the cellular composition of the
adult GL. Our data suggest that layer-specific cues such as
BDNF, the expression of which could be modulated by net-
work activity, are required for the integration of specific sub-
sets of adult-born OB neurons.

References

Adam Y, Mizrahi A (2011) Long-term imaging reveals dynamic changes
in the neuronal composition of the glomerular layer. ] Neurosci 31:
7967-7973. CrossRef Medline

Alonso M, Lepousez G, Sebastien W, Bardy C, Gabellec MM, Torquet N,
Lledo PM (2012) Activation of adult-born neurons facilitates learning
and memory. Nat Neurosci 15:897-904. CrossRef Medline

Bath KG, Mandairon N, Jing D, Rajagopal R, Kapoor R, Chen ZY, Khan T,
Proenca CC, Kraemer R, Cleland TA, Hempstead BL, Chao MV, Lee FS
(2008) Variant brain-derived neurotrophic factor (Val66Met) alters
adult olfactory bulb neurogenesis and spontaneous olfactory discrimina-
tion. ] Neurosci 28:2383-2393. CrossRef Medline

Belluzzi O, Benedusi M, Ackman J, LoTurco JJ (2003) Electrophysiological
differentiation of new neurons in the olfactory bulb. ] Neurosci 23:10411—
10418. Medline

Bergami M, Berninger B (2012) A fight for survival: the challenges faced by
anewborn neuron integrating in the adult hippocampus. Dev Neurobiol
72:1016-1031. CrossRef Medline

Bergami M, Rimondini R, Santi S, Blum R, Gétz M, Canossa M (2008)
Deletion of TrkB in adult progenitors alters newborn neuron integration
into hippocampal circuits and increases anxiety-like behavior. Proc Natl
Acad Sci U S A 105:15570-15575. CrossRef Medline

Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A,
Gascon S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M,
Berninger B, Hevner RF, Raineteau O, Gétz M (2009) Adult generation
of glutamatergic olfactory bulb interneurons. Nat Neurosci 12:1524—
1533. CrossRef Medline

Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM (2003)
Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507—
518. CrossRef Medline

Clevenger AC, Salcedo E, Jones KR, Restrepo D (2008) BDNF promoter-
mediated beta-galactosidase expression in the olfactory epithelium and
bulb. Chem Senses 33:531-539. CrossRef Medline

Deshpande A, Bergami M, Ghanem A, Conzelmann KK, Lepier A, G6tz M,
Berninger B (2013) Retrograde monosynaptic tracing reveals the tem-
poral evolution of inputs onto new neurons in the adult dentate gyrus and
olfactory bulb. Proc Natl Acad Sci US A 110:E1152-E1161. CrossRef
Medline

Feron F, Bianco J, Ferguson I, Mackay-Sim A (2008) Neurotrophin expres-
sion in the adult olfactory epithelium. Brain Res 1196:13-21. CrossRef
Medline

Franceschini V, Bettini S, Pifferi S, Rosellini A, Menini A, Saccardi R, Ognio E,
Jeffery R, Poulsom R, RevoltellaRP (2009) Human cord blood CD133+
stem cells transplanted to nod-scid mice provide conditions for regener-

J. Neurosci., July 10, 2013 - 33(28):11464 11478 « 11477

ation of olfactory neuroepithelium after permanent damage induced by
dichlobenil. Stem Cells 27:825-835. CrossRef Medline

Galvao RP, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Brain-derived
neurotrophic factor signaling does not stimulate subventricular zone
neurogenesis in adult mice and rats. ] Neurosci 28:13368-13383.
CrossRef Medline

Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA (1990) Regional distri-
bution of brain-derived neurotrophic factor mRNA in the adult mouse
brain. EMBO ] 9:2459-2464. Medline

Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M,
Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous
neurogenesis in the structural and functional integrity of the adult fore-
brain. Nat Neurosci 11:1153—-1161. CrossRef Medline

Kelsch W, Lin CW, Lois C (2008) Sequential development of synapses in
dendritic domains during adult neurogenesis. Proc Natl Acad Sci U S A
105:16803-16808. CrossRef Medline

Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, Obata K,
Okano H, Toida K, Puche AC, Shipley MT (2010) Molecular identity of
periglomerular and short axon cells. ] Neurosci 30:1185-1196. CrossRef
Medline

Klein R, Parada LF, Coulier F, Barbacid M (1989) trkB, a novel tyrosine
protein kinase receptor expressed during mouse neural development.
EMBO ] 8:3701-3709. Medline

Klein R, Conway D, Parada LF, Barbacid M (1990) The trkB tyrosine pro-
tein kinase gene codes for a second neurogenic receptor that lacks the
catalytic kinase domain. Cell 61:647—656. CrossRef Medline

Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, Arguello
AA, Donovan MH, Fischer SJ, Farnbauch LA, Beech RD, DiLeone R]J,
Greer CA, Mandyam CD, Eisch AJ (2007) Dynamic contribution of
nestin-expressing stem cells to adult neurogenesis. ] Neurosci 27:
12623-12629. CrossRef Medline

Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory
neural stem cells to tissue maintenance and regeneration. Nat Neuro-
sci 10:720-726. CrossRef Medline

Livneh Y, Feinstein N, Klein M, Mizrahi A (2009) Sensory input enhances
synaptogenesis of adult-born neurons. ] Neurosci 29:86—97. CrossRef
Medline

Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional
plasticity in neuronal circuits. Nat Rev Neurosci 7:179-193. CrossRef
Medline

Lledo PM, Merkle FT, Alvarez-Buylla A (2008) Origin and function of ol-
factory bulb interneuron diversity. Trends Neurosci 31:392—400.
CrossRef Medline

Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of
neuronal precursors. Science 271:978-981. CrossRef Medline

Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of
neural stem cells in the adult brain. Science 317:381-384. CrossRef
Medline

MinichielloL (2009) TrkB signalling pathways in LTP and learning. Nat Rev
Neurosci 10:850-860. CrossRef Medline

Minichiello L, Korte M, Wolfer D, Kithn R, Unsicker K, Cestari V, Rossi-
Arnaud C, Lipp HP, Bonhoeffer T, Klein R (1999) Essential role for
TrkB receptors in hippocampus-mediated learning. Neuron 24:401-414.
CrossRef Medline

Mizrahi A (2007) Dendritic development and plasticity of adult-born neu-
rons in the mouse olfactory bulb. Nat Neurosci 10:444—452. CrossRef
Medline

Mizuguchi R, Naritsuka H, Mori K, Mao CA, Klein WH, YoshiharaY (2012)
Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory
balance of neural circuitry in the mouse olfactory bulb. ] Neurosci 32:
8831-8844. CrossRef Medline

Mori T, Tanaka K, Buffo A, Wurst W, Kiihn R, Gétz M (2006) Inducible
gene deletion in astroglia and radial glia—a valuable tool for functional
and lineage analysis. Glia 54:21-34. CrossRef Medline

Mouret A, Lepousez G, Gras J, Gabellec MM, Lledo PM (2009) Turnover of
newborn olfactory bulb neurons optimizes olfaction. J Neurosci 29:
12302-12314. CrossRef Medline

Ninkovic J, Mori T, Goétz M (2007) Distinct modes of neuron addition in
adult mouse neurogenesis. ] Neurosci 27:10906-10911. CrossRef
Medline

Nissant A, Bardy C, Katagiri H, Murray K, Lledo PM (2009) Adult neuro-


http://dx.doi.org/10.1523/JNEUROSCI.0782-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21632918
http://dx.doi.org/10.1038/nn.3108
http://www.ncbi.nlm.nih.gov/pubmed/22581183
http://dx.doi.org/10.1523/JNEUROSCI.4387-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18322085
http://www.ncbi.nlm.nih.gov/pubmed/14614100
http://dx.doi.org/10.1002/dneu.22025
http://www.ncbi.nlm.nih.gov/pubmed/22488787
http://dx.doi.org/10.1073/pnas.0803702105
http://www.ncbi.nlm.nih.gov/pubmed/18832146
http://dx.doi.org/10.1038/nn.2416
http://www.ncbi.nlm.nih.gov/pubmed/19881504
http://dx.doi.org/10.1038/nn1048
http://www.ncbi.nlm.nih.gov/pubmed/12704391
http://dx.doi.org/10.1093/chemse/bjn021
http://www.ncbi.nlm.nih.gov/pubmed/18495654
http://dx.doi.org/10.1073/pnas.1218991110
http://www.ncbi.nlm.nih.gov/pubmed/23487772
http://dx.doi.org/10.1016/j.brainres.2007.12.003
http://www.ncbi.nlm.nih.gov/pubmed/18234155
http://dx.doi.org/10.1002/stem.11
http://www.ncbi.nlm.nih.gov/pubmed/19350683
http://dx.doi.org/10.1523/JNEUROSCI.2918-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19074010
http://www.ncbi.nlm.nih.gov/pubmed/2369898
http://dx.doi.org/10.1038/nn.2185
http://www.ncbi.nlm.nih.gov/pubmed/18758458
http://dx.doi.org/10.1073/pnas.0807970105
http://www.ncbi.nlm.nih.gov/pubmed/18922783
http://dx.doi.org/10.1523/JNEUROSCI.3497-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20089927
http://www.ncbi.nlm.nih.gov/pubmed/2555172
http://dx.doi.org/10.1016/0092-8674(90)90476-U
http://www.ncbi.nlm.nih.gov/pubmed/2160854
http://dx.doi.org/10.1523/JNEUROSCI.3812-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18003841
http://dx.doi.org/10.1038/nn1882
http://www.ncbi.nlm.nih.gov/pubmed/17468753
http://dx.doi.org/10.1523/JNEUROSCI.4105-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19129387
http://dx.doi.org/10.1038/nrn1867
http://www.ncbi.nlm.nih.gov/pubmed/16495940
http://dx.doi.org/10.1016/j.tins.2008.05.006
http://www.ncbi.nlm.nih.gov/pubmed/18603310
http://dx.doi.org/10.1126/science.271.5251.978
http://www.ncbi.nlm.nih.gov/pubmed/8584933
http://dx.doi.org/10.1126/science.1144914
http://www.ncbi.nlm.nih.gov/pubmed/17615304
http://dx.doi.org/10.1038/nrn2738
http://www.ncbi.nlm.nih.gov/pubmed/19927149
http://dx.doi.org/10.1016/S0896-6273(00)80853-3
http://www.ncbi.nlm.nih.gov/pubmed/10571233
http://dx.doi.org/10.1038/nn1875
http://www.ncbi.nlm.nih.gov/pubmed/17369823
http://dx.doi.org/10.1523/JNEUROSCI.5746-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22745484
http://dx.doi.org/10.1002/glia.20350
http://www.ncbi.nlm.nih.gov/pubmed/16652340
http://dx.doi.org/10.1523/JNEUROSCI.3383-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19793989
http://dx.doi.org/10.1523/JNEUROSCI.2572-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17913924

11478 - J. Neurosci., July 10, 2013 - 33(28):11464 11478

genesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci
12:728-730. CrossRef Medline

Panzanelli P, Bardy C, Nissant A, Pallotto M, Sassoe-Pognetto M, Lledo PM,
Fritschy JM (2009) Early synapse formation in developing interneurons
of the adult olfactory bulb. ] Neurosci 29:15039-15052. CrossRef Medline

Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci
2:24-32. CrossRef Medline

Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A (2003) Trun-
cated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia
cells. Nature 426:74—-78. CrossRef Medline

Sawada M, Kaneko N, Inada H, Wake H, Kato Y, Yanagawa Y, Kobayashi K,
Nemoto T, Nabekura J, Sawamoto K (2011) Sensory input regulates
spatial and subtype-specific patterns of neuronal turnover in the adult
olfactory bulb. ] Neurosci 31:11587-11596. CrossRef Medline

Shepherd GM (2004) The synaptic organization of the brain, Ed 5. Oxford:
Oxford UP.

Sholl DA (1953) Dendritic organization in the neurons of the visual and
motor cortices of the cat. ] Anat 87:387—406. Medline

Snapyan M, Lemasson M, Brill MS, Blais M, Massouh M, Ninkovic J, Gravel
C, Berthod F, Gotz M, Barker PA, Parent A, Saghatelyan A (2009) Vas-
culature guides migrating neuronal precursors in the adult mammalian

Bergami et al. @ TrkB Signaling in Adult Neurogenesis

forebrain via brain-derived neurotrophic factor signaling. ] Neurosci 29:
4172-4188. CrossRef Medline

Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre re-
porter strain. Nat Genet 21:70-71. CrossRef Medline

Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH (2006) NMDA-receptor-
mediated, cell-specific integration of new neurons in adult dentate gyrus.
Nature 442:929-933. CrossRef Medline

van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002)
Functional neurogenesis in the adult hippocampus. Nature 415:
1030-1034. CrossRef Medline

Whitman MC, Greer CA (2007) Synaptic integration of adult-generated ol-
factory bulb granule cells: basal axodendritic centrifugal input precedes
apical dendrodendritic local circuits. ] Neurosci 27:9951-9961. CrossRef
Medline

Yamaguchi M, Mori K (2005) Critical period for sensory experience-
dependent survival of newly generated granule cells in the adult mouse
olfactory bulb. Proc Natl Acad Sci USA 102:9697-9702. CrossRef
Medline

Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF (2007)
P75 neurotrophin receptor expression defines a population of BDNF-
responsive neurogenic precursor cells. J Neurosci 27:5146-5155.
CrossRef Medline


http://dx.doi.org/10.1038/nn.2298
http://www.ncbi.nlm.nih.gov/pubmed/19412168
http://dx.doi.org/10.1523/JNEUROSCI.3034-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19955355
http://dx.doi.org/10.1038/35049004
http://www.ncbi.nlm.nih.gov/pubmed/11253356
http://dx.doi.org/10.1038/nature01983
http://www.ncbi.nlm.nih.gov/pubmed/14603320
http://dx.doi.org/10.1523/JNEUROSCI.0614-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21832189
http://www.ncbi.nlm.nih.gov/pubmed/13117757
http://dx.doi.org/10.1523/JNEUROSCI.4956-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19339612
http://dx.doi.org/10.1038/5007
http://www.ncbi.nlm.nih.gov/pubmed/9916792
http://dx.doi.org/10.1038/nature05028
http://www.ncbi.nlm.nih.gov/pubmed/16906136
http://dx.doi.org/10.1038/4151030a
http://www.ncbi.nlm.nih.gov/pubmed/11875571
http://dx.doi.org/10.1523/JNEUROSCI.1633-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17855609
http://dx.doi.org/10.1073/pnas.0406082102
http://www.ncbi.nlm.nih.gov/pubmed/15976032
http://dx.doi.org/10.1523/JNEUROSCI.0654-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17494700

	TrkB Signaling Directs the Incorporation of Newly Generated Periglomerular Cells in the Adult Olfactory Bulb
	Introduction
	Materials and Methods
	Results
	Region- and layer-specific expression of BDNF in the adult OB
	Discussion
	References


