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Emergence of Dynamic Memory Traces in Cortical
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Numerous experimental data suggest that simultaneously or sequentially activated assemblies of neurons play a key role in the storage
and computational use of long-term memory in the brain. However, a model that elucidates how these memory traces could emerge
through spike-timing-dependent plasticity (STDP) has been missing. We show here that stimulus-specific assemblies of neurons emerge
automatically through STDP in a simple cortical microcircuit model. The model that we consider is a randomly connected network of well
known microcircuit motifs: pyramidal cells with lateral inhibition. We show that the emergent assembly codes for repeatedly occurring
spatiotemporal input patterns tend to fire in some loose, sequential manner that is reminiscent of experimentally observed stereotypical
trajectories of network states. We also show that the emergent assembly codes add an important computational capability to standard
models for online computations in cortical microcircuits: the capability to integrate information from long-term memory with informa-
tion from novel spike inputs.

Introduction
Neural computations in the brain integrate information from
sensory input streams with long-term memory in a seemingly
effortless manner. However, we do not yet know what mecha-
nisms and architectural features of networks of neurons are re-
sponsible for this astounding capability. It has been conjectured
that coactive ensembles of neurons, often referred to as cell as-
semblies (Hebb, 1949), and stereotypical sequences of assemblies
or network states play an important role in such computations
(Buszáki, 2010). In fact, a fairly large number of experimental
studies (Abeles, 1991; Jones et al., 2007; Luczak et al., 2007; Fu-
jisawa et al., 2008; Pastalkova et al., 2008; Luczak et al., 2009;
Bathellier et al., 2012; Harvey et al., 2012; Xu et al., 2012) suggest
that stereotypical trajectories of network states play an important
role in cortical computations. However, it is not clear how those
assemblies and stereotypical trajectories of network states could
emerge through spike-timing-dependent plasticity (STDP).

There exists already a model for neural computation with
transient network states: the liquid state machine, also referred to
as liquid computing model (Maass et al., 2002; Haeusler and
Maass, 2007; Sussillo et al., 2007; Buonomano and Maass, 2009;
Maass, 2010; Hoerzer et al., 2012). Building on preceding work
(Buonomano and Merzenich, 1995), this model shows how im-
portant computations can be performed by experimentally found
networks of neurons in the cortex consisting of diverse types of

neurons and synapses (including diverse short-term plasticity of
different types of synaptic connections) and specific connection
probabilities between different populations of neurons (instead
of a deterministically constructed circuit). The liquid computing
model proposes that temporal integration of incoming informa-
tion and generic nonlinear mixing of this information (to boost
the expressive capability of linear readout neurons) are primary
computational functions of a cortical microcircuit. A concrete
prediction of the model is that transient (“liquid”) sequences of
network states integrate information from incoming spike inputs
over time spans on the order of a few 100 milliseconds. This
prediction has been confirmed by several experimental studies
(Nikolić et al., 2009; Bernacchia et al., 2011; Klampfl et al., 2012).
However, the liquid computing model did not consider conse-
quences of synaptic plasticity within the microcircuit and could
not reproduce the emergence of long-term memory in the form
of assemblies or stereotypical sequences of network states. We
show here that long-term memory traces automatically emerge in
this model if one adds three experimentally supported con-
straints: (1) pyramidal cells and inhibitory neurons tend to be
organized into specific network motifs, (2) synapses between py-
ramidal cells are subject to STDP, and (3) neural responses are
highly variable (“trial-to-trial variability”).

We show that in the resulting biologically more realistic
model, both assembly codes and stereotypical trajectories of cir-
cuit states emerge through STDP for repeatedly occurring spike
input patterns. We also provide a theoretical explanation for this
and demonstrate additional computational capabilities of the re-
sulting new model for online computations with long-term
memory in cortical microcircuits.

Materials and Methods
We first review the traditional liquid computing model and then describe
the modified model that is examined in this article. Next, we describe the
STDP rule that is applied in this model. Finally, we specify the benchmark
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tasks that are used to evaluate the capability of the model for online
computation on new spike inputs shown in Figure 12 and provide all
technical details of our computer simulations.

Traditional liquid computing model. The traditional liquid computing
model (more formally called liquid state machine; Maass et al., 2002) is a
recurrent network of excitatory and inhibitory spiking neurons (Fig. 1A)
with a distance-dependent connection probability between any pair of neu-

rons. The temporal dynamics of different neurons and synapses in the model
can be diverse and nonlinear, as reported in experimental data on cortical
microcircuits. In fact, theoretical results suggest that this diversity supports
generic computations in cortical microcircuits (Maass et al., 2002). Two such
generic computations (XOR as a typical nonlinear operation, and memory
for a preceding spike input) are described below and they are used in this
article to evaluate the performance of our modified liquid computing model

A

B

C D

Figure 1. Traditional and modified liquid computing model. A, Traditional liquid computing model. B, More structured generic microcircuit model from Douglas and Martin (2004): a recurrent
network of WTA circuits on superficial and deep layers. C, Resulting modified liquid computing model: a recurrent network of WTA circuits. Each WTA circuit is assumed to be positioned on a grid point
of a 2D grid to define a spatial distance between them. Each WTA circuit consists of some randomly drawn number K of stochastically spiking excitatory neurons zK that are subject to lateral
inhibition. WTA circuits within the network receive spike inputs from randomly selected excitatory neurons in other WTA circuits in the network and from the external input to the network. We will
focus in the “Liquid computing with long-term memory” section (Fig. 10) on WTA circuits as readouts that do not require a teacher for learning (linear readouts trained by linear regression with the
help of a teacher, as in the traditional liquid computing model, are only considered for control experiments in Fig. 12). D, Smooth line shows the distance-dependent connection probability
�exp���d� between any two excitatory neurons in two WTA circuits at distance d. A histogram of resulting connections for a typical network is also shown.
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on standard liquid computing tasks (Fig. 12). The computational capability
of a liquid computing model is commonly tested by training memoryless
linear readout neurons (modeling downstream neurons) with the help of a
teacher (supervised learning) to approximate the target output of a specific
computational task. In previously considered versions of the liquid comput-
ing model, no specific local connection patterns (such as specific network
motifs) were introduced in the network and no long-term synaptic plasticity
was considered within the network. Only the weights to readout neurons
were trained, typically by algorithms such as linear regression or the FORCE
algorithm (Sussillo et al., 2007), which did not aim at modeling biological
synaptic plasticity. Rather, these algorithms aimed at measuring how much
information the network contained about the target output of a specific
computation.

Modified liquid computing model. Experimental data show that generic
cortical microcircuits are not assembled in a random manner from ex-
citatory and inhibitory neurons, as in the traditional liquid computing
model. In particular, as emphasized in Douglas and Martin (2004), en-
sembles of pyramidal cells on superficial and deep layers tend to form
through mutual synaptic connections with inhibitory neurons into (soft)
winner-take-all (WTA) circuits in which at most one pyramidal cell in
the ensemble usually fires (Fig. 1B). Therefore, the modified liquid com-
puting model is a recurrent network of WTA circuits of different sizes
(Fig. 1C). According to Markov et al. (2011), the probability that two
neurons are monosynaptically connected drops exponentially with the
distance d between their somata. To mimic this distance-dependent con-
nection probability in our microcircuit model, we arranged its units, the
WTA circuits, on a 2D grid (with each WTA circuit occupying one grid
point). The grid size is 10 � 5 for all networks described here. Therefore,
each network consists of 50 WTA circuits. We then created a synaptic
connection from an excitatory neuron z̃k� to some excitatory neuron zK in
two WTA circuits of distance d with probability p(d) � �exp(��d),
according to the data-based rule of Markov et al. (2011) (Figure 1D). In
addition, zK receives synaptic inputs from external sources (Fig. 1C).
Therefore, the presynaptic neurons y1, . . . ,yn of a generic excitatory neu-
ron zK in some WTA circuits are neurons in various other WTA circuits,
as well as external input neurons. All of these synaptic connections are
subject to short-term dynamics and STDP, as described below.

Each WTA circuit in our model consists of some finite number K of
stochastically spiking neurons (z1 to zK in Fig. 2A) with lateral inhibition.
The number K is drawn independently for each WTA circuit from a
uniform distribution between a predefined minimum and maximum
number (here: 2–10; 10 –50 in Fig. 9). Therefore, the resulting recurrent
network of WTA circuits consists on average of �300 neurons (1500 in
the case of Fig. 9). The larger WTA circuits were needed for Figure 9 for
the emergence of assemblies with sufficiently long firing patterns.

For each of these neurons, zK is viewed as a model for a pyramidal neuron
that receives (apart from the lateral inhibition) synaptic inputs from some
other pyramidal cells (y1, . . ,yn; Figure 2A). The membrane potential of neu-
ron zK (without the impact of lateral inhibition) is given by:

uk�t� � �
i�1

n

wkiyi�t� � wk0, (1)

where yi�t� is the current value of the EPSP
from the i-th presynaptic neuron, which is
weighted by the current weight, wki, of their
synaptic connection and wk0 is a bias or excit-
ability parameter of neuron k. Each EPSP is
modeled as an �-shaped kernel with rise time
constant �rise � 2 ms and the decay time con-
stant �decay � 20 ms as follows:

yi�t� � �
tp

e�
t�tp

�decay � e�
t�tp

�rise , (2)

where the sum is over all presynaptic spike
times tp.

Neuron zK outputs a Poisson spike train with
instantaneous firing rate as follows:

rk�t� � Rmax �
euk�t�

�j�1
K euj�t�

. (3)

Therefore, it fires with a rate proportional to the exponent of its current
membrane potential uk�t� normalized by the current total activation of all
K neurons in the WTA circuit, �

j�1
K euj�t�. Rmax is the maximum sum of the

firing rates of all neurons z1,. . .,zK in a WTA circuit.
The lateral inhibition of the WTA circuit (Fig. 2A) is modeled in an

abstract way as the denominator of (3; “divisive normalization”).
One can rewrite Equation 3 as rk�t� � Rmax � exp�uk�t� � I�t�	, with
I�t� � log 
j�1

K euj�t�, a term that can in principle be approximated by
the inhibitory circuit in Figure 2A. We chose here the more abstract
implementation of Nessler et al. (2013), where the ratio in Equation 3
can be viewed as a discrete probability distribution over �1,. . .,K�,
which at any time determines how the total activity Rmax is spread
among the output neurons of a WTA circuit. This abstract way of
modeling lateral inhibition has the side effect that it normalizes the
sum of firing rates in the WTA circuit to a fixed value (set to 100 Hz
here), even in the absence of external input. We have demonstrated in
Figure 6D (where this value was reduced to 70 Hz during those phases
where the external input consisted just of noise spikes at a low rate)
that this simplification of the model does not affect the effects that we
study (emergence of cell assemblies) in a negative manner. Further-
more in other work (S. Haeusler, W.M., manuscript in preparation),
it was shown that the abstract normalization of Equation 3 can be
approximated via connections to and from a pool of inhibitory neu-
rons (as in Fig. 2A) that reproduces the experimentally found tracking
of excitation through inhibition in cortical microcircuits (Okun and
Lampl, 2008).

Synaptic plasticity. All synaptic connections from external inputs to
WTA circuits and between WTA circuits are assumed to be subject to
short-term and long-term plasticity. It is well known that biological
synapses are not static, and have a complex inherent temporal dynam-
ics (Markram et al., 1998; Gupta et al., 2000). More precisely, the
amplitude of an EPSP caused by an incoming spike not only depends
on the current synaptic weight, but also on the recent history of input
spikes. We modeled these short-term dynamics of synapses between
excitatory neurons in the network after the traditional liquid comput-
ing model of Maass and Markram (2002). This model for short-term
plasticity is based on Markram et al. (1998) and predicts the ampli-
tude Ak of the k-th input spike in a spike train with interspike intervals
1,2, . . .,k�1 as follows:

Ak � wk � uk � Rk,
uk � U � uk�1 �1 � U� exp��k�1/F�,
Rk � 1 � �Rk�1 � uk�1 Rk�1 � 1�exp��k�1/D�,

(4)

with hidden dynamic variables u,R�[0,1] and initial values u1 � U, R1 �
1. The parameters U, D, and F in our model were chosen independently
for each synapse from Gaussian distributions with means of 0.5, 0.11, and
0.005, respectively; the SD was always one half of the mean, with yi�t�
defined according to Equation 2. These distributions are based on data
for synaptic connection between pyramidal cells according to Markram

A B

Figure 2. A, Scheme of the microcircuit motif (WTA circuit) that is considered. B, The STDP learning window corresponding to
the learning rule (Equation 5).
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et al. (1998), except that the time constants of
depression ( D) and facilitation ( F) are divided
by 10. Because D �� F, these synapses are de-
pressing, i.e., the amplitudes of EPSPs caused
by successive spikes are decreasing. The smaller
the interspike interval, the stronger is this
decrease. In addition, the same synaptic con-
nections are also assumed to be subject to long-
term plasticity (STDP). More precisely, the
following weight update is applied to the
weight wki of the synaptic input from the i-th
presynaptic neuron yi to neuron zK whenever
neuron zK fires as follows:

wki � yi�t� � c � e�wki � 1, (5)

with yi�t� defined by Equation 2. The corre-
sponding STDP curve is shown in Figure 2B.
The constant c is chosen so that the weights
are kept within the range of positive values.
For our simulations, we have chosen c �
0.05 � exp�5� � 7.42. This value arises from
a learning rate of 0.05 and an offset of 5 for
moving all weights into the positive range. If
there is a recent preceding spike, the weight
change is positive and depends on the current
EPSP yi�t� and on the current weight wki (in
fact, the positive part of the STDP curve has the
shape of an EPSP). Whenever there is a post-
synaptic spike that is not accompanied by an
immediately preceding presynaptic spike of
neuron i (i.e., the value of the current EPSP
yi�t� is low), the weight is reduced by a constant
amount of 1. In this case, the firing of neuron
zK is typically caused by preceding firing of
other presynaptic neurons yj, leading to an in-
crease of wkj according to the positive part of
STDP. The resulting reduction of wki can there-
fore be viewed as a qualitative model for the
impact of synaptic scaling (Turrigiano, 2008)
that might, for example, arise from a competi-
tion for AMPA-receptors within neuron zK and
tends to keep the sums of all weights relatively
constant. The excitability of neuron zK is
changed bywk0 � c � e�wk0 � 1 whenever neu-
ron zK fires, and by wk0 � �1 in every simulation time step (dt � 1 ms)
where neuron zK does not fire. Moreover, all of these weight changes are
applied with an adaptive learning rate that follows a variance tracking prin-
ciple (Nessler et al., 2013). Initial values for weights and excitabilities are
chosen to be 0.

This form (Equation 5) of the STDP learning rule was chosen be-
cause it facilitates a theoretical understanding of resulting changes in
weights and excitabilities (Nessler et al., 2013; Habenschuss et al.,
2013). More specifically, it supports a theoretical understanding of
why STDP drives competing neurons in a WTA circuit to specialize
each on a different cluster of (spatial) spike patterns in its high-
dimensional spike input stream. It is shown in Figure 4 of Nessler et
al. (2013) that the common form of the negative part of the STDP
curve appears with this rule (Equation 5) if one pairs presynaptic and
postsynaptic spikes at a medium frequency of �20 Hz. Furthermore,
it is shown in Figure 8 of Nessler et al. (2013) and the surrounding
discussion that the dependence of weight updates on the current
weight in Equation 5 is qualitatively consistent with published exper-
imental data (see also the discussion in section 2.1. of Habenschuss et
al., 2013). We refer the reader to section 2.3 of Nessler et al. (2013) for
other forms of this dependence that would also be optimal from a
theoretical perspective.

In Figure 6A, bottom, and Figure 6C, we report the results of a control
experiment with a more traditional STDP rule, where the contribution of a

pair of a presynaptic and postsynaptic spike with interval t � tpost � tpre

to the weight change is given by:

wki � c � � A��w� � exp��t

��
� t � 0

A��w� � exp�t

��
� t � 0

. (6)

We have set here A�(w) � e�wki, A�(w) � � 1, �� � 20 ms, and
�� � 60 ms. The additional zero means that the noise was added to each
weight update of magnitude M with SD 	 � 0.3M � 10�4.

Testing the liquid computing capabilities of the network. We tested the
capability of our network to perform nonlinear computations on novel
inputs by investigating the performance of a linear readout (trained by
linear regression) on two standard benchmark tasks (Fig. 12). The first
one was an instance of the binding problem. Consider a network that
receives two input streams (Fig. 3A). In one input stream, a random
sequence of spike patterns A and A� is presented. The other input stream
consists of a random sequence of two other spike patterns, B and B� (Fig.
3B). Both patterns are superimposed by noise spikes (Fig. 3C, black dots).
The target output is 1 in response to a pattern combination A and B� or A�
and B, and 0 in response to a pattern combination A and B or A� and B�.
This computation is equivalent to the logical exclusive-OR (XOR) func-
tion, which decides whether two input bits are different or not. The
equivalence becomes clear when one identifies patterns A, B each with 0,

A B

C D

Figure 3. The network inherits major generic processing capabilities of the liquid computing model, as shown in Figure 12. A,
In the XOR task, a readout neuron has to decide whether specific combinations of input patterns are currently presented to the
network. It should respond strongly if pattern A at input stream 1 is accompanied by pattern B� in stream 2 or pattern A� by pattern
B, but not respond for other combinations of the same patterns. B, Samples of the four spike patterns A, A�, B, and B�. Each pattern
has 50 ms duration and consists of Poisson spike trains at 5 Hz. C, Sample stimulus sequence with the patterns shown in B. During
simulation, 2 Hz Poisson spike trains are overlaid as noise (black spikes). In the XOR task, the readout should respond only if one of
the desired pattern combinations is currently present at the input (indicated by blue rectangles). In a separate memory task, the
readout should decode the identity of the pattern presented during the interval [�100 ms, �50 ms] in stream 2 (magenta
rectangles). D, Performance of a linear regression readout for both tasks trained on the low-pass-filtered spike trains of both the
network and the stimulus directly (time constant 20 ms). The readout was trained to decode the target bit every 50 ms at the end
of each pattern (training set 50 s/1000 patterns); shown is the performance on a test set (6 s/120 patterns), averaged over 100 runs
with different patterns and networks (error bars show SD). Performance is evaluated as the point-biserial correlation coefficient
between the binary target variable and the analog output of the linear regression.
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and patterns A�, B� each with 1. It is well known that the XOR function
cannot be computed linearly and cannot even be approximated well by a
linear function. This XOR function has been used previously to test the
nonlinear computation capabilities of a laminar cortical microcircuit
model (Haeusler and Maass, 2007). If one uses a linear readout from the
network, the nonlinear part of the computation has to be performed
within the network.

Here, the weights of recurrent and input connections were initialized
randomly, forming a similar distribution as if having been trained with

STDP. A linear readout (which received as in-
put the low-pass-filtered spike trains of the
neurons in the network) was then trained by
linear regression every 50 ms to decide whether
one of the pattern combinations A, B� or A�,B
had been present during the last 50 ms. This
procedure is illustrated in Figure 3C (target
“XOR”). The input that was used for training
the linear readout consisted of a 50 s sequence
of spike patterns, which amounts to 1000 train-
ing samples for the regression. The size of the
test set was 120 samples drawn from a 6 s input
sequence that was newly instantiated.

As a measure for the performance of the
readout, we used the point-biserial correlation
coefficient between the analog linear readout
and the binary target variable. Figure 3D dem-
onstrates that a linear readout neuron cannot
perform the desired nonlinear computation if
it receives directly the two input streams (low-
pass filtered) as its inputs. If, however, it is
trained on the spike responses of the network,
it can achieve a performance above chance level
(Fig. 3D, gray bars labeled “network”). Any
correlation value significantly greater than zero
indicates nonlinear transformations by the
network itself (for a formal proof, see Nikolić et
al., 2009).

We tested the temporal integration capabil-
ity of the network with another standard
benchmark task. We trained a further linear
readout by linear regression to decode the
identity of the pattern that had been presented
in input stream 2 in the interval [�100 ms,
�50 ms], i.e., 50 ms before the current point in
time (Fig. 3C, target “memory”). The target
output was 1 if this earlier input pattern was B�,
else 0. In addition, in this task, the readout can
perform significantly better on the network
output than on the stimulus directly (Fig. 3D).

We used these two computational tasks to
analyze in Figure 12 how computational per-
formance of the network on novel inputs is de-
graded through long-term memory traces.

Computer simulations and data analysis. All
simulations, calculations, and data analysis
methods were performed in Python using the
NumPy and SciPy libraries. Figures were cre-
ated using Python/Matplotlib and MATLAB.
The time step of the simulations was chosen to
be 1 ms.

Determining cell assemblies. When adapting
to an input with repeating patterns embedded
within a continuous Poisson input stream, the
network produced long-term memory traces
in the form of transiently active cell assemblies
(Fig. 4). If different patterns had been embed-
ded into the input stream, different assemblies
emerged simultaneously (Fig. 5). To determine
which neurons belonged to an assembly, we
used the peri-event time histogram (PETH) of

all neurons of the network in response to input patterns. The PETH was
estimated with bin size 1 ms from 100 successive presentations of a given
input pattern. In addition, the PETH was smoothed with a 40 ms
Hamming window for further data analysis. The resulting value, is an
observable measure of the temporal activation trace defined by the
instantaneous Poisson firing rate of neuron i (Equation 3). We defined a
neuron i as belonging to a stimulus-induced assembly if ri

PETH�t� reached
a threshold value of 99 Hz (80 Hz in the experiment with the traditional

A

B

D

C

Figure 4. The cortical microcircuit model forms a memory trace in the form of a sequentially activated assembly of neurons for
a reoccurring subpattern within its high-dimensional input stream. A, Top: The stimulus consisted of 100 Poisson spike trains of a
constant rate (5 Hz) into which a frozen Poisson spike pattern at 3 Hz was embedded in random intervals (top left, red spikes). New
2 Hz Poisson spike trains (black spikes) were superimposed over each pattern presentation. The original pattern had 300 ms
duration. During testing, pattern presentations were time warped with a random factor between 0.5 and 2 (top right). Bottom:
Response of the network to test stimuli shown above before (left) and after (right) 100 s of applying STDP within the network for
such input stream (that contained �150 pattern presentations). Shown is the activity of 20 randomly selected neurons. To
illustrate the sequential activation during pattern presentations, neurons that now respond primarily to this pattern are sorted
according to their mean activation time during the pattern (B). B, Average activation of the neurons in the emergent assembly
during 100 pattern presentations. Neurons are sorted by their mean activation time (white dots) defined as the center of mass of
their temporal activity profiles. C, Histogram of rank correlations between mean activation times for individual pattern presenta-
tions and for the average response in B. Most correlations are greater than zero, indicating that the sequence of activations is
mostly preserved across pattern presentations. D, The response to the pattern is unaffected if during training it is sometimes
preceded by one of two other Poisson spike patterns of the same length. Shown is the average activation of the neurons (as in B)
for an experiment in which 10% of the presentations were preceded by pattern 1 and another 10% by pattern 2. It is interesting to
compare this result with Figure 9, where the emergence of different assemblies for the same input pattern is demonstrated if it
regularly occurs in two different temporal contexts.
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STDP rule in Fig. 6) in at least one simulation
step during the duration of the associated input
pattern.

Analysis of the sequential activation of neu-
rons. Having determined which neurons be-
long to an assembly, we ordered them
according to their mean activation time during
the presentation of an input pattern to reveal
the stereotypical sequential activation of the
memory trace. This mean activation time was
calculated as follows. For each neuron i, we
considered the temporal activity profile during
pattern presentations of a particular input pat-
tern, ri

PETH�t�, for t � 1,. . .,Tp, where Tp is the
length of the pattern in simulation time steps
(e.g., Tp � 300 for a pattern duration of 300 ms
and simulation time step 1 ms). We computed
the center of mass t*i of this temporal activity
profile as follows:

t*i

�
Tp

2

� arg��t�1

Tp ri
PETH�t� exp� t

Tp
2
i�

�t�1
Tp ri

PETH�t�
�.

(7)

In Equation 7, we interpret time as the angle in
the complex plane and compute the angle of
the average complex number, weighted by the
activation ri

PETH�t�. To analyze sequential acti-
vation of neurons we ordered them according
to their values of t*i. This mean activation time
is equivalent to the mean spike latency defined
in Luczak et al. (2009).

Similarity and stereotypy of cell assemblies.
We used several criteria to quantify the stability
of the emerging cell assemblies. We use the
term similarity to specify how reliably the order
of activation is maintained across different
replays of the same memory trace (in the fol-
lowing called “trials”). This is measured as
Spearman’s rank correlation, which evaluates
the correlation between two rank variables. We
followed here the procedure from Luczak et al.
(2009) and calculated histograms of rank cor-
relations between the mean activation times on
single trials (defined by the mean spike latency,
i.e., the average spike time, in this trial) and the
mean activation times on the average response
over multiple trials (estimated by the PETH
and Equation 7). Rank correlation ranges from
�1 to �1, values greater than zero indicate that
the order of activation is mostly maintained
across trials.

Conversely, we use the term “stereotypy” to
assess how the exact shape of the temporal ac-
tivation traces of individual neurons are main-
tained across different trials. This is measured
simply as the correlation between the temporal
activity trace of a single neuron (defined by its
PETH) during two successive trials, averaged
over all neurons participating in the assembly.

Determining the onset of spontaneous up-
states. In the absence of stimulation, the net-
work produces spontaneous activity during
which previously learned memory traces are
replayed (Fig. 7). The onsets of these spontane-
ous replays can only be determined approxi-

A

B

D E

F

C

Figure 5. Two different cell assemblies emerged when two different input patterns occurred repeatedly (embedded into
noise). A, Top: The input consisted of 100 Poisson spike trains of a constant rate (5 Hz), as in Figure 4, but with two different
spike patterns embedded (red and green spikes). The patterns were presented in random order and in random intervals
within the noise input. During testing, the pattern presentations were time warped with a random factor between 0.5 and
2. Bottom: Different cell assemblies emerged for the two patterns (assembly 1 and assembly 2). The response of 20
randomly selected neurons of the network to test stimuli is shown after 50 s of pattern presentations (�75 presentations
of both patterns in total). To illustrate the sequential activation during pattern presentations, neurons are sorted according
to their mean activation time during the pattern (as in D). B, Two successive replays of the two assemblies in response to
the corresponding input patterns are shown (“Trial #1” and “Trial #2”). Responses for more repetitions of the corresponding
input patterns are shown for the neurons with colored pikes in C. C, Raster plots showing spike times for 4 sample neurons
(“n. #1” to “n. #4”) during 20 pattern presentations. Neurons (spikes) are colored as in B. Overlaid traces are PETHs
calculated from 100 trials. D, Average activation of the neurons participating in one of the two assemblies during either of
the two patterns. The average is taken over 100 corresponding pattern presentations. Neurons are sorted by their mean
activation time (white dots) defined as the center of mass of their temporal activity profiles. E, Histogram of rank correla-
tions between mean activation times for individual pattern presentations and average activation times according to D.
Most correlations are greater than zero, indicating that the sequence of activations is mostly preserved across correspond-
ing pattern presentations. F, Temporal evolution of the emergence of input-specific assemblies is measured by the average
correlation between the temporal activity trace of a single neuron in an assembly (averaged over all these neurons) during
two successive presentations of the same pattern (red or green, denoted by the corresponding color). The black trace shows
the average correlation between activity traces of these neurons for different input patterns (same trace is shown in both
panels). All values were averaged over 100 trials with different input patterns and networks (error bars show SD).
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mately. Once the neurons participating in the
assembly are determined (see above), one can
compute the summed activation of the assem-
bly, r�t� � 
iri

PETH�t�. We filtered this
summed trace with a rectangular window of
the expected duration of the memory trace
(which is given by the duration of the previ-
ously learned patterns Tp). We then looked for
maxima in this filtered trace that were above a
certain threshold. If such a maximum is located
at t�, then an approximate interval for an up-
state was reported as �t� � Tp/2;t� � Tp/2	.

Results
It is well known that cortical microcircuits
are composed of generic network motifs:
ensembles of excitatory neurons (pyrami-
dal cells) that are subject to lateral inhibi-
tion. (Douglas and Martin, 2004). These
network motifs are commonly called
WTA circuits. The power and precision of
lateral inhibition among pyramidal cells
in superficial and deep layers of cortical
columns has been confirmed through a
large number of experimental studies
(Okun and Lampl, 2008; Ecker et al.,
2010; Gentet et al., 2010; Fino and Yuste,
2011; Isaacson and Scanziani, 2011;
Packer and Yuste, 2011; Avermann et al.,
2012). In this article, we investigated
models of cortical microcircuits that are
structured—in accordance with these
data—as networks of WTA circuits (Fig.
1). We show that if one takes also the ex-
perimentally observed stochasticity of
neural responses into account, then the
application of STDP in this model has a
rather clear and interesting impact on net-
work dynamics and computations: long-
term memory traces in the form of
stereotypical trajectories of network states
emerge and support online computations.

Emergence of stereotypical trajectories
of network states
We consider a generic randomly con-
nected recurrent network of stochastic
WTA circuits in which all synaptic con-
nections between pyramidal cells are sub-
ject to STDP (Fig. 1 and see Materials and
Methods). We injected into such network
a high-dimensional stream of Poisson
spike trains (randomly distributed to the
neurons in the network). Initially, the
neurons in the network responded in a
“chaotic” asynchronous irregular manner
without any visible structure (Fig. 4A,
bottom left). This network response
changed drastically when some spatio-
temporal pattern (a “frozen” Poisson
spike pattern of 300 ms length overlaid by
random noise in the form of Poisson
spikes) was repeatedly embedded into the
spike input stream. This noise was actually

A

B

D

C

Figure 6. Consequences of changes in the network structure or the STDP rule. A number of control experiments elucidate the relevance
of specific features of the network model. The base experimental setup is the same as in Figure 5. A, Responses to the same stimulus (top)
are shown after 50 s of pattern presentations in the input stream for different variations of the network (as in Fig. 5A). From top to bottom:
STDP is not applied to recurrent connections, instead their weights remain fixed at random values; the network is composed of a single WTA
circuit of comparable size and total activity (268 neurons, Rmax � 2500 Hz); input weights remain fixed at random values; temporal
dynamics of synapses (paired pulse depression) is deactivated (Rk�uk�1); another STDP rule was applied (see Materials and Methods).
B, C, Histograms of rank correlations as in Figure 5E for the “single WTA circuit” and “different STDP rule” scenarios. D, Emergence of
assembly codes (similarly as in Fig. 5) for a different regulation of network activity. Here the input rate is decreased to 2 Hz between input
patterns and the sum of firing rates in the network (spontaneous activity) is reduced from 100 to 70 Hz during this time (by regulating the
factor Rmax for divisive normalization accordingly; see Equation 3). These control experiments show that short-term dynamics (depression)
and STDP on recurrent synaptic connections are essential for the emergence of stimulus-specific assemblies, whereas STDP on synaptic
connection from input neurons, the precise shape of the STDP curve, and a lower level of spontaneous firing are not. If the network of WTA
circuits is replaced by a single very large STDP (third panel in A, B), stimulus-specific assemblies also emerge, but their firing order is
extremely precise (differing in this respect from most experimental data).
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quite substantial, making up 2/5 of the
spikes during a pattern presentation. Nev-
ertheless, after 100 s, the network started
to respond to each occurrence of the em-
bedded pattern with structured activity of
a specific subset of neurons in the circuit
(Fig. 4A, bottom right). In the terminol-
ogy of Buszáki (2010), one can describe
this phenomenon as the emergence of an
assembly code for the repeated input pat-
tern. Furthermore, the neurons in this as-
sembly tended to fire in some loose order,
creating a stereotypical trajectory of net-
work states for this assembly. This stereo-
typical network response generalized to
compressed and dilated variations of the
embedded input pattern (Fig. 4A, right).

To evaluate quantitatively to what ex-
tent the observed sequential firing within
the emergent assembly is maintained
across different pattern presentations,
we computed rank correlations between
the mean activation times of responses
during individual pattern presentations
and those of the average response to the
pattern. This is the method that had
been proposed in Luczak et al. (2009)
for evaluating to what extent a firing or-
der is preserved. Figure 4C shows that
these rank correlations are significantly
larger than 0, indicating that the firing
order is mostly preserved across pattern
presentations. The distribution of rank
correlations in the model is qualitatively
similar to those found in cortical micro-
circuit in vivo in response to sensory
stimuli (Luczak et al., 2009).

We then injected in a second experi-
ment two different patterns of the same type (again embedded
into noise) into the input stream for the network (Fig. 5, red and
green spike patterns). Two different cell assemblies emerged after
50 s of simulated biological time, one for each of the two patterns
(Fig. 5A, top two groups in bottom panel). The neurons from
these assemblies tended to fire sequentially, and this emergent
ordering was maintained across pattern presentations (compare
Fig. 5B,E). The third group of neurons (Fig. 5A, bottom) fired
irregularly, with less activity during the presentation of either
pattern. Figure 5D shows the average spike response of both as-
semblies over 100 different pattern presentations. It can be seen
that neurons that responded strongly during presentation of the
red pattern tended to be silent during the green pattern and vice
versa. Moreover, for both the red and green pattern, the sequen-
tial activation of neurons in the corresponding assembly was
largely maintained during different presentations of the patterns,
as shown by the mostly positive rank correlations in Figure 5E. To
determine whether the emergence of the two input specific cell
assemblies could be a result of a specific accidental network to-
pology, we repeated the whole experiment 100 times, each time
with a new randomly constructed recurrent network of WTA
circuits. For each network, we measured the stereotypy of re-
sponses of neurons in the two emerging assemblies by the average
correlation between the temporal activity trace of a single neuron
during two successive presentations of the same pattern. Figure

5F shows that the stereotypy of each assembly increased with time
for both the red and green pattern, reaching a plateau after �25 s
of noise-embedded input pattern presentations. Conversely, the
correlation of temporal activity traces between pairs of neurons
from different emergent assemblies remained low (Fig. 5F, black
trace).

These tests confirmed that cortical microcircuit models of the
considered structure reliably form two different cell assemblies in
response to two different input patterns. This holds despite the
fact that each stereotypical spike input pattern is superimposed
by noise spikes (making up 2/5 of the spikes during a pattern
presentation). Therefore, each assembly is activated by a fairly
large cluster of somewhat similar input patterns rather than by a
single precisely repeated input pattern. The resulting stereotypi-
cal trajectories of network states in these microcircuit models are
qualitatively similar to the recently recorded activity patterns in
posterior parietal cortex during two types of memory-based be-
haviors (“left trials” and “right trials” in Harvey et al., 2012).

Control experiments (Fig. 6) show that depressing of short-
term dynamics of synapses and STDP on recurrent connections
are necessary for the emergence of stimulus-specific assemblies as
in Figure 5, whereas STDP on synapses from input neurons and a
lower level of network activity in the absence of external input
(Fig. 6D) are not. The third panel of Figure 6A, B shows that if the
recurrent network of WTA circuits is required by a single very

A

B C

Figure 7. Change in the structure of spontaneous activity through learning. A, Left: Response of 40 randomly selected neurons
of the network to noise input before learning. Right: Response of the same 40 neurons to noise input after 50 s of adaptation to an
input consisting of two embedded spike patterns (as in Fig. 5). Neurons in the two assemblies are sorted according to their mean
activation time during preceding pattern presentations (assembly 1/2 and horizontal dotted lines as in Fig. 5A). B, Average
activation of the neurons in the top group in A over 100 spontaneous assembly activations. Neurons are sorted by their mean ac-
tivation time (white dots) defined as the center of mass of their temporal activity profiles. C, Histogram of rank correlations
between the activation times of individual spontaneous assembly activations and the average spontaneous and stimulated acti-
vations, respectively. Most correlations are greater than zero, indicating that the sequence of activations is mostly preserved and is
similar to the stimulus-evoked activation pattern.
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large WTA circuit, stimulus specific assemblies emerge that fire in
a more precise order than in experimental data from cortex (but
reminiscent of recordings from area HVC in songbirds). The last
panel of Figure 6A, C shows that stimulus specific assemblies also
emerge with a traditional form of the STDP curve (see Equation 6
in Materials and Methods).

Replay of stored memory traces during spontaneous activity
It has been shown that, in the absence of sensory input in their
spontaneous activity, cortical circuits often produce firing pat-
terns that are similar to those observed during sensory stimula-
tion (Luczak et al., 2007; Luczak et al., 2009; Xu et al., 2012 and
references therein). We investigated whether a similar effect
could be observed in our model. We compared the spontaneous
activity of the network shown in Figure 5A–E before and after
learning. Figure 7A shows the spike trains of randomly selected
neurons, which are drawn from the same groups as in Figure 5A
during spontaneous activity. Neurons that belong to the two dif-
ferent cell assemblies that have emerged in response to the two
input patterns (Fig. 7A, top two groups) were spontaneously ac-
tivated and fired in approximately the same order as during stim-
ulation with the corresponding input pattern (neurons are
ordered according to their mean activation time during previous
pattern presentations). Sometimes the sequential activation did
not reach all neurons in the assembly. Apart from these randomly
initiated firing sequences, the neurons in these two assemblies
remained relatively silent. The third group of neurons (Fig. 7A,
bottom group) fired irregularly and their rate decreased when
one of the two assemblies was spontaneously activated.

Figure 7B, C analyzes the difference between spontaneous and
stimulus-induced firing activity of the assemblies in more detail.
Figure 7B shows the average firing pattern of one assembly over
100 different spontaneous activations. One can still see a stereo-
typical firing order in the assembly, which is, according to Figure
7C, right, similar to the generic firing order induced by external
stimulation. However, the firing order was less precise across spontane-
ous activations and compressed in time (compare Fig. 7, Fig. 5A).

These emergent firing properties during spontaneous activity
of the microcircuit model are qualitatively similar to the experi-

mental data of Xu et al. (2012), who found
that stimulus-induced sequential firing
patterns in primary visual cortex of rat
were also observed during spontaneous
activity, although with less precision and
at a higher speed. This occurred after
100 presentations of a visual stimulus (a
moving dot), which is in the same range
as the number of preceding presenta-
tions of each stimulus in our model
(�75 presentations).

Interestingly, the spontaneous replay
of trajectories occurred in our model at a
higher speed than during a stimulus-
entrained replay (as in Fig. 5). This is a
commonly observed feature of replay of
experience-induced trajectories of net-
work states of neurons in the hippocam-
pus and neocortex (Euston et al., 2007; Ji
and Wilson, 2007).

Interlinking of cell assemblies
It has been proposed that cell assemblies
are the basic tokens of the “neural syntax”

(Buszáki, 2010) just as words are the basic tokens of the syntax of
language. This theory raises the question of whether there are
neural mechanisms that are able to concatenate assemblies that
are frequently activated one after the other. Our model suggests
that such a concatenation could emerge already through STDP
without requiring additional mechanisms such as those discussed
in Buszáki (2010). In a continuation of the experiment described
in Figure 5, we exposed the network to a 100 s input stream in
which the first type of pattern was always followed immediately
by the second type of input pattern. In Figure 8, neurons are
sorted according to their mean activation time during the red–
green pattern combination in the middle. The resulting firing
pattern can be viewed as a “neural sentence” that consists of two
concatenated assemblies. Presenting the green pattern alone
resulted in activation of the corresponding assembly alone.
However, presenting the red pattern triggered the sequential
activation of both assemblies (the “neural sentence”) regard-
less of whether the red pattern was followed by the green
pattern or not. This demonstrates that both assemblies had
been interlinked through STDP.

Theoretical foundations of the model
The emergence of stereotypical trajectories of network states
in the model can be understood on the basis of two theoretical
principles. The first principle is the emergence of sparse neural
codes for repeating spatial spike input patterns through STDP in
WTA circuits. The WTA circuit induces not only a competition
for firing in response to an input pattern among its neurons, but
also a competition for becoming an “expert” neuron for a repeat-
ing input pattern that only fires for this pattern (and for varia-
tions of it). This long-term consequence of the competition for
firing in the presence of STDP is obvious, because only those
neurons that fire can adjust their synaptic weights via STDP. This
effect has been known for a long time for competitive Hebbian
learning in nonspiking artificial neural networks (Rumelhart and
Zipser, 1985). Recently, it has been shown that this mechanism
also works very well for STDP in a WTA circuit (Gupta and Long,
2009; Masquelier et al., 2009). In fact, under idealized conditions
it approximates the expectation maximization process for fitting

Figure 8. Interlinking of cell assemblies. Top: Red and green pattern (defined and superimposed by noise as in Fig. 5) had been
shown in immediate succession for 100 s (�125 presentations) in the input stream. This caused the emergence of interlinked
assemblies of neurons. Whereas the network responded to the green pattern alone with assembly 2, the red pattern always
triggered the whole assembly sequence (assembly 1 followed by assembly 2) regardless of whether it was followed by the green
pattern or not. Bottom: Response of the network to the test input. Shown is the activity of 20 randomly selected neurons. To
illustrate the sequential activation during pattern presentations, neurons are sorted according to their mean activation time during
the red– green pattern sequence.
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the weight vectors of the neurons to fre-
quently occurring input pattern (more
precisely, for fitting an implicit generative
model to the distribution of spike inputs;
Nessler et al., 2013).

The second theoretical principle con-
cerns the effect of STDP in networks of
WTA circuits. In this case, a generic neu-
ron in a WTA circuit receives not only ex-
ternal input, but also synaptic input from
neurons in other (or the same) WTA cir-
cuits. Therefore, it receives external input
in conjunction with the spike response of
other neurons in the network that creates
a temporal context for the current exter-
nal input. This effect has been described
previously (Rao and Sejnowski, 2001) in a
simpler context. In the case of a single
WTA circuit with complete lateral excit-
atory connectivity (in addition to the lat-
eral inhibition), this process can under
idealized conditions be understood rig-
orously as the emergence of a hidden
Markov model (HMM) in which each
competing neuron becomes an expert for
one hidden state of its spike input, so that
the resulting sequence of hidden states can
explain the temporal structure of the spike
input stream (D. Kappel, B. Nessler,
W.M., manuscript in preparation). In the
case of a recurrent network of WTA cir-
cuits of different sizes with biologically re-
alistic sparse connectivity, the network
carries out a multiscale hidden state anal-
ysis for the external input stream, where larger WTA circuits
provide a higher resolution for hidden state representations.
Both of these theoretical principles require substantial noise
(trial-to-trial variability) in the network, which is imple-
mented in our model through the stochastic selection of “win-
ners” in the WTA circuits. Without such variability, the
described self-organization could not emerge, because the
process would get stuck in the next local optimum of a fitness
function.

STDP achieves in this model only an online approximation of
the forward pass of the well known forward– backward algorithm
for HMM learning (Bishop, 2006; D. Kappel, B. Nessler, W.M.,
manuscript in preparation). This implies that an input pattern
that is presented in two different temporal contexts (Fig. 9A, blue
pattern) may or may not be encoded in the network by a common
assembly—that is, by a common guessed hidden state of the in-
put source. Therefore, the underlying theory does not guarantee
that the blue input pattern is represented by different assemblies
depending on whether it follows the red or green input pattern.
Our computer simulations (Fig. 9) show that separate assemblies
emerge for the blue pattern in different contexts, but that this
differential representation is somewhat unstable (it works only if
the blue input pattern is not too long and if it is a rate pattern
rather than a spike order pattern). We conclude that additional
learning mechanisms (e.g., reward-modulated STDP) are needed
to stabilize and extend differential assembly representations for
very long common input patterns in different contexts. This hy-
pothesis has an interesting relationship to a detail of the experi-
mental setup and training procedure of Harvey et al. (2012; see in

particular their supplemental Fig. 1). The mouse was trained
there to run after two visually distinct initial parts of mazes
through a visually neutral part. Different neural assembly re-
sponses for this neutral part of the maze (in dependency of the
different initial parts of the mazes) emerged after a complex
training procedure, where this neutral part of the maze was in-
serted (and extended) between the initial parts and reward loca-
tions in a stepwise process. The subsequent decision (turn left or
turn right, depending on the color of the initial part of the maze)
provides there an incentive to represent the neutral part of the
maze by different assemblies, depending on the context (i.e., the
initial part of the maze). From a theoretical perspective, such a
reward-based learning protocol can introduce (through rejection
sampling) the full power of HMM learning, where common parts
of input sequences are definitely represented by different hidden
states if this is beneficial for future decisions.

This experiment reveals an interesting difference from the
self-organization property of the model considered in Liu and
Buonomano (2009), in which two different brief initial stimuli
produced on the basis of a suitable learning rule (termed presyn-
aptic scaling) two different stereotypical firing responses that re-
cruited in either case all neurons in the recurrent network. No
separate assemblies of neurons emerged in that model for these
two different input conditions, in contrast to our model and the
experimental data of Harvey et al. (2012). With regard to exper-
imental data on the dependence of assembly codes on the spatial
context of a sensory stimulus, we refer the reader to Itskov et al.
(2011). This is an interesting open question whether these data
can also be reproduced by our model.

A

B C

Figure 9. Response to the same input pattern in different temporal contexts. A, Top: A 200-ms-long firing rate pattern (blue)
was presented during training and testing in two different contexts, each represented by a preceding 100-ms-long rate patterns
(red or green). Each input pattern is characterized by a random subset of 10 input neurons that fire with 50 Hz, whereas the other
input neurons fire with 1 Hz. For each trial, new Poisson spike trains are drawn. Bottom: Two different assemblies emerge for the
blue pattern: a separate one for each context. B, C, Same analysis of network responses during testing as in Figure 5D, E. The two
assemblies are activated during test trials in a rather stereotypical firing order similarly as in Figure 5D, E, although there is here no
fixed firing order of input neurons within input patterns. The response of the two assemblies tends to become somewhat unstable
toward the end of the 300-ms-long input patterns (A,B). This time point where the input pattern becomes identical (blue pattern)
is marked by a dashed black line in B.
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Liquid computing with long-term memory
The liquid computing model (Maass et al., 2002; Buonomano
and Maass, 2009) is an attempt to explain how rather stereotyp-
ical cortical microcircuits that consist of diverse types of neurons
and (dynamic) synapses with many different time constants
could support diverse computational processes in many parts of
cortex. It proposes that these microcircuits carry out in particular
two generic computational operations: integration of temporally
dispersed information from its spike inputs and nonlinear pre-
processing to enhance the computational capability of linear
readout neurons. In preceding versions of the liquid computing
model, long-term memory was restricted to the synaptic weights
of readout neurons. In contrast, the model presented here allows
that any synaptic connection between excitatory neurons in the
network (or “liquid”) can acquire long-term memory via STDP.
Another innovation is that this model takes experimentally found
stereotypical network motifs (WTA circuits) into account. In this
improved liquid computing model, repeating external spike in-
puts generate stereotypical trajectories of network states that also
modify the structure of its spontaneous activity.

To investigate the resulting computational properties of the
model, we repeated an experiment from Maass et al. (2002), in
which spoken words were used to generate spike input patterns
for the network (Fig. 10 A,B). We used speech samples from the
well known TI46 dataset (also used by Hopfield and Brody,
2000), which consists of isolated spoken digits. We preprocessed
the raw audio samples with a model of the cochlea (Lyon, 1982)
and converted the resulting analog cochleagrams (Fig. 10A) into
spike trains as in Schrauwen and Campenhout (2003) (Fig. 10B).
We used 10 different utterances of digits “one” and “two” of a
single speaker. Seven of these utterances were used for training;
the remaining three were used for testing. We embedded noisy
variations of these cochlear spike trains in random order into
Poisson spike trains of constant rate. This constituted the spike
input to our model, a recurrent network of WTA circuits with
STDP as in the preceding experiments.

In contrast to the results in Maass et al. (2002), it is no longer
necessary to train a readout neuron by a teacher for the classifi-
cation of different spoken digits. The network learned to detect
and discriminate between different digits by an emergent assem-
bly coding: presentation of digits “one” and “two” activated after
a short while two different assemblies of neurons. Moreover, this
behavior generalized to unseen test utterances. In addition, there
were neurons that were silent during the presentation of either
digit and fired irregularly in the absence of any input pattern. The
firing patterns of the two assemblies, which exhibit in this case
hardly any specific firing order due to the less prominent tempo-
ral structure of the spike input patterns, are very easily separable
(see their first principle components in Fig. 10D). Therefore, the
neurons in a WTA circuit of external readout neurons learns
autonomously during 100 s to separate and classify the spoken
digits (see the firing of neurons 1 and 2 in the spike raster of the 4
neurons of this WTA-readout shown in Fig. 10C, third panel). In
contrast to the classical liquid computing model, in this case, no
teacher is needed to train a readout neuron to classify the spoken
digits. Figure 10F shows that the performance of such readout
without a teacher was very bad before STDP was applied to syn-
apses within the current network (i.e., “training time” � 0), even
worse than if applied directly to the input spike trains (Fig. 10F,
red line). However, after applying STDP to synapses in the recur-
rent network, the performance of this readout without a teacher
improved very fast, indicating an important functional property
of the emergent stimulus-specific assembly codes.

One interesting feature of our model is that it also reproduces
a characteristic error that had been observed in the experiments
of Harvey et al. (2012), which might potentially be typical for
trajectory-based computations. Harvey et al. (2012) observed
that the trajectory that is characteristic for the current stimulus
jumped occasionally to the trajectory that is characteristic for the
other stimulus (Fig. 4F of Harvey et al., 2012). This effect also
occurred in our model, as shown in Figure 10E. The black trajec-
tory shown there (which occurred for the simulus “one”) jumped
after a while to an area of the state space that is usually visited by
the trajectory for the stimulus “two.”

Figure 11 illustrates two further computational properties of
the modified liquid computing model. If parts of the presented
spoken digits were omitted for a duration of 100 ms, the corre-
sponding assembly continued to fire, thereby bridging this gap in
external information. Furthermore, the network exhibited a new
generalization capability. We created novel stimuli by generating
spike trains from a pseudocochleagram that was obtained by tak-
ing the mean of the cochleagrams of two specific utterances, one
of digit “one” and one of digit “two” (Fig. 11B). As seen in Figure
11A, right, the network responded to the spike patterns corre-
sponding to these “averaged” digits on each trial with one of the
two assemblies that had previously emerged in response to spo-
ken words “one” and “two.” This response is qualitatively similar
to the experimental data of Ramos et al. (1976), who had already
shown very early that neural responses to novel interpolations
between two overtrained stimuli tended to be very similar to the
neural responses for one or the other of the two overtrained
stimuli.

Finally, we explored the tradeoff between the computational
benefits of an untrained network and a network in which the
synapses had been subjected to STDP during recurring input
presentations. An untrained network can carry out generic tem-
poral integration (fading memory) and nonlinear preprocessing
operations on arbitrary and, in particular, on completely novel
input streams very well. Figure 12 shows that this capability is
reduced through STDP, when the network develops assemblies
that respond to repeating network inputs in a stereotypical man-
ner. Therefore, our model suggests that it is essential that synaptic
plasticity is limited, at least for cortical networks that need to
retain the capability to process novel inputs in a flexible manner.
Such limitation of synaptic plasticity could, for example, be im-
plemented in the brain by allowing during any learning episode
only a small subset of all synapses to be modified by STDP. Mo-
lecular mechanisms of this type have been proposed in Silva et al.
(2009).

Discussion
We have shown that STDP on synaptic connections between ex-
citatory neurons causes the emergence of input-specific cell as-
semblies, provided that there is sufficiently much stochasticity
(or trial-to-trial variability) in the network, and excitatory neu-
rons are subject to local lateral inhibition. The resulting network
activity in the model is strikingly similar to the experimentally
observed stereotypical trajectories of network states in sensory
cortices (Jones et al., 2007; Luczak et al., 2007; Luczak et al., 2009;
Bathellier et al., 2012), hippocampus and prefrontal cortex (Fu-
jisawa et al., 2008), and parietal cortex (Harvey et al., 2012).
Furthermore, stereotypical trajectories of network states emerged
in our model after approximately the same number of input rep-
etitions (100 repeats) as in the experiments of Xu et al. (2012).
Therefore, our model may help to narrow the gap between net-
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Figure 10. Formation of cell assemblies to different spoken digits. A, Sample cochleagrams of one specific utterance of each of the digits “one” and “two”. Each cochleagram consists of a
86-dimensional analog trace. B, Spike trains generated from the cochleagrams in A equally distributed over 100 neurons. C, From top to bottom: test stimulus, network response, output of a readout
WTA circuit (learning in a completely unsupervised manner), and output of a linear readout trained by linear regression (supervised learning). The test stimulus consisted of 100 Poisson spike trains
of a constant rate of 5 Hz into which utterances of digits “one” (red spikes) and “two” (green spikes) of a single speaker were embedded at random time points. These utterances had not been used
for training. Resulting spike input patterns were superimposed by 2 Hz Poisson spike trains as noise (black spikes). The network response after adapting to such input stream for 100 s (�150
presentations in total of both patterns) shows that different cell assemblies were activated during the presentation of different digits. Shown is the activity of 20 randomly selected neurons. The WTA
readout consisted of four neurons, the spike trains of which are shown. Its synaptic weights resulted from STDP applied during 10 s of spoken word presentations after the assemblies in the network
had emerged (without a teacher). D, 3D plot of the first three principal components of the network states during the test phase shown in C. Colors as in C (red: digit “one”, green: digit “two”; responses
to intermediate noise not shown). The thick, colored lines show the average response over multiple trials; numbers show time in milliseconds after trajectory onset marked by black dots. E, Network
trajectory for an error trial shown in black (red and green curves are average responses for the two different stimuli as in D). The trajectory started out in the standard way for digit “one,” but jumped
later to the area of the state space typically visited for digit “two.” F, Evolution of the performance of the unsupervised WTA readout. After every 5 s of training of the recurrent network, the WTA
readout was exposed for 10 s to the spike trains generated by the recurrent network. The resulting performance was measured by the mutual information between the stimulus class (digit) that the
recurrent network received as input and the average firing rates of the neurons in the WTA readout during pattern presentations. Performance was averaged over 100 trials with different networks.
Error bars denote SEM. After the recurrent network had received these inputs, the emergent assemblies enabled the WTA readout to achieve a better discrimination than when applied in the same
manner directly on the input (stimulus) to the recurrent network (red curve in F ).
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work activity of cortical microcircuit models and experimentally
observed firing patterns of neurons in the cortex.

The experimentally observed stochasticity of neuronal firing
(which is likely to result primarily from stochastic synaptic vesicle
release; Isaacson and Walmsley, 1995; Tsodyks and Markram,
1997; Goldman et al., 2002; Branco and Staras, 2009) in combi-
nation with the experimentally observed primarily depressing
dynamics of synaptic connections between excitatory neurons

(Tsodyks and Markram, 1997; Goldman
et al., 2002) are important ingredients of
our model. They avoid the network get-
ting entrained in an almost deterministic
stereotypical activity pattern that becomes
increasingly independent from external
input and tends to reduce the capability of
the network to carry out computations on
synaptic inputs from neurons outside
of the network. Izhikevich et al. (2004)
showed previously that synaptic depres-
sion alone does not suffice for that. The
work of Liu and Buonomano (2009) sug-
gests that, in addition to stochasticity and
depressing synapses, local lateral inhibi-
tion is also required for the emergence of
input-specific assemblies through STDP.
However, they showed that instead of lo-
cal lateral inhibition, an additional rule
for synaptic plasticity (which they called
presynaptic-dependent synaptic scaling)
generates stimulus-specific stereotypical
firing patterns. These differed from the
ones observed in our model insofar as
they recruited every neuron in the net-
work and each neuron fired exactly once
during such firing pattern. In addition,
the duration of assembly activations ad-
justed themselves in our model to the time
course of external stimuli (Fig. 5A) and
were able to cover larger time spans than
with the mechanisms investigated in Liu
and Buonomano (2009). The presynap-
tic scaling rule of Liu and Buonomano
(2009) and the heterosynaptic learning
rule considered in Fiete et al. (2010) in-
duce an interesting difference in the
self-organization of the network dy-
namics: they organize all neurons in the
network into a linear firing order where
a single neuron fires at any moment of
time (rather than creating assemblies
and sequences of assemblies). These
long chains are not dependent on ongo-
ing external inputs and are somewhat
reminiscent of the stereotypical autono-
mous dynamics of the area HVC in
songbirds (for details, see Fiete et al.,
2010).

Relationship to other models
Synfire chains are a special type of stereo-
typical trajectory of network states, the
occurrence of which had been proposed
in Abeles (1982, 1991). A synfire chain is

conceptually rather close to an assembly sequence in the sense of
Buszáki (2010). The main difference is that one assumes that the
neurons within a single assembly of a synfire chain fire almost
simultaneously. This assumption provides a nice explanation for
precisely timed firing patterns observed in the prefrontal cortex
of monkeys with electrode recordings from a few neurons (Abeles
et al., 1993). However, it is possible that the less precisely repeat-

A

B

Figure 11. New computational properties of the network from Figure 10. A, Left: The emergent assemblies continued to be
activated when the presentation of spoken digits was interrupted during the interval from 100 to 200 ms after pattern onset
(indicated by gray shading). Right: The presentation of new patterns (magenta spikes, see B) triggered the activation of one of the
two assemblies. B, The new patterns in A were generated by superimposing the cochleagrams of two utterances, one of digit “one”
and one of digit “two.” Cochleagrams were first subsampled to be of equal length (the longer of the two utterances).

Figure 12. Tradeoff between generic computational capabilities of a network and the formation of assemblies and stereotyp-
ical trajectories of network states in response to repeated input patterns. A standard method for testing the generic nonlinear
computational capabilities of a network (XOR) task and its (fading) memory for novel spike inputs was applied (see Materials and
Methods). The performance of linear readouts trained by linear regression for both tasks were evaluated during test phases after
every 5 s of adapting to the spike input pattern from Figure 4. This performance decreased as the network adapted through STDP
to the repeated input pattern and formed an assembly with a stereotypical trajectory of network states. The stereotypy of this
trajectory was measured by the average correlation between the temporal activity trace of a single neuron in the assembly during
two successive pattern presentations (averaged over all neurons in the assembly). All performance values were averaged over 100
runs with different patterns and networks (error bars show SE).
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ing stereotypical trajectories that emerged in our model (Fig. 5)
also provide a statistically valid explanation of these experimental
data.

The possible role of synfire chains and related notions of cell
assemblies in cognitive processes and memory had been dis-
cussed on a more abstract level previously (Wennekers and Palm,
2009; Wennekers and Palm, 2000). The impact of STDP in a
recurrent network of spiking neurons had also been analyzed
extensively previously (Morrison et al., 2007). In the absence of
external input, the network was found to reach a stable distribu-
tion of synaptic weights. However, external input induced quite
different firing regimes (“synfire explosion”) in their model. This
difference from our model may result from the inclusion of syn-
aptic dynamics and local lateral inhibition in our model. The
important role of lateral inhibition in this context had already
been highlighted by Lazar et al. (2009), although in a more ideal-
ized model with synchronized threshold gates instead of asyn-
chronously firing spiking neurons. In that model, an STDP-like
rule in combination with homeostasis was shown to generate
input-specific trajectories of network states. A nice review of a
variety of effects of STDP in recurrent networks of spiking neu-
rons is given in Gilson et al. (2010).

It is an interesting open question whether STDP in our model
can also reproduce the emergence of continuous attractors (Sam-
sonovich and McNaughton, 1997) that represent continuous
spatial memory.

Experimentally testable predictions of our model
Monitoring the activity of many neurons in awake animals over
several days and weeks while the animal learns the behavioral
significance of specific sensory stimuli is now becoming possible
through imaging of intracellular Ca 2� traces in identified neu-
rons (Huber et al., 2012). Our model predicts that such learning
processes cause the emergence of assemblies and assembly se-
quences for behaviorally relevant sensory stimuli. Through opto-
genetic stimulation (Stark et al., 2012), one can in principle also
generate artificial spike inputs in a local microcircuit, and our
model predicts that this will also cause the emergence of
stimulus-specific assemblies and trajectories of network states.
Our model also predicts that this effect is abolished through in-
activation of inhibitory neurons.

In addition, our model predicts (Fig. 12) that an important
tradeoff can be observed in the dynamics of local networks of
neurons. At one end of this tradeoff curve, one will find networks
that can differentially respond to novel stimuli in such a way that
substantial information about these stimuli can be read off from
their resulting firing activity (Nikolić et al., 2009; Klampfl et al.,
2012). At the other end of the tradeoff curve, one will find net-
work responses as shown in Figure 11, which are more stereotyp-
ical and contain primarily information on how similar the
current stimulus is to some specific familiar stimulus. We pro-
pose that microcircuits in different parts of the brain operate at
different positions on this tradeoff curve. Furthermore, develop-
ment and extended learning periods are likely to move at least
some of these microcircuits into the more stereotypical regime
shown in Figure 12, right. A shift toward more stereotypical tra-
jectories of network states as a result of learning had been de-
scribed previously (Ohl et al., 2001).

Summary
The model for learning in cortical microcircuits that we have
presented here is a simple extension of the liquid computing
model. Whereas the original version of the model (Maass et al.,

2002) was only able to model online processing of novel stimuli in
a “naive” network, the extension presented here also addresses
the formation and computational use of long-term memory
traces. Furthermore, in the original version, one had to rely on
the contribution of readout neurons (that had to be trained by a
teacher) for arriving at a result of a computation (e.g., a classifi-
cation). The emergence of stimulus-specific assemblies in the
extended model makes such external contributions unnecessary
(Fig. 10F). Our model provides a platform for investigating the
functional role of assemblies and assembly sequences as potential
building blocks for “neural sentences” that may underlie higher
brain functions such as reasoning (Buszáki, 2010). At the same
time, our model is consistent with many experimental data on
synaptic plasticity and the anatomy and physiology of cortical
microcircuits.

References
Abeles M (1982) Local cortical circuits: an electrophysiological study.

Springer, Berlin.
Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cam-

bridge UP.
Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing

patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70:
1629 –1638. Medline

Avermann M, Tomm C, Mateo C, Gerstner W, Petersen CC (2012) Micro-
circuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel
cortex. J Neurophysiol 107:3116 –3134. CrossRef Medline

Bathellier B, Ushakova L, Rumpel S (2012) Discrete neocortical dynamics
predict behavioral categorization of sounds. Neuron 76:435– 449.
CrossRef Medline

Bernacchia A, Seo H, Lee D, Wang XJ (2011) A reservoir of time constants
for memory traces in cortical neurons. Nat Neurosci 14:366 –372.
CrossRef Medline

Bishop CM (2006) Pattern recognition and machine learning. New York:
Springer.

Branco T, Staras K (2009) The probability of neurotransmitter release: vari-
ability and feedback control at single synapes. Nat Rev Neurosci 10:373–
383. CrossRef Medline

Buonomano D, Maass W (2009) State-dependent computations: spatio-
temporal processing in cortical networks. Nat Rev Neurosci 10:113–125.
CrossRef Medline

Buonomano DV, Merzenich MM (1995) Temporal information trans-
formed into a spatial code by a neural network with realistic properties.
Science 267:1028 –1030. CrossRef Medline
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