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From Image Statistics to Scene Gist: Evoked Neural Activity
Reveals Transition from Low-Level Natural Image Structure
to Scene Category

Iris I.A. Groen,'? Sennay Ghebreab,>* Hielke Prins, Victor A.F. Lamme,' and H. Steven Scholte'?
!Cognitive Neuroscience Group, Department of Psychology, 2Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, and
3Intelligent Systems Laboratory Amsterdam, Institute of Informatics, University of Amsterdam, 1018 WS, Amsterdam, The Netherlands

The visual system processes natural scenes in a split second. Part of this process is the extraction of “gist,” a global first impression. It is
unclear, however, how the human visual system computes this information. Here, we show that, when human observers categorize global
information in real-world scenes, the brain exhibits strong sensitivity to low-level summary statistics. Subjects rated a specific instance
of aglobal scene property, naturalness, for a large set of natural scenes while EEG was recorded. For each individual scene, we derived two
physiologically plausible summary statistics by spatially pooling local contrast filter outputs: contrast energy (CE), indexing contrast
strength, and spatial coherence (SC), indexing scene fragmentation. We show that behavioral performance is directly related to these
statistics, with naturalness rating being influenced in particular by SC. At the neural level, both statistics parametrically modulated
single-trial event-related potential amplitudes during an early, transient window (100 -150 ms), but SC continued to influence activity
levels later in time (up to 250 ms). In addition, the magnitude of neural activity that discriminated between man-made versus natural
ratings of individual trials was related to SC, but not CE. These results suggest that global scene information may be computed by spatial
pooling of responses from early visual areas (e.g., LGN or V1). The increased sensitivity over time to SC in particular, which reflects scene

fragmentation, suggests that this statistic is actively exploited to estimate scene naturalness.

Introduction
The remarkable speed at which humans can perceive natural
scenes has been studied for decades (Potter, 1975; Intraub, 1981;
Thorpe et al., 1996; Fei-Fei et al., 2007). Many theories of visual
processing propose that a global impression of the scene accom-
panies (Rousselet et al., 2005; Wolfe et al., 2011) or precedes
(Hochstein and Ahissar, 2002) detailed feature extraction
(“coarse-to-fine” processing) (Hegdé, 2008). This global percept
is often described as visual gist (Torralba and Oliva, 2003; Oliva,
2005). Behavioral results confirm that global scene properties are
indeed perceived very rapidly (Greene and Oliva, 2009a).

An important example of a global scene property is manifested in
a difference between images with man-made versus natural content.
Scene naturalness can be judged with less exposure time compared
with other global properties (e.g., openness, depth) (Oliva and Tor-
ralba, 2001; Greene and Oliva, 2009b) or basic-level categories (e.g.,
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mountain vs forest) (Rousselet et al., 2005; Joubert et al., 2007;
Loschky and Larson, 2010; Kadar and Ben-Shahar, 2012). In com-
puter vision, it was shown that this distinction coincides with low-
level regularities of natural scenes (e.g., the distribution of spatial
frequencies in an image) (Baddeley, 1997; Oliva et al., 1999), leading
to the suggestion that humans might use such “image statistics” in
rapid scene recognition (Schyns and Oliva, 1994; McCotter et al.,
2005; Kaping et al., 2007). It is unclear, however, to which image
statistics the brain is sensitive and how it uses them to extract scene
naturalness: besides spatial frequency, color (Oliva and Schyns,
2000; Goffaux et al., 2005), and local edge alignment (Wichmann et
al., 2006; Loschky et al., 2007) are examples of image features that
may play a role.

We propose that, to elucidate the role of image statistics in
scene perception and their neural representations, we need to
address two challenges. First, a plausible computational mecha-
nism by which image statistics are extracted by the brain must be
specified. For example, estimating spatial frequency distributions
using a global Fourier transformation is a biologically implausi-
ble mechanism, given that the visual system receives localized
information from the retina (Graham, 1979; Field, 1987). Sec-
ond, if image statistics are indeed used to extract global proper-
ties, they should predict not only general differences between
scene categories but representations of individual images. This
means that single-trial differences, in both neural responses and
behavior, should correlate with differences in image statistics.

Here, we addressed these problems by combining computa-
tional modeling of physiologically plausible image statistics with
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Stimuli, model, and methods. 4, Examples of images used in the experiment. Images varied considerably in the degree to which they contained exclusively man-made (left) or natural

(right) elements, and the set included images for which the distinction may be unclear (middle). B, A feedforward filtering model was used to derive two summary statistics: CE and SC. Three
opponent (grayscale, blue-yellow, red-blue) contrast magnitude maps were computed by convolving the image with multiscale filters (black circles). For CE, a range of smaller filter sizes (o- =
diametersin degrees) was used; for SC, arange of larger filter sizes. For each image location and parameter, a single filter response was selected (red circles) from each range using minimum reliable
scale selection (see Materials and Methods). These responses were then pooled across a selection of the visual field (red dotted circles): for CE, the resulting responses were averaged; for SC, the
coefficient of variation (COV) was computed. These values were averaged across the three color-opponent maps resulting in one CE and SC value per image. C, A subset of 160 images (10% of the
whole stimulus set, randomly selected) plotted against their CE and SC values. CE (the approximation of the 3 parameter of the Weibull function) describes the scale of the contrast distribution: it
varies with the distribution of local contrasts strengths. SC (the approximation of the -y parameter of the Weibull function) describes the shape of the contrast distribution: it varies with the amount
of scene fragmentation (scene clutter). Four representative pictures are shown in each corner of the parameter space. Images that are highly structured (e.g., a street corner) are found on the left,
whereas highly cluttered images (e.g., a forest) are on the right. Images with higher figure-ground separation (depth) are located on the top, whereas flatimages are found at the bottom. D, sERPs
toimages presented at the center of the screen were computed for each subject. The resulting estimates of SERP amplitude were regressed on CE and SCat each time sample and electrode separately.
The design matrix for the regression contained five columns: a constant term (c) for the intercept, two columns for CE and two for SC, each containing the same parameter values for the first and
second image presentation (p1and p2). These were modeled as separate predictors to examine reliability of the obtained effects across repetitions. The outcome of the analysis is a measure of model

fit (explained variance or R?) separately over subjects, time (samples), and space (electrodes); an example is shown for one subject at electrode 0z.

single-trial EEG measurements. We approximated image statis-
tics by summarizing the outputs of model receptive fields (Tor-
ralba, 2003; Renninger and Malik, 2004; Ghebreab et al., 2009)
using two parameters, contrast energy (CE), and spatial coher-
ence (SC) that carry information about contrast strength and
scene fragmentation (Scholte et al., 2009; Groen et al., 2012b).
We tested whether these parameters were related to behavioral
ratings of scene naturalness, and examined how they affected the
time course of single-trial event-related potentials (SERPs) dur-
ing naturalness categorization. Additionally, we examined how
they affected discriminability of man-made versus natural ratings
based on EEG activity.

Materials and Methods

Subjects

Sixteen subjects (age mean * SD, 26 * 6 years; 3 males) participated in
the experiment, which was approved by the Ethical Committee of the
Psychology Department at the University of Amsterdam. All participants
gave written informed consent before participation and were rewarded

with study credits or financial compensation (7 euro/h). Two subjects
were excluded from analysis because their recordings were incomplete.

Visual stimuli

A stimulus set of 1600 color images (bit depth 24, JPG format, 640 X 480
pixels) was composed from several existing online databases. The set
included images from a previous fMRI study on scene categorization
(Walther et al., 2009), as well as images from various datasets used in
computer vision: the INRIA holiday database (Jegou et al., 2008), the
GRAZ dataset (Opelt et al., 2006), ImageNet (Deng et al., 2009), and the
McGill Calibrated Color Image Database (Olmos and Kingdom, 2004).
These different sources assured maximal variability of the stimulus set
(Fig. 1A): it contained a wide variety of indoor and outdoor scenes,
landscapes, forests, cities, villages, roads, images with and without ani-
mals, objects, and people. The images were selected such that one half of
the set contained mostly man-made, and the other mostly natural
elements.

Computational modeling
General approach. Natural images exhibit much statistical regularity. One
instance of such regularity is present in the distribution of contrast
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strengths, which ranges between power law and Gaussian and therefore
conforms to a Weibull distribution (Simoncelli, 1999; Geusebroek and
Smeulders, 2002). This regularity can thus be described by fitting a
Weibull function to the contrast distribution, which yields two “sum-
mary” parameters that represent the scale () and shape (7) of the dis-
tribution (Scholte et al., 2009). The B parameter varies with the range of
contrast strengths present in the image, whereas vy varies with the degree
of correlation between contrasts. In previous work, we found that these
parameters can be approximated in a physiologically plausible way by
summarizing responses of receptive field models to local contrast
(Scholte et al., 2009). Specifically, summing the responses from a model
of the two main parvocellular and magnocellular pathways in the LGN
led to accurate approximations of B and vy values, respectively.

Here, we used an improved version of this previous model (Fig. 1B)
where we refer to the approximated (3 value as CE and to the approxi-
mated <y value as SC. In this new model, two major changes have been
introduced: (1) contrast is computed at multiple spatial scales; and (2)
CE is estimated by averaging local contrast values, whereas SC is taken to
be the coefficient of variation (mean divided by SD). Importantly, these
changes have led to improved results in separate EEG datasets from the
one reported here, with different images and different EEG recordings.
Specifically, using CE and SC led to an increase in effect size in EEG (see
below) by ~20% (Scholte et al., 2009 vs Ghebreab et al., 2009); and the
CE and SC derived with the present model correlated most strongly with
fitted Weibull parameters (H.S.S. et al., unpublished observations). In
the present dataset, the approximations (CE and SC) correlated with
the fitted parameters (3 and ) with r = 0.95 and r = 0.73, respectively.
The computations involved in deriving CE and SC are described below.

Step 1: Local contrast detection. Contrast filtering was done separately
for the three image color layers, which were first converted to opponent
color space (grayscale, blue-yellow, red-green) (Koenderink et al., 1972).
We computed image contrast by convolving each image layer with expo-
nential filters (Zhu and Mumford, 1997) at five octave scales (Croner and
Kaplan, 1995). Two separate filter sets were used: one with slightly
smaller filter sizes (0.12, 0.24, 0.48, 0.96, and 1.92 degrees) for CE and a
range of larger filter sizes (0.16, 0.32, 0.64, 1.28, and 2.56 degrees) for SC
(Ghebreab et al., 2009). Following the LGN suppressive field approach
(Bonin et al., 2005), all filter responses were rectified and divisively nor-
malized to account for nonlinear neuronal properties.

Step 2: Scale selection. Per parameter (CE or SC), one filter response for
each image location was selected from their specific filter set using min-
imum reliable scale selection (Elder and Zucker, 1998). In this MIN
approach, the smallest filter size that yields an above-threshold response
is preferred over other filter sizes. Filter-specific noise thresholds were
determined in a separate image set (Corel database) (Ghebreab et al.,
2009). This step was again performed separately for the three color-
opponent layers.

Step 3: Pooling responses. Applying the selected filters per image loca-
tion results in two contrast magnitude maps: one highlighting detailed
(from the set of smaller filter sizes, for CE) and the other more coarse
edges (from the set of larger filter sizes, for SC). For the pooling step, a
different amount of visual space was taken into account for each param-
eter. For CE, the central 1.5 degrees of the visual field was used, whereas
for SC, 5 degrees of visual field was used. Again, these settings were
chosen because they yielded the best model fits for regression analyses in
separate, independent EEG datasets (Ghebreab et al., 2009, Scholte et al.,
2009; S.G. et al., unpublished observations). Finally, parameter values
were averaged across color-opponent layers resulting in a single CE and
SC value per image (Fig. 1C).

Other image statistics For comparison of the results with previous find-
ings of sensitivity of human observers to spatial frequency distributions
(e.g., Kaping et al., 2007), Fourier amplitude statistics were computed
using the procedure described by Oliva and Torralba (2001) (i.e., fitting
a line to the rotationally averaged power spectrum). This procedure
yields one Fourier intercept (Fi) and Fourier slope (Fs) value per image
(Groen et al., 2012a).
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Experimental design

Experimental procedure. Subjects completed two EEG recording sessions
on 2 consecutive days: in each session, 1600 images were shown. Every
image was repeated once. Images were presented on a 19 inch Ilyama
CRT monitor (1024 X 768 pixels, frame rate 60 Hz). Subjects were seated
90 cm from the monitor such that stimuli subtended ~14 X 10° of visual
angle. On each trial, one image was randomly selected and presented in
the center of the screen on a gray background for 100 ms, on average
every 1500 ms (range 1000—2000 ms). Subjects were instructed to indi-
cate, as quickly as possible, whether the image was man-made (“made by
humans”) or natural (“not made by humans”) using two button boxes,
one for each index finger. Response mappings were counterbalanced
across subjects. To familiarize subjects with stimulus presentation, 30
practice images (never used in the main experiment) were presented
without feedback before the first session. Each session was divided in
4 runs, which were subdivided in 5 self-paced mini-blocks: subjects
were encouraged to take breaks between blocks. Stimuli were pre-
sented using the Presentation software (www.neurobs.com).

Behavioral data analysis. Trials at which the subject failed to respond
within 200-1200 ms after stimulus onset were discarded from analysis
(median rejection rate 0.1%, minimum 0%, maximum 4%). For each of
the 1600 images, we computed the following indices: (1) naturalness
rating (i.e., the average behavioral responses across subjects and repeti-
tions), with 0 indicating that none of the participants rated the scene as
natural and 1 indicating that all participants rated the scene as natural;
(2) subject-specific naturalness rating (i.e., the average response across
the two repetitions), with 0 indicating a man-made response and 1 indi-
cating a natural response; (3) average reaction time (RT) across subjects
and repetitions; and (4) subject-specific RT. These indices were corre-
lated (Spearman’s p) with CE and SC, as well as the Fourier slope and
intercept values; the resulting p values were FDR-corrected at a = 0.05
for the total number of correlations computed. Finally, we also computed
for each image a “reliability index” by comparing the subject-specific
naturalness ratings across the two presentations of the image. If the rating
was the same across repetitions, reliability was coded as 1, whereas it was
coded as 0 if the rating was different. Averaging these numbers across
subjects yielded an estimate of reliability for each image.

EEG data acquisition and preprocessing. EEG recordings were made
with a Biosemi 64-channel Active Two EEG system (Biosemi Instrumen-
tation; www.biosemi.com). Recording set-up and preprocessing were
identical to procedures described previously (Groen et al., 2012a,b). We
used caps with an extended 10-20 layout, modified with two additional
occipital electrodes (I1 and I2, while removing electrodes F5 and F6). Eye
movements were monitored with electro-oculograms (EOGs). Record-
ing was followed by offline referencing to external electrodes placed on
the earlobes. Preprocessing occurred in Brain Vision Analyzer and con-
sisted of: a high-pass filter at 0.1 Hz (12 dB/octave); a low-pass filter at 30
Hz (24 dB/octave); two notch filters at 50 and 60 Hz; automatic removal
of deflections >300 mV; epoch segmentation in —100 to 500 ms from
stimulus onset; ocular correction using the EOG electrodes (Gratton et
al., 1983); baseline correction between —100 and 0 ms; automated arti-
fact rejection (maximal voltage steps 50 wV, minimal/maximal ampli-
tudes —75/75 uV, lowest activity 0.50 wV); and, finally, conversion to
Current Source Density responses (Perrin, 1989). Median rejection rate
was 203 of 3200 trials (mean 7%, minimum 1%, maximum 20%). We
also removed, per subject, trials that were excluded based on behavior
(see above), which increased the median rejection rate to 8%; overall, 9%
of the total amount of data was removed. No trial or electrode averaging
was performed: preprocessing thus resulted in an sERP specific to each
subject, electrode, and individual image presentation.

Regression on single-trial ERPs. To test whether differences between
sERPs were modulated by differences in CE and SC, the sERPs were read
into MATLAB (MathWorks), where we conducted linear regression of
sERP amplitude on image parameters (Fig. 1.D) using the Statistics Tool-
box. For each subject, each electrode, and each time point, the two pa-
rameters were entered as predictor variables, and the z-scored sERP
amplitudes as observations in the regression model. The two presenta-
tions of each image were modeled as two separate predictor columns, to
examine effects of repetition; the values in each column were z-scored
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independently (Rousselet et al., 2011). This analysis thus results in a
measure of model fit (explained variance or R?) for each subject, elec-
trode, and time point separately. In addition, we read out from the re-
gression results the B-coefficients assigned to each predictor column,
which reflect the regression weights between the image parameters and
sERP amplitude (again, separately for each subject, electrode, and time
point). To assess the significance of these coefficients, we tested the
subject-averaged coefficient against zero using ¢ tests (separate for each
time point and electrode): a significant test result indicates that the asso-
ciation between a predictor and evoked neural activity is reliably larger
than zero at a specific time point and electrode. To correct for multiple
comparisons (time points, electrodes and parameters), p values were
FDR-corrected at &« = 0.05. The rationale of this approach is quite similar
to conventional fMRI analysis (GLM); we compute the B-coefficients for
each predictor in our model and threshold using multiple-comparison
corrected ¢ values. By doing this for every electrode (“whole-scalp anal-
ysis”), we created spatial maps that indicate which electrodes contain
significant B-coefficients.

Regression results for other image statistics. For comparison of the re-
gression results for CE and SC with parameters obtained from the Fou-
rier transform, we ran the regression analyses described above (Fig 1D)
while replacing the predictor columns with Fi and Fs. In addition, we
examined the dependence between the two models by running a third
regression analysis in which we entered all four parameters (CE, SC, Fi,
and Fs) together as predictors, yielding a “full” model. By subtracting the
R? values for the first two models from the full model, we obtained a
measure of “unique explained variance” by each model (Groen et al.,
2012b). These values were again obtained separately per subject, elec-
trode, and time point.

Linear discriminant component analysis. To identify decision-related
activity in the EEG signal, we used linear discrimination analysis as de-
veloped by Philiastides and colleagues (Parra et al., 2002; Philiastides and
Sajda, 2006; Philiastides et al., 2006). Linear discriminant analysis per-
forms logistic regression of binary data on multivariate EEG data to
identify spatial weighting vectors (w) across electrodes that maximally
discriminate between conditions of interest (e.g., a face or car stimulus).
Here, we used as conditions of interest the ratings made by the subjects
during naturalness rating, by entering the trial-specific behavioral re-
sponses (man-made or natural) as the binary data. The analysis outcome
is a “discriminating component” y, which is specific to activity correlated
with one condition while minimizing activity correlated with both task
conditions (Philiastides et al., 2006); in our case, we isolated activity
specific to the decision that a scene was natural.

We used an online available regularized logistic regression algorithm
(Conroy and Sajda, 2012) that allows for fast estimation of the discrim-
inating components. We tested various regularization terms (A = le*
with x = —6:1:2), which yielded similar results to those reported here for
A = le . We computed y for a number of temporal windows (window
size & = 20 ms), to estimate the temporal evolution of discriminant
activity over the course of the ERP. Per time window, discriminator
performance (Az) across all trials was quantified using the area under the
receiver-operator characteristic curve, with a leave-one-out cross-
validation approach (Duda et al., 2001). Following Blank et al. (2013),
significance of performance was evaluated by bootstrapping the Az val-
ues. We used 100 bootstraps per time window (epoch of 600 ms/8é = 40
windows) and subject (n = 14), resulting in 42,000 Az values in total. The
overall distribution of these values was used to determine the Az value
leading to a significance level of p = 0.05. Finally, the components were
projected back on the scalp using a forward model that multiplies the
w-vector with average ERP amplitude in a specific time window (Parra et
al., 2002).

Relating discriminant component activity to image statistics. After ob-
taining an estimate of discriminant component activity at each trial and
time window, the y values were correlated (Spearman’s p) with the CE
and SC values of the image presented at that trial, for each subject sepa-
rately. To assess the significance of these correlations, we again tested
the average correlation across subjects against zero using separate t
tests for each time window; the resulting p values were again corrected
for multiple comparisons using an FDR-correction at a = 0.05.
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Results

Behavior

Fourteen subjects rated 1600 scene images as either man-made or
natural while EEG was recorded. We first examined how behav-
ioral ratings were distributed across the entire set of images. Next,
we tested how these results were related to differences in CE and
SC estimated from modeled responses to local contrast.

Naturalness rating and RT for individual images

On average, subjects rated 49.7% of the trials as man-made and
50.3% as natural (SD = 3.3% for both man-made and natural).
Reaction times for man-made versus natural responses did not
differ significantly (mean RT,, ., m.qe = 523 ms, SD = 67 ms;
mean RT ;.1 = 527 ms, SD = 79 ms; median RT ., 1 ade = 497
ms, SD = 64 ms, median RT,,,,q = 504 ms, SD = 76 ms; all
ts < 1,all p > 0.56), showing that subjects did not have a bias
toward one particular response. There was, however, consider-
able variability in ratings across trials, both within subjects and
across subjects.

Within subjects, on average 10% of the trials were rated dif-
ferently on the second presentation than the first (minimum 3%,
maximum 18%, SD 4%). For these trials, reaction times were
longer than for trials that were rated the same (mean RT,, . =
520 ms, SD = 70 ms, mean RTgigerene = 571 ms, SD = 90 ms;
paired ¢ test £,3) = 6.1, p = 0.00003; median RT,,,. = 505 ms,
SD = 68 ms, median RT yi.ene = 557 ms, SD = 93 ms; £(;3) = 5.5,
p = 0.0001). Across subjects, the scenes could be subdivided
evenly in three bins based on differences in naturalness rating
(Fig. 2A): scenes that had a rating <0.1 (indicating they were
rated as natural by <10% of the subjects), scenes with a rating
>0.9, and scenes for which the rating was intermediate (0.1-0.9
ratings). Average RT for the intermediately rated images was
higher compared with consistently rated images (repeated-
measures ANOVA, F, |5y = 42.6, p = 0.0001); this bin also more
often contained scenes for which ratings differed between the
repetitions (repeated-measures ANOVA on within-subject con-
sistency, F(, 13, = 138.6, p = 0.0001; Fig. 2B).

In sum, although subject’s behavior was on average similar for
the two scene categories, the increase in variability in rating both
within and across subjects for a specific subset of the images
shows that some scenes were experienced as more “ambiguous”
than others. This is not surprising as the stimulus set was pur-
posely composed to span a wide range of natural images (see
Materials and Methods). Next, we examined whether this pattern
of results could be explained based on differences in image statis-
tics between the scenes.

CE and SC predict behavioral performance

The CE and SC values for each image in the stimulus set are
shown in Figure 2C, with color-coding indicating the average
naturalness rating per image. Binning images on either CE or SC
(Fig. 2C, side histograms) shows that naturalness rating is related
to differences in SC: the higher the SC value of the scene, the
higher the number of subjects that rated the scene as natural. A
higher CE value is associated with shorter RTs. Figure 2C also
shows that the SC values give rise to a continuous space, rather
than two discrete categories. Interestingly, variability in image
ratings is related to the SC value of a scene: images with interme-
diate ratings are found at intermediate SC values (Fig. 2D;
independent-samples Kruskal-Wallis test, xy*(2) = 131.3, p =
3e-29), whereas there is no such effect for CE (x*(2) = 2.4, p =
0.29). As can be seen in Figure 2E, images with intermediate
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(>0.9, red bin), whereas the remaining images had intermediate ratings (green bin, 0.1—0.9). B, RTs (top) and within-subject repeat reliability (REL; bottom) for the three different bins of trials.
*Significant main effects of bin (p << 0.0001). Error bars indicate SD. €, CE and SC values plotted for all 1600 images, color-coded by naturalness rating. The histograms display 10% bins based on
either CE or SC, containing the average rating obtained after sorting on SC (top histogram, x-axis), or the average RT after sorting on CE (side histogram, y-axis). Error bars indicate SEM. D,
Intermediately rated images (4, green bin) are found atintermediate SCvalues, whereas images with high man-made (blue) or natural (red) ratings have more extreme SC values. Squares represent
medians; lines represent SDs. E, Example images from each bin. Whereas the highly man-made or natural rated images (left) contain either exclusively man-made or exclusively natural elements,
one intermediate image (top right) contains a building and a bicycle (man-made) as well as snowy objects and a bush (natural); another (bottom right) has shrubbery (natural) and a fence and wall

(man-made).

Table 1. Correlations of image parameters with naturalness rating and RTs”

Naturalness rating RT
Image 9% of subjects % of subjects
parameter p p (FDR-corrected)  p p (FDR-corrected)
(€3 —0.08 0.0007  71% =02 29-16 86%
SC 039 2.3e-58 100% —0.01 NS 43%
Fs —0.19 13e-15 100% —0.18 24e-13  78%
Fi —0.36  2.5e-50 100% —0.09 6.7e-5 71%

“Reported are Spearman correlation values (p), corresponding significance values ( p), and the percentage of sub-
jects whose individual rating or RT was significantly correlated with the image parameters. NS, Not significant.

ratings and SC values typically contain patches with both man-
made and natural elements. This suggests that SC in particular
is diagnostic of scene naturalness.

We confirmed these observations by correlating the CE and
SC values directly with the behavioral measures (Table 1). SC
correlated with naturalness rating, but not with RT, whereas CE
correlated with RT, and to a lesser extent with rating. For com-
parison, we also computed correlations with image statistics de-
rived from the power spectra of the scenes (Oliva and Torralba,
2001), Fi and Fs (see Materials and Methods). These correlations
are in a similar range as those with CE and SC (Table 1). For this
model, however, the two parameters are less well dissociable, as
they both correlate significantly with accuracy as well as RT.

The behavioral results support our proposal that CE and SC,
which are computed by pooling of local contrast, capture global
scene information. They predict human categorization of scene
naturalness to a similar degree as statistics obtained from a global
image transformation (Fourier parameters). In particular, there
is a relation between SC and perceived naturalness, whereas CE
seems to influence the speed of processing.

EEG
sERPs were extracted from the continuous EEG data after which
we performed linear regression of sERP amplitude on image sta-

tistics. We first examined how CE and SC affected evoked activity
to individual images, again comparing them with the Fourier
parameters. Next, we tested how the EEG activity itself was re-
lated to the behavioral ratings, and whether this relation was
dependent on CE and/or SC.

Explained variance by CE and SC

Regression analysis of sERP amplitude on CE and SC values re-
vealed a strong relation between these parameters and evoked
neural activity. For all subjects, explained variance was maximal
at either Oz or Iz (the occipital mid-line electrodes), ranging
between R* = 0.16 and 0.46 at 109137 ms (for all subjects, p <
le-10, FDR-corrected), whereas mean explained variance over
subjects was highest at Oz (maximal R* = 0.27, 117 ms after
stimulus onset; Fig. 3A). Explained variance at this time point
also extended to other electrodes (Fig. 3B); maximal R* values
were reliable in all 14 subjects at several occipital (11,01, 02) and
parietal electrodes (P1, P3, P4, P6, P8, P10). These results repli-
cate earlier findings (Scholte et al., 2009) of ERP sensitivity to
statistics derived from local contrast in natural images from
~100 ms after stimulus onset. They show that differences be-
tween individual scenes in evoked neural activity are reliably cor-
related with differences in CE and SC of the scenes.

Regression weights for individual parameters

Given the dissociable effects of CE and SC on behavior, we next
tested whether these parameters also differentially influenced
sERP amplitude by examining their individual B-coefficients (see
Materials and Methods). At electrode Oz (Fig. 3C), the
B-coefficients for CE were largest during an extended early inter-
val (94-156 ms). In contrast, the largest B-coefficients for SC
were found at a nonoverlapping, later interval (160—195 ms).
Regression weights associated with each predictor were highly
reliable across repetitions. The difference between the CE and SC
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B-coefficients of CE are largest early in

time, at occipital electrodes overlying
0.5 early visual cortex. For SC, on the other
hand, the B-coefficients are largest later in
time and more sustained at perioccipital
electrodes that are near mid- or higher-
level visual areas (Fig. 4A). Coefficients of
0 CE are virtually absent after 150 ms,
whereas the coefficients of SC remain sig-
nificant for an extended period across
multiple electrodes. This difference is il-
lustrated in Figure 4B, where average
sERP amplitude is shown for bins of trials
that are sorted based on either CE or SC.
At occipital electrodes O1 and O2, the
modulation by CE is clearly visible in the
early interval, whereas a sustained modu-
lation by SC is visible at perioccipital vi-
sual electrodes PO7 and PO8. The distinct
effects of CE and SC are thus even more
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evident at the whole-scalp level, with dif-
ferences in CE giving rise to a transient,
early modulation, whereas SC differences
lead to more widespread effects.

ERP
amplitude

L
[6)]
o

Comparison with Fourier parameters
The regression results demonstrate strong
effects of CE and SC on evoked neural ac-

SC

Figure 3.

SCvalues at the time points of maximal regression weights.

effects is illustrated in Figure 3D, where sERP amplitude for
each image relative to its SC and CE value is shown for the two
time points with largest B-coefficients (113 and 184 ms, respec-
tively). At the first maximum, differences in amplitude are mostly
aligned with the CE-axis of the space. At the second maximum, the
amplitudes align with the SC-axis instead. Significant but smaller
coefficients for SC were also found at two shorter and earlier inter-
vals (78—85 ms and 117—-136 ms) and one later interval (226242
ms). Neural sensitivity to different image parameters thus dif-
fers substantially over the time course of visual processing.
Interestingly, these results again demonstrate dissociable ef-
fects of CE and SC, but now on evoked neural activity.

Finally, for both CE and SC, regression coefficients were also
significant toward the end of the ERP epoch, most likely reflect-
ing spill-over of effects at other electrodes. These might be elec-
trodes near motor cortex, as this interval is in the RT range
(minimal average RT was 436 ms, maximal average RT was 647
ms); the B-coefficients at Oz are very small at this time point,
indicating low sERP amplitudes. In the next section, we test to
what extent each image parameter affected responses at other
electrodes.

Whole-scalp regression weights
The distribution of regression coefficients across the whole scalp
mirrors the effects observed at electrode Oz. Generally, the

EEG regression results at occipital electrode 0z. A, Explained variance for single subjects (colored lines) and
mean R2 across subjects (thick black line) over time. B, Distribution of mean R2 values across the scalp at the time point of
maximal mean R2 (117 ms). Black dots represent electrode locations; for red colored electrodes, R? values were significant
in all participants (FDR-corrected). C, Regression weights (3-coefficients) for each predictor column of the regression
model, revealing several significant time windows (bottom bars): 3-coefficients for CE are maximal early in time, whereas
B-coefficients for SC reach a maximum later in time. The shading indicates 95% confidence intervals as obtained from a t
test against zero. D, Subject- and repeat-averaged ERP amplitude (color-coded) for each image plotted against its CE and

tivity during categorization of natural-
ness. However, naturalness ratings did
not only correlate with these image statis-
tics estimated from local contrast but also
correlated significantly with Fourier pa-
rameters obtained from a global Fourier
transform. Do these latter parameters af-
fect evoked activity in a similar way as
CE and SC? To test this, we repeated the
EEG regression analyses using the Fiand
Fs parameters.

Explained variance of the Fourier parameters has a similar
time course as for CE and SC, but with, on average, lower values
(Fig. 5A): the average maximal value was 17% (range 11%—-29%
for single subjects) at electrode Oz at 117 ms, the same electrode
and time point as for CE and SC. The spatial extent of the ex-
plained variance is also similar to that observed for CE and SC
(Fig. 5B). To compare the two models directly, we estimated the
unique explained variance by each pair of parameters by sub-
tracting the R* values obtained for each model from a full model
containing all parameters (see Materials and Methods). Unique
explained variance for CE and SC reached a maximum of 11% at
113 ms, whereas the values were much lower for the Fourier
parameters (2% at 184 ms; Fig. 5C). For both models, the maxima
of unique explained variance were again at Oz, and the whole-
scalp results (Fig. 5D) show that the unique explained variance
for Fourier was indeed minimal across all electrodes, ruling out
the possibility that Fourier parameters influence neural activity at
other brain sites than CE and SC do. In previous findings with
naturalistic image categories (Groen et al., 2012a), the Fourier
parameters also explained ~10% variance less than two param-
eters derived from a Weibull fit to the contrast distribution (of
which CE and SC are approximations, see Materials and Meth-
ods), as well as very little unique variance.
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in perceptual decision-making (Philias-
tides et al., 2006). Task relevance of the
scene parameters may thus play a role in
the differential effects of CE and SC that
were observed here. Specifically, the late
modulation by SC could reflect an influ-
ence of SC on the naturalness decision.

To test how CE and SC affected decision-related neural activ-
ity, we used linear discriminant analysis to identify discriminat-
ing components in the EEG (Parra et al., 2002; Philiastides and
Sajda, 2006; Philiastides et al., 2006; Conroy and Sajda, 2012;
Blank et al., 2013). This is essentially again a single-trial regres-
sion, but of behavior onto the EEG: observations correspond to the
(subject-specific) man-made or natural ratings, and the predictor
variables consist of the sERP amplitudes at each electrode. This
analysis yields two measures: overall discrimination accuracy, sum-
marized in parameter Az and trial-specific discriminant compo-
nents y, reflecting evidence toward a natural versus a man-made
rating at a given trial (see Materials and Methods). Both measures
were determined for consecutive time windows (see Materials
and Methods), to examine the development of discriminant ac-
tivity over time. With this analysis, we aimed to address two
questions: (1) From what point in time can we reliably predict
whether a given trial will be rated as man-made or natural? (2) To
what extent is the strength of evidence toward the man-made or
the natural rating modulated by CE and SC?

and P08).

Discriminating man-made versus natural ratings based

on EEG

First, response discrimination accuracy (Az) based on EEG was
significantly above chance starting from a time window between
80 and 100 ms (Fig. 6A). It reached alocal maximum between 180
and 200 ms (but remained significant) and started to rise again
from 260 ms onwards. Projections of the discriminant activity

corrected t = 3.22 for o« = 0.05) for B-coefficients at each electrode, reflecting reliable effects of CE and SC on SERP
amplitude. The two parameters have different effects: CE influences ERP amplitude early in time, mostly at occipital
electrodes, whereas SC gives rise to a sustained correlation later in time (=150 ms) associated with activity surrounding
mid-level visual, peri-occipital electrodes. B, Subject-averaged ERP amplitude of trials that were sorted and binned in 20%
bins based on either CE or SCvalues, displayed for two different electrode poolings: occipital (01, 02) and perioccipital (P07

back on the scalp (insets in Fig. 6A) show that, for the first two of
these windows, activity was located at occipital/perioccipital sites,
whereas the activity in the third window was more distributed
across the scalp. Importantly, the early maximum in discrimina-
tion accuracy was found at the same moment in time at which SC
most strongly affected sERP amplitude (Fig. 3C).

Second, discriminant components ( ) were significantly cor-
related with SC, from 120 ms onwards (maximal mean p = 0.18,
180-200 ms, ¢(;3) = 9.1, p = 5.1e-7; Fig. 6B). For CE, correlations
were significant for just one early window (80—100 ms, mean p =
—0.06, t;3y = —3.7, p = 0.002), and again much later in time,
from 360 ms onwards. Note that, however, for this early window,
discrimination accuracy is not yet significant (Fig 6A). Fig. 6C
shows discriminant activity for each image sorted based on either
CE or SC. These component maps reveal that images with high
SC values have strong evidence toward the natural response
(red), whereas images with low SC values are mapped toward
man-made responses (blue). No such effects are visible when
sorting on CE.

These results show that activity discriminating between man-
made versus natural responses is present in the EEG from as early
as 100 ms. Importantly, the strength of this activity at the single-
trial level is related to the SC, but not CE, value of the image.
Overall, the EEG results reveal strong neural sensitivity to image
statistics derived from receptive field model responses to local
contrast (CE and SC). Neural sensitivity was stronger for CE and
SC than for spatial frequency parameters derived by means of a
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global Fourier transformation. We found dissociable effects of
CE and SC on neural activity, both in time (early and late inter-
vals) and space (occipital vs perioccipital electrodes). This sug-
gests that CE mainly affects activity in early visual areas involved
in encoding of the stimulus, whereas SC also modulates subse-
quent decision-related activity, which likely involves more visual
areas and processing time. The finding that SC, but not CE, is
correlated with EEG components that maximally discriminate
between the subject’s behavioral ratings further supports this
dissociation.

Discussion
A computational substrate for scene gist perception
How does the visual system estimate scene gist? We find that, for
at least one global scene property (naturalness), single-trial dif-
ferences in behavior and neural activity are related to differences
in image statistics derived by integrating local contrast responses.
The modulation of neural activity by these statistics as soon as
~100 ms after stimulus onset confirms that this information is
available early in processing. However, the sustained modula-
tions at later time points reveal a shift in neural sensitivity from
CE to SC, suggesting a transformation toward coding of more
relevant information for estimating naturalness, which appears
to be carried by SC.

These results verify our previous observations of extensive
ERP sensitivity to image statistics. We showed that differences in

: ® electrode
0 : e significant in all subjects

Comparison of results with regression analysis on Fourier statistics. A, Explained variance averaged across single
subjects for regression of single-trial ERP amplitude on Fi and Fs (green). For comparison, the average R* for CE and SCis plotted
aqain as well (red). Shading indicates SD across subjects. B, Distribution of average R % values for the Fourier parameters across the
scalp at the time point of maximal R? (117 ms). Reliable electrodes across subjects (red) were as follows: 11,12, 01, 02, 0z, P3, P4,
P5,P6, P7, P8, and POz. C, Unique explained variance for CE and SC (red) compared with Fi and Fs (green), averaged over subjects.
Shading indicates SD across subjects. D, Scalp plots of unique R % values for each model at their respective maximal time points: for
CE and SC, this was at 117 ms (top topographical plot) and at 184 ms for the Fourier parameters (bottom).
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statistics explain a large amount of vari-

ance in ERP amplitude (Scholte et al.,
0.5 2009), to the extent that they can be used
to classify which natural image was viewed
(Ghebreab et al., 2009). Perceived similar-
ity of textures and naturalistic images is
also related to CE and SC (Groen et al.,
2012a,b). Here, we extend these results to
scene gist, by linking single-trial differ-
ences in global property categorization
and neural activity to differences in image
statistics.

R2

Model comparison with spatial
frequency distributions

The role of spatial frequency in visual pro-
cessing has been studied at multiple levels,
ranging from local receptive field tuning
(De Valois and De Valois, 1990) to the
entire image: for example, the “spectral
signature” of a scene, reflecting the decay
of the 2D power spectrum, can be used to
computationally  discriminate  global
scene properties (Torralba and Oliva,
2003). Whereas the power spectrum re-
flects the distribution of overall energy
across spatial scales (“amplitude”), an-
other type of information is local align-
ment of spatial frequencies (“phase
coherence”), which can be quantified
from the shapes of contrast distributions
(Tadmor and Tolhurst, 2000). It is cur-
rently debated which of these two sources
(amplitude vs phase) is more important
for scene discrimination (McCotter et al.,
2005; Einhduser et al., 2006; Loschky et al.,
2007; Loschky and Larson, 2008).

Our model extracts phase informa-
tion based on filters modeled after receptive fields (Scholte et
al., 2009). However, phase information is inferred from con-
trast computed at and selected locally from multiple spatial
scales (Elder and Zucker, 1998; Ghebreab et al., 2009), and the
information is then spatially integrated across the entire scene.
This procedure thus likely captures both phase and some am-
plitude information, and we have shown previously that our
model outperforms separate descriptions of amplitude and
phase (Groen et al., 2012a). Here, we also observed that CE
and SC explained the neural data better than power spectra
alone. This is also consistent with the observation that coarse
localization of spectral signatures (Torralba and Oliva, 2003)
improves computational discrimination of global properties.
Our results thus agree with the idea that both phase and am-
plitude play a role in scene perception (Gaspar and Rousselet,
2009; Joubert et al., 2009).

It is important to emphasize, however, that CE and SC are de-
rived in a very different way compared with traditional measures of
phase and amplitude. The latter are obtained by performing a global
Fourier transformation, whereas our model integrates locally filtered
information using averaging and division, which can easily be im-
plemented in a spiking neural network (e.g., using “integrate-and-
fire” rules). We thus also attribute the fact that CE and SC provided
abetter description of neural activity to the physiological plausibility

o
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Figure 6.  Discriminant analysis results. 4, Discriminator performance (AZ) determined using a
leave-one-out procedure (L0O). Colored lines reflect single-subject results; the black line represents
the average across subjects. Grayscale shading indicates SDs. The dashed gray line represents the Az
value leading to a significance level of p = 0.05 (obtained from a bootstrap test). Insets, Scalp distri-
butions of discriminating component activity for three moments in time: the first time window of
significant discriminator performance (100120 ms), the local maximum (180-200 ms), and the
sustained effects from 250 ms onwards (distribution shown for the 320 —340 ms window). B, Corre-
lation of discriminant component value (y) with CE (red) and SC (blue). Confidence intervals and p
values (FDR-corrected for the number of time points and parameters) were obtained by testing the
average correlation across subjects against zero. *Time windows with significant correlations. C, Dis-
criminating component maps displaying the value of discriminating component amplitude y for each
image and time window, averaged over the two single-trial presentations and sorted on either CE
(top) or SC (bottom). Higher component activity (red) indicates relatively more evidence for a “natu-
ral” response.

of our model. We propose that our model provides a biologically
realistic computational substrate from which image statistics can be
derived: local contrast, which could be represented by the popula-
tion response in visual areas, such as LGN or V1.
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The role of image statistics in visual perception

The early, transient correlations of sSERP amplitude with CE are
consistent with previous reports of early ERP sensitivity to image
statistics of natural scenes, demonstrating modulation of early
visual ERP components (e.g., C1 and P1) by energy at different
spatial frequencies (Hansen et al., 2011, 2012). During object
recognition, early ERP sensitivity to luminance differences (Mar-
tinovic et al., 2011), power spectra (Johnson and Olshausen,
2003), and phase scrambling (Rousselet et al., 2008a; Bieniek et
al., 2012) have also been reported. In face categorization, ERP
sensitivity to phase scrambling has been found to extend into
later time ranges (up to 300 ms) (Rousselet et al., 2008b), thus
overlapping in time with our present SC effects. In addition, ERP
sensitivity to “geometric similarity” between faces has also been
found in this time range (Kahn et al., 2010). Here, we show that
modulations in this time range were related to the behavioral
categorization on each trial, suggesting that they might not reflect
pure stimulus encoding, but also neural processing leading up to
the decision outcome.

Supporting this idea, the maximal timing of the late SC effects
is close to a discriminating component reported in a set of papers
that used a face/car categorization task (Philiastides and Sajda,
2006; Philiastides et al., 2006; Ratcliff et al., 2009). The authors
proposed that the D200 reflects an intermediate stage between
early sensory processing and accumulation of decision-related
information, signaling the “availability of diagnostic informa-
tion.” Another study, however, argued that the modulation of
this component was purely related to the addition of phase noise
to the stimuli (Banké et al., 2011). Both claims could be in accor-
dance with our findings, as SC is also sensitive to the addition of
phase noise, which leads to a more Gaussian contrast distribution
and thus to higher fragmentation of the scene. For the purpose of
our task, however, this information could be useful (i.e., the brain
does not need to discard this information as noise but may use it
as input for the decision). In that case, the similarity in timing
with the D200 component supports the notion that SC contains
available information for global property categorization.

Indeed, modulation of neural activity by seemingly simple,
low-level image properties, such as contrast, does not necessarily
imply that these properties are irrelevant for image recognition: if
they are relatively consistent across categories, they may have
become part of a template used by the visual system to classify
incoming information (Johnson and Olshausen, 2003). The CE
and SC parameters reflect variations in the distribution of local
contrast: they are thus derived from information that is generally
considered to be “low-level.” However, because their computa-
tion requires integration of this information across the scene,
they pick up on global “high-level” scene information (global
energy and scene fragmentation). It is not unlikely that, over the
course of evolution and/or development, the visual system has
adapted and developed templates that are sensitive to such vari-
ations in integrated low-level information if they are diagnostic of
relevant global properties.

Naturalness as a visual primitive?

Previous work has suggested that the man-made/natural distinc-
tion is fundamental in scene perception. Categorization of man-
made versus natural scenes occurs faster than basic-level
categories (sea, mountain, city) (Joubert et al., 2007; Greene and
Oliva, 2009b; Loschky and Larson, 2010). Basic-level categories
from the same superordinate (e.g., sea vs mountain) level are also
more easily confused than those from different levels (e.g., sea vs
city) (Rousselet et al., 2005). Within global properties, categori-
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zation may occur hierarchically, starting with man-made versus
natural (Kadar and Ben-Shahar, 2012). The relation between SC
and scene naturalness, as well as the influence of SC on evoked
neural activity during naturalness categorization, suggests that
the SC of the scene may drive this early primary distinction.

The fact that humans can quickly decide about naturalness,
however, does not imply that the brain computes it automati-
cally. Would the brain be interested in determining the natural-
ness of visual input in everyday viewing? SC varies with scene
fragmentation, signaling the relative presence of “chaos” versus
“order,” rather than an absolute distinction between man-made
and natural. However, there is a relation because natural scenes
are more likely to be chaotic because of the presence of foliage or
other structure that has not been organized by humans (as urban
environments are).

We thus suggest that the primacy of man-made versus natural
reflects early sensitivity to the fragmentation level of visual input.
Estimating the fragmentation of incoming visual information
may be a useful step in rapid scene processing, for example to
allocate attention (when presented with a highly chaotic scene,
or alternatively, with a highly coherent scene containing a
rapidly approaching object) or cognitive control mechanisms.
Future experiments can establish to what extent image prop-
erties, such as CE and SC, predict recruitment of attention or
control networks.

In conclusion, together, these results suggest that natural im-
age statistics, derived in a physiologically plausible manner, affect
the perception of at least one global property: scene naturalness.
The results revealed strong neural sensitivity to image statistics
when subjects categorized this global property, with decision-
related activity specifically being modulated by SC. We propose
that, during scene categorization, the brain extracts diagnostic
image statistics from pooled responses in early visual areas.
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