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Development/Plasticity/Repair

Presenilin] Regulates Histamine Neuron Development and
Behavior in Zebrafish, Danio rerio

Maria Sundvik, Yu-Chia Chen, and Pertti Panula

Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki, FIN-00014 Helsinki, Finland

Modulatory neurotransmitters, including the histaminergic system, are essential in mediating cognitive functions affected in Alzhei-
mer’s disease (AD). The roles of disease genes associated with AD, most importantly the presenilinl gene (psenl), are poorly understood.
We studied the role of psen1 in plasticity of the brain histaminergic system using a novel psenI mutant zebrafish, Danio rerio. We found
that in psenl ~'~ zebrafish, the histaminergic system is altered throughout life. At 7 d postfertilization (dpf) the histamine neuron
number was reduced in psenl ~'~ compared with wild-type (WT) fish; at 2 months of age the histamine neuron number was at the same
level as that in WT fish. In 1-year-old zebrafish, the histamine neuron number was significantly increased in psenl ~/~ fish compared with
WT fish. These changes in histamine neuron number were accompanied by changes in histamine-driven behaviors. Treatment with
DAPT, a y-secretase inhibitor, similarly interfered with the development of the histaminergic neurons. We also assessed the expression
of y-secretase-regulated Notchla mRNA and f3-catenin at different time points. Notchla mRNA level was reduced in psenl ~'~ compared
with WT fish, whereas 3-catenin was slightly upregulated in the hypothalamus of psenl ~/~ compared with WT fish at 7 dpf. The results
reveal a life-long brain plasticity in both the structure of the histaminergic system and its functions induced by altered Notch1a activity as
a consequence of psenl mutation. The new histaminergic neurons in aging zebrafish brain may arise as a result of phenotypic plasticity

or represent newly differentiated stem cells.

Introduction

Alzheimer’s disease (AD) is the most common neurodegenera-
tive disorder characterized by cognitive decline and dementia
(Bishop et al., 2010). The cognitive decline in AD is associated
with significant reduction in subcortical modulatory inputs, in-
cluding the cholinergic (Whitehouse et al., 1982) and the hista-
minergic (Saper and German, 1987; Airaksinen et al., 1991;
Panula et al., 1998) ones. Histamine is a biogenic amine discov-
ered a century ago (Dale and Laidlaw, 1910). In the CNS, hista-
mine is confined to neurons of the tuberomammillary nucleus
(Panula et al., 1984; Ekstrom et al., 1995; Eriksson et al., 1998).
The histaminergic neurotransmitter system is involved in differ-
ent functions from cognition to hormonal regulation (Haas and
Panula, 2003; Haas et al., 2008). Postmortem studies of the his-

Received April 13, 2012; revised Nov. 5, 2012; accepted Nov. 9, 2012.

Author contributions: M.S., Y.-C.C., and P.P. designed research; M.S. and Y.-C.C. performed research; M.S., Y.-
C.C.,and P.P. analyzed data; M.S., Y.-C.C., and P.P. wrote the paper.

This study was funded by the Academy of Finland (Grants No 116177 and 207352, http://www.aka.fi/en-GB/A/),
the Finnish Technology Development Fund (TEKES, http://www.tekes.fi/en/community/Home/351/Home/473),
the Sigrid Juselius Foundation (http://www.sigridjuselius.fi/foundation) and The Magnus Ehrrooth Foundation
(http://pro.tsv.fi/magnusehrrooth/English/). Maria Sundvik was supported by the Helsinki Biomedical Graduate
Program (http://www.hbgs.helsinki.fi/HBGS_2/Home.html). The funders had no role in study design, data collec-
tion and analysis, decision to publish, or preparation of the manuscript. We thank Henri Koivula and Susanna
Norrbacka for excellent fish care and Anna Lehtonen for technical assistance. We thank Dr. Dana Zivkovic (Hubrecht
Institute, Developmental Biology and Stem Cell Research, KNAW, and University Medical Center Utrecht, The Neth-
erlands) for the psen7 ~/~ mutant fish line and Dr. Michael Brand (Biotechnology Center (BIOTEC), Technical
University (TU) Dresden, Dresden, Germany) for the Notch1a plasmid.

Correspondence should be addressed to Prof. Pertti Panula, Neuroscience Center and Institute of Biomed-
icine, University of Helsinki, P.0. Box 63, University of Helsinki, FIN-00014 Helsinki, Finland. E-mail:
pertti.panula@helsinki.fi.

DOI:10.1523/JNEUR0SCI.1802-12.2013
Copyright © 2013 the authors  0270-6474/13/331589-09515.00/0

taminergic neurotransmitter system in AD brains have shed light
on the role of histamine in brain and found that histamine is
reduced in AD patients (Panula et al., 1998). Histamine improves
cognitive performance (Medhurst et al., 2007), and histamine H3
receptor ligands are attractive drug candidates (Schwartz, 2011;
Tiligada et al., 2011). Patients with inherited early onset AD [fa-
milial AD (FAD)] carry mutations mainly within the genes for
presenilinl (PSEN1), presenilin2 (PSEN2), and amyloid precur-
sor protein (APP) (Tanzi and Bertram, 2005). PSEN1 is associ-
ated with the y-secretase complex (Kimberly et al., 2003) within
the neuronal membranes (Kovacs et al., 1996; Xu et al., 2002;
Hansson et al., 2004). PSENI in the y-secretase complex has
many functions, including cleavage of APP (Borcheltetal., 1996),
regulation of Ca®* homeostasis (Guo et al., 1996; Stutzmann et
al., 2004), cleavage of the Notch receptor (Levitan and Green-
wald, 1995; De Strooper et al., 1999; Jack et al., 2001), and in-
volvement in Wnt/B-catenin signaling (Serban et al., 2005).
PSENI affects the proliferation of cells in the CNS both in the
hippocampus and subventricular zone of two different trans-
genic mouse models of AD (Wen et al., 2002; Rodriguez et al.,
2009) via Notch signaling (Veeraraghavalu et al., 2010). PSEN1
also functions outside the y-secretase complex, and the ability to
degrade B-catenin is one example (De Strooper and Annaert,
2010). Histamine has been implicated as a neurogenesis-
promoting factor; an in vitro study (Molina-Herndndez and
Velasco, 2008) showed that histamine induces neuronal stem cell
proliferation through histamine H2 receptor and promotes neu-
ronal fate through histamine H1 receptor. Zebrafish has estab-
lished itself as a model organism within neurosciences (Panula et
al., 2010). In zebrafish, the histaminergic neurotransmitter sys-
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and WT fish at 7 dpf.

tem, including its receptors, is highly similar to that of other
vertebrates, and histamine receptor ligands affect behavior in
both adult and larval zebrafish (Peitsaro et al., 2003; Peitsaro et
al., 2007). PSENI is conserved in many species, including ze-
brafish (Leimer et al., 1999). We hypothesized that the histamin-
ergic system might be affected during the development of
zebrafish carrying a mutation in a FAD-associated disease gene,
psenl. We identified psenl as a regulator of the development of
histaminergic neurons in a complex manner and found behav-
ioral alterations that match the changes observed in histaminer-
gic neurotransmission in psenl '~ fish.

Materials and Methods

Animals. The permits for the experiments were obtained from the Office of
the Regional Government of Southern Finland in agreement with the ethical
guidelines of the European convention. The wild-type (WT) animals used
for this study were of the TL strain, and psenl '~ fish (PS1 hu2547) were
made ina TL background by TILLING at the Hubrecht Laboratory (Utrecht,
The Netherlands). The mutation was identified by RT-PCR and sequencing
as described below. This fish strain was a kind gift from Dr. Dana Zivkovic
(Hubrecht Institute, Utrecht, The Netherlands). The experiments were done
on either sex. The gender effect was not taken into account when assessing
the histaminergic system, as no significant difference between sexes has been
found (Sundvik and Panula, 2012).

Behavioral assay. To assess the effect of histamine on behavior, two
behavioral assays were used. First the basic locomotor activity and place

preference was observed during 10 min in both larvae (6-well plate) and
adult zebrafish. This method has been described earlier (Peitsaro et al.,
2003; Panula et al., 2006; Peitsaro et al., 2007). In the second behavioral
test we studied whether light per se affects the activity of the mutant fish
as has been observed in histidine decarboxylase (hdc) morphant fish
(Sundvik et al., 2011). The response to light of psenl mutants was as-
sessed by observing 6 d postfertilization (dpf) fish during 2 min periods
of lights on and off for a period of 30 min. All data were further analyzed
with the EthoVision software (Noldus Information Technologies) and
GraphPad Prism (GraphPad Software).

Genotyping. DNA was isolated from fin clips of adult zebrafish with
SZL buffer and stored at —80°C until further processing. Standard
touchdown RT-PCR was used for verifying the mutation in psenl hu2547
fish. The following primers were used: GAAACCCATTTGGGAAGTG
and AATACAAGCCTACACACAACGC for the first RT-PCR and primers
AGGAAACAGCTATGACCAT GAACGCAGAAGAATGAACG and
TGTAAAACGACGGCCAGT CAAGTTTGACATTTGCATGG for the
second RT-PCR.

Immersion with DAPT. DAPT (N-[(3,5-difluorophenyl)acetyl]-L-
alanyl-2-phenyl]glycine-1,1-dimethylethyl ester) in solution (Tocris
Bioscience) was diluted in DMSO to reach a final concentration of 2.5
mM. At 1 dpf, 30 fish per treatment group were dechorionated and moved
to 6-well plates and kept in 3 ml of embryo medium (E3; 5 mm NaCl, 0.17
mm KCl, 0.33 mm CaCl,, 0.33 mm MgSO,; all reagents were from Sigma-
Aldrich) containing either 1% DMSO or DAPT.

RNA isolation and quantitative RT-PCR. RNA was isolated from 10 or
30 pooled 7 dpf larvae for a single sample. The RNA was isolated by



Sundvik et al. @ Psen1 and Histamine in Zebrafish

RNeasy Mini Kit (Qiagen). RNA quality and amount were analyzed spec-
trophotometrically and cDNA was prepared by SuperScript III (Invitro-
gen). Primers used for quantitative RT-PCR were galanin (forward, GA
CCAACTGATACTCAGGATGCA; reverse, ATCCCGAGTGTTTCTGT
CAGAA) and B-actin (forward, CGAGCAGGAGATGGGAACC; re-
verse, CAACGGAAACGCTCATTGC) (Keegan et al., 2002).

In situ hybridization. In situ hybridization was preformed according to
the protocol of Thisse and Thisse (Thisse and Thisse, 2008) with several
modifications as described previously (Chen et al., 2009; Kudo et al.,
2009). hdc probe was produced as described (Sundvik et al., 2011). The
Notchla plasmid was a kind gift from Dr. Michael Brand (Biotec, Bio-
technology Center TU Dresden, Dresden, Germany). Notchla RNA
digoxigenin-labeled probes were produced according to the above-
mentioned protocols using Xbal (BioLabs Inc.), and in situ hybridization
was preformed following standard in situ hybridization protocols (Thisse
and Thisse, 2008).

Immunohistochemistry. Immunohistochemistry on both larvae and
adults was done following the protocol outlined in (Kaslin and Panula,
2001). The following antibodies were used: rabbit anti-histamine 19C,
1:10000 (Panula et al., 1990); rabbit anti-active caspase-3, 1:500 (clone
C92-605, catalog no. 559565, BD Biosciences); mouse anti-tyrosine hy-
droxylase 1, 1:1000 (LOT22941, DiaSorin); rabbit anti-galanin, 1:1000—
1:5000 (catalog no. AB1985/AB5909, Millipore); rabbit anti-3-catenin,
1:1000 (clone 2206, LOT056K4763, Sigma-Aldrich); rat anti-serotonin,
1:250 (MAB352, Millipore); the secondary antibodies were the highly
cross-purified Alexa Fluor-conjugated antibodies (488 or 568 fluoro-
phores, Invitrogen). The use of these primary antibodies in zebrafish has
been reported elsewhere: rabbit anti-histamine 19C (Eriksson et al.,
1998); rabbit anti-active caspase-3 (Kratz et al., 2006); mouse anti-
tyrosine hydroxylase 1 and rat anti-serotonin (Kaslin and Panula, 2001);
anti-galanin (Sundvik and Panula, 2012); rabbit anti--catenin (Mat-
suda and Chitnis, 2009; Tallafuss et al., 2009). As all of the histamine
neurons are located extremely ventrally in the hypothalamus, we carried
out whole mount immunostaining of whole adult brains to visualize the
entire three-dimensional structure and to obtain true numbers at
histamine-immunoreactive neurons as described in detail (Sundvik and
Panula, 2012).

Microscopy and image analysis. An inverted light microscope, Leica
DM IRB, with Leica Application Suite, MultiFocus option (Leica Micro-
systems GmbH) was used to acquire pictures of the samples where the
mRNA expression was detected by in situ hybridization. A confocal mi-
croscope, Leica TCS SP2 AOBS, was used to visualize and quantify the
histaminergic system detected by immunohistochemistry in both larval
and adult zebrafish brains, as well as the immunoreactivity for caspase-3,
tyrosine hydroxylase 1, galanin, serotonin, and (-catenin. Excitation
wavelength for samples with Alexa Fluor 488 fluorophore was 488 nm,
and the emission was collected from 500 to 550 nm. The excitation wave-
length used for samples stained with Alexa Fluor 568 fluorophore was
561 nm, and the emission was collected at 600—700 nm. Maximum pro-
jection images of the acquired stacks were produced with Leica software
to render the 3D material 2D. Quantification of the neuron numbers in
the 3D material was done in Fiji software. All pictures were collected into
panels in CorelDraw (Corel).

Statistical methods. Comparisons between two groups were done with
Student’s t test. Comparisons between several groups were done with
one-way ANOVA, two-way ANOVA, and repeated measures two-way
ANOVA with appropriate post hoc tests. The data in graphs were pre-
sented as mean * SEM.

Results

Genotyping

The zebrafish psenl-null mutant was identified with TILLING
(Wienholds et al., 2003) by Dr. Dana Zivkovic’s Laboratory at
Hubrecht Institute, Developmental Biology and Stem Cell Re-
search, Royal Netherlands Academy of Arts and Sciences and
University Medical Center Utrecht, The Netherlands. The
mutation was localized to exon 5 where it induced a point
mutation resulting in a premature stop codon by exchanging a

J. Neurosci., January 23,2013 - 33(4):1589-1597 * 1591

80+
b O WT
'E El pseni-/- ok
S 60+
<
o
g
2 40+
o
-
£
£ 204
[+]
"6,' *%*
£
0=
Y % % S o <
N N K R X %
bb ,\b q)b \b‘b o“‘ " &
,b&

Figure 2.  The histaminergic neurons at different ages in psen7 ~/~ and WT zebrafish. 4,
Histamine neuron numbers at different ages. The graph shows mean values == SEM (5 dpf,n =
4-6;7 dpf,n = 31-32; 8 dpf, n = 5; 14 dpf, n = 11-12; 2 months old, n = 4-5; 1 year old,
n = 11; significance between genotypes is only shown at specific time points; **p < 0.01,
**¥p < 0.001, two-way ANOVA, Bonferroni post hoc test). B, The top panels are from whole
mount brains of 1-year-old psen7 ~/~ and WT fish, and the bottom panels are sagittal sections
of fish of the same age. Whole mounts were used to enable counting of the total neuron
number, and sections were used to visualize the extremely ventral and superficial location of all
the histaminergic neurons. Scale bar, 100 wm.

guanine to thymine in the codon that in normal cases codes for
glutamic acid (Fig. 1 A, B). The truncated protein in the mu-
tants lacks the proteolytic site of PSEN1 and the C terminus
(Fig. 1C). The gross phenotype of the psenl '~ fish was nor-
mal (Fig. 1D) at 7 dpf. As these individuals were viable and
developed normally to adulthood in contrast to the mouse
psenl knockout animals (Shen et al., 1997), the psenl mutant
fish offers an excellent tool to understand the role of psenlI in
development and neural functions.

Development of the histaminergic system from larvae to
adulthood in psenl ~/~

The histamine-immunoreactive neurons were counted at differ-
ent ages of larval and adult fish (Fig. 2A). A significant interaction
between time and genotype was found (two-way ANOVA, p <
0.0001, F = 13.40, DFn = 5, DFd = 125, where n is numerator
and d is denominator of the degrees of freedom, DF). No signif-
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Figure3. Neurotransmitter systemsin psen7 '~ and WT zebrafish. A, Representative im-
ages of hdc mRNA expression in 7 dpf fish brains. B, Active caspase-3 immunoreactivity in 7 dpf
fish brain, n = 10. C, Tyrosine hydroxylase 1 (TH1) immunoreactivity in 7 dpf fish brain, n =
6—8.D, Galaninimmunoreactivity in 7 dpffish brain, n = 14. E, F, Serotoninimmunoreactivity
(E) and galanin (F) immunoreactivity were unaltered in the posterior hypothalamus in both
genotypes at adult stage (~2.5 years),n = 3.

icant difference was observed in the number of histamine neu-
rons between the WT and psenl '~ fish at 5 dpf, but at 7 dpf the
histamine neuron number in psenl '~ fish was significantly
lower compared with that of WT fish (two-way ANOVA, Bonfer-
roni post test, **p = 0.01). At 2 months of age, just before the fish
reach sexual maturity, no significant difference was observed be-
tween the psenl ~'~ and WT fish. In a sagittal view of the adult
brain (Fig. 2B, bottom) it was possible to observe the location and
morphology of the histaminergic neuron population. Imaging all
neuron populations throughout the entire whole mount adult
brains is not possible at the moment, but imaging the entire
histaminergic neuron population was possible because the depth
(ventral to dorsal) of the system is about 200 wm. This approach
allowed us to quantify the histamine neuron number in the brain
without sectioning, and thus reveal the complete three-
dimensional structure of the nucleus. When histamine neuron
number was counted in the brains of 1-year-old zebrafish, a
significantly higher (about 30%) number of histamine-
immunoreactive neurons was observed in psenl ~'~ fish com-
pared with WT fish (two-way ANOVA, Bonferroni post hoc test,
**p < 0.001, Fig. 2A, B). We further assessed the expression of
hdc mRNA by in situ hybridization in 7 dpf larval brains. These
results (Fig. 3A) confirmed the findings observed in the immu-
nostained brains; at 7 dpf there were significantly fewer cells ex-
pressing hdc mRNA in psen] '~ fish than in WT fish (Student’s ¢
test, p = 0.001, n = 24/group). This lower number of histamin-
ergic neurons was not associated with apoptotic cell death, as
activated caspase-3 immunohistochemistry could not show any
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Figure 4. Behavior of larval zebrafish. A, Basic locomotor activity is not changed in
psen1 '~ fish compared with WT fish at 5 dpf. Mean values = SEM (n = 17-21, p > 0.05,
Student’s ¢ test). B, At 7 dpf the psen1 ~/~ fish move significantly less than WT fish. Mean
values = SEM (WT n = 62, psen] '~ n = 128, ***p < 0.001, Student’s t test). €, Dark-
induced flash response in WT larvae at 6 dpf. Mean values without standard errors are indicated
inthe graphs (n = 11). D, psen7 ~/~ larvae fail to respond consistently to darkness and lack a
dark-induced flash response at 6 dpf. Mean values without standard errors are indicated in the
graphs (n = 9).

difference between WT and mutant line at 7 dpf (Fig. 3B). To
ensure that the effect seen was specific to the histaminergic sys-
tem and not a general defect, we also studied the dopaminergic,
serotonergic, and galaninergic neurotransmitter systems. Ty-
rosine hydroxylase 1 immunohistochemistry did not reveal any
major difference in the dopaminergic neuron populations (Fig.
3C) between WT and mutant fish at 7 dpf. Galanin mRNA, as
observed by quantitative RT-PCR, was also unchanged between
the mutant and WT (results not shown), as was the expression of
the galanin peptide at 7 dpf (Fig. 3D). Both serotonin (Fig. 3E)
and galanin (Fig. 3F) immunoreactivity in the posterior hypo-
thalamus was unaltered between genotypes in adult animals.
These results show that the psenl '~ affects specifically the de-
velopment and maturation of the histaminergic system.

Behavior
Histamine is known to mediate several behaviors that are altered
in AD. Here we studied a repertoire of behaviors that have earlier
been documented as histamine dependent (Peitsaro et al., 2003;
Peitsaro et al., 2007; Sundvik et al., 2011).

In larvae, we started by assessing the basic locomotor activity.
At 5 dpf, when there was no difference in the number of hista-
mine neurons (Fig. 2), there was also no difference in the distance
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WT fish. Mean values == SEM are indicated in all graphs (n = 13-16, * p < 0.01, Student’s t test). D, Characteristic swim tracks of two individual fish.

moved between psenl mutants and control larvae (Fig. 4A). At 7
dpf, an age when histamine neuron numbers were decreased in
the mutant fish (Fig. 2), we observed also a decrease in total
distance moved in psenl '~ fish (Fig. 4B). The place preference
of the larval zebrafish was altered, and psenl ~/~ spent more time
in the inner zone of the arena compared with WT siblings at 5 dpf
(p = 0.01, Student’s ¢ test; mean = SEM of WT, 18.79 * 3.486,
n =18; mean = SEM of psenl ~/~ larvae, 38.49 * 5.859, n = 16),
although no significant change in histamine neuron number was
observed. At 7 dpf, when the psenl ~/~ larvae showed a reduction
in locomotor activity, the mutants showed a preference for the
edges of the arena as they avoided the inner zone (p = 0.05,
Student’s ¢ test; mean * SEM of WT, 33.42 * 6.453, n = 18;
mean * SEM of psen1 /" larvae, 15.52 * 4.389, n = 16). Hence,
either the lower number of histamine neurons or the reduced
spontaneous locomotion affected the place preference at 7 dpf.
Since the histamine neuron number was lower in psenl '~ at a
young age, we assessed the response of larvae to short pulses of
dark and light, and found that psenl '~ fish responded in the
same manner as hdc-deficient zebrafish (Sundvik et al., 2011).
The hdc-deficient fish lack histamine almost completely (Sundvik
et al., 2011), whereas the psenl mutants displayed a significant
decrease in histamine neuron number. This difference might ex-
plain why the dark-induced flash response was partially absent in
the psenl '~ fish (Fig. 4C,D, repeated measures two-way
ANOVA, p = 0.0014; F = 1.72, DFn = 50, DFd = 2300 for the
initial dark-induced flash response). The locomotor activity, i.e.,
total distance moved, of adult psen1 /= zebrafish was not differ-
ent in comparison to the WT fish (Fig. 5A). The psenl '~ fish
exhibited, however, a difference from control fish in their place
preference: they avoided the inner zone of the tank (Fig. 5B).
Also, the frequency of entering the inner zone was altered as
psenl ~'~ adult fish entered the inner zone of the tank signifi-
cantly fewer times than adult WT fish (Fig. 5C). This was also
observed when the movement pattern of the fish was studied.
Representative tracks of the movement are presented (Fig. 5D).

Development of histaminergic system is dependent on
y-secretase activity

psenl is thought to mainly affect Notch signaling during devel-
opment in zebrafish as psen] morphants exhibit a similar pheno-
type as that observed in Notch pathway mutants (Nornes et al.,
2008, 2009). Inhibition of the y-secretase complex by DAPT has
therefore been used in several reports to modify the Notch sig-
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Figure 6.  y-Secretase inhibitor DAPT impairs the development of the histaminergic neu-
rons. A, Treatment of zebrafish larvae from 1-5 dpf with DAPT impaired the development of
histaminergic neurons as visualized with immunohistochemistry. B, Quantification reviled sig-
nificantly fewer histamine neurons following DAPT treatment of WT larvae. Mean values ==
SEM (n = 7-10, ***p =< 0.001, one-way ANOVA, Tukey's post hoc test). C, Also a shorter
treatment (48 h) with DAPT at a later stage of development, from 6—8 dpf, impaired the
development of histamine neurons (n = 8-10, *p = 0.05, **p =< 0.01, one-way ANOVA,
Tukey's post hoc test). All graphs show mean values = SEM.

naling pathway (Nornes et al., 2009; Yang et al., 2010, Dias et al.,
2012). We found that inhibiting the activity of y-secretase with 1
M DAPT from 1-5 dpf affects the development of the histamin-
ergic neurons. The histamine neuron number was lower in
DAPT-treated animals than nontreated animals or those treated
with the solute of DAPT, DMSO (Fig. 6A). Quantification re-
vealed significantly fewer histamine neurons following DAPT
treatment (***p = 0.001, one-way ANOVA, Tukey’s post hoc test)
compared with both untreated control and DMSO-treated larvae
(Fig. 6B). Also, a shorter treatment (48 h) with a higher dose of
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Figure7. Signaling pathways affected by y-secretase. A, B, Reduced Notch7a mRNA (4) and increased j3-catenin (B) immunoreactivity in 7 dpfpsen? ~/~ larvae when compared with WT fish.
n = 6-9/group. C, D, Increased Notch7a mRNA () and reduced -catenin (D) immunoreactivity at 14 dpf in psen7 ~/~ larvae when compared with WT fish. E, F, At 1 month of age the Notcha
mRNA expression pattern and intensity were similar in the two groups (E), whereas at ~2.5 years the 3-catenin immunoreactivity was lower in the posterior hypothalamus of the psen7 ~/~

animals compared with WT animals (F); n = 4-7/group in (—F.

DAPT (10 uMm) at a later stage of development, from 6—8 dpf,
impaired the development of histamine neurons compared with
DMSO control group (*p = 0.05, **p = 0.01, one-way ANOVA,
Tukey’s post hoc test, Fig. 6C). Although there were significantly
fewer histamine neurons in the animals treated with DAPT, the
smaller number of neurons did not cause an impairment of the
dark-induced flash response (repeated measures two-way
ANOVA, p = 0.7183, F = 0.91, DFn = 98, DFd = 1519) when
compared with WT animals. The reduction of the number of
histamine neurons obtained with DAPT treatment (1-5 dpf) was
not as large as that seen in psenl '~ mutants. Notch and Wnt/
B-catenin are major signaling pathways important during em-
bryonic development and in the adult brain (Inestrosa and Are-
nas, 2010; Ables et al., 2011). PSEN1 is necessary for degradation
of B-catenin (Kang et al., 2002), and an impairment of PSEN1
function causes an increase in B-catenin (Xia et al., 2001). We
therefore assessed further the expression of Notchla mRNA by in
situ hybridization and B-catenin immunoreactivity in 7 dpflarval
brains, as both signaling pathways are regulated by y-secretase
function. Notchla mRNA was strongly reduced in the psenl '~
larval brains compared with the level observed in WT zebrafish
brains (Fig. 7A). Immunohistochemistry of B-catenin, revealed
an increase in the B-catenin immunoreactivity in hypothalamus
of psenl '~ fish compared with WT fish (Fig. 7B). At 14 dpf,
Notchla mRNA was slightly increased in the psenl '~ animals
compared with WT fish (Fig. 7C), and finally at 1 month of age
the Notchla mRNA was similarly expressed in both genotypes
(Fig. 7E). The B-catenin immunoreactivity was reduced in
psenl '~ animals compared with WT animals at 14 dpf (Fig. 7D),
and the same effect was observed in the posterior hypothalamus
of adult psenl '~ animals when compared with WT animals
(Fig. 7F). Taken together, these results indicate that y-secretase
activity is essential for the development of histaminergic neurons.

Discussion

We found that, in a zebrafish mutant carrying a premature stop
codon in the psenl gene, the histaminergic neurotransmitter sys-

tem was significantly altered during the development and in
adulthood. The change in the histamine system had measurable
behavioral consequences in both larval and adult zebrafish. In
agreement with these findings, we found that a dysfunctional
y-secretase complex regulates the development of histaminergic
neurons via Notch signaling.

The ortholog of human PSENI in zebrafish was identified
over a decade ago (Leimer et al.,, 1999). In contrast to psenl
knockout mice, which die at birth (Shen et al., 1997), pseni '~
mutant zebrafish are viable and fertile. Unlike the psen ! knockout
mice, which have major skeletal and CNS deficits (Shen et al.,
1997), we did not observe any major defects in the gross mor-
phology of psenl ~'~ zebrafish in comparison with WT zebrafish.
Inhibition of psenl function in zebrafish with morpholino oligo-
nucleotides (MOs) induces defective brain development (Nornes
et al., 2003). Transient disruption of psen2 function with a MO
has been suggested to have a stronger effect on Notch signaling in
zebrafish embryos compared with mammals (Nornes et al.,
2009). This might explain why the psenl ~'~ zebrafish does not
show the same gross morphology as psenl knockout mice. The
cholinergic neurotransmitter system is profoundly affected in
AD patients (Whitehouse et al., 1982). Several postmortem stud-
ies have shown that other systems are also affected in brains of AD
patients, including the histamine system in which a reduction in
histamine levels (Panula et al., 1998) and accumulation of neu-
rofibrillary tangles (Saper and German, 1987; Airaksinen et al.,
1991) have been observed. We found that at a young age
psenl '~ zebrafish had fewer histaminergic neurons compared
with WT zebrafish, and this was associated with a disruption in a
specific histamine-mediated behavioral response. The psenl /'~
larval fish were less observant of their environment and did not
consistently exhibit the dark-induced flash response as did WT
larvae. These results are supported by previous studies that show
that histamine is a wakefulness promoting factor, a mediator of
vigilance and cognitive performance (Haas and Panula, 2003;
Haasetal., 2008; Sundvik et al., 2011). Cognitive impairments are
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a major health risk and have a multifaceted etiology closely asso-
ciated with aging in humans. The brains of psenI knockout mice
are significantly smaller (Shen et al., 1997), a result indicative of
an impairment of neurogenesis and neuronal proliferation in
psenl deficient animals. We found that in psenl ~/~ fish the
Notchla mRNA expression was reduced compared with WT con-
trols. In WT fish, y-secretase inhibitor DAPT induced the same
phenotype as that observed in psenl ~/~ fish; there were fewer
histaminergic neurons at the developmental stage when
psenl '~ and/or DAPT-treated fish were compared with WT
and/or control. Nevertheless, DAPT treatment did not abolish
the dark-induced flash response as in psen] ~’~ mutants or in hdc
morphants (Sundvik et al., 2011). This is likely due to a smaller
reduction in histamine cell numbers than that seen in psenl /'~
mutants or hdc morphants, but the role of unidentified addi-
tional factors cannot be excluded. This is, to our knowledge, the
first report that describes a factor that affects the development of
histaminergic neurons. The intracellular domain of Notch func-
tions as a transcription factor and is essential in the early devel-
opment as noted for the first time a century ago (reviewed in
Artavanis-Tsakonas et al., 1999). We detected Notchla mRNA
along the midline rostrocaudal axis in the telencephalic ventric-
ular zone, hypothalamus, and cerebellum of the zebrafish brain at
7, 14, and 28 dpf. These regions are the neurogenic and prolifer-
ative regions of the zebrafish brain (Kaslin et al., 2008; Kizil et al.,
2011). In the psenl '~ zebrafish the expression of Notchla
mRNA in these zones was strongly reduced at 7 dpf, suggesting an
alteration of neurogenesis and proliferation. The abnormalities
in the histaminergic system were likely due to an impairment of
the neurogenesis and/or proliferation rather than cell death in the
psenl ~/~ fish, because we did not observe increased activation of
caspase-3 in the mutants. Furthermore, we assessed other neu-
rotransmitter systems (dopaminergic, serotonergic, and galanin-
ergic) in the psenl '~ and WT fish to ensure that the effect
observed was specific to the histaminergic neurotransmitter sys-
tem and not a general effect on several neurotransmitter systems.
Notch and Wnt/ B-catenin signaling are involved in development
of the dopaminergic system in zebrafish (Mahler et al., 2010), but
we did not observe any major difference in the dopaminergic
neurotransmitter system between the studied genotypes. Taken
together, these results show that the phenotype of the psenl ~'~
fish is partially similar to that reported for psenl ~'~ mammalian
models (reduced notchl signaling, Jack et al., 2001) and in-
creased B-catenin (Xia et al., 2001), and partially similar to the
results for psenl MO-treated zebrafish embryos (van Tijn et al.,
2011), as the Notch signaling pathway was altered in both ze-
brafish models. Intriguingly, we thereby found that the develop-
ment of the histaminergic neurons is mediated by y-secretase and
most likely via Notch signaling. We then went on to assess the
histaminergic system in the adult psenl ~'~ zebrafish, as neuro-
degenerative diseases such as AD manifest in late life and the
whole pathology may not be apparent during early development.
We found that in young adult psenl ~'~ zebrafish the histamin-
ergic neuron number was significantly increased compared with
WT control fish, whereas the serotonergic and galaninergic sys-
tems were unaltered at adult age. This change in neuron number
was associated with a histamine-mediated behavior previously
reported for adult zebrafish (Peitsaro et al. 2003), as we found
that fish with higher histamine neuron numbers had an altered
place preference when placed in an open arena. These individuals
preferred to spend the time close to the edges of the arena. Adult
zebrafish with reduced brain histamine level after treatment with
a-FMH (a-fluoromethylhistidine, an inhibitor of the histamine-
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producing enzyme HDC) also exhibit an altered place preference,
as they spend more time in the middle of an open arena compared
with saline-injected control animals (Peitsaro et al., 2003). There-
fore, the increase in histamine neuron numbers in the adult
psenl '~ zebrafish is most likely accountable for this specific
change in place preference. Although no significant difference in
histamine neuron number was observed at 5dpf, there was a dif-
ference in place preference behavior between the mutants and
control fish, suggesting that already a subtle change in network
balance can affect behavior. At this time it is not possible to
exclude the role of other, unknown contributing factors unre-
lated to histamine. Since the reduced number of histamine neu-
rons in 7 dpf fish and the increased number of neurons in adult
fish were both associated with increased thigmotaxis, the mech-
anism of thigmotaxis may be different in larvae and adults. In
adults it has been shown to be histamine dependent (Peitsaro et
al. 2003). The mechanism underlying this increase in histamine
neuron number in adult psenl ~/~ zebrafish is unknown, but it
could be due to a change in proliferation or neurotransmitter
respecification.

These results shed new light on the role of psen1, an important
disease gene, in neurogenesis of an essential transmitter pheno-
type. The study identifies psen as a key regulator of histaminergic
neuron development. The results reveal a life-long brain plastic-
ity in both the structure of the histaminergic system and its func-
tions induced by altered Notch1 activity as a consequence of psenl
mutation. A related Notchl-dependent mechanism has been pre-
viously associated with damage-induced regeneration of mo-
toneurons (Dias et al., 2012). The new histaminergic neurons in
aging zebrafish brain may arise as a result of phenotypic plasticity
(Spitzer, 2012) or represent newly differentiated stem cells. This
study also shows the importance of studying adult animals in
addition to developmental stages in characterization of pheno-
types of disease gene mutants.
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