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Nucleus Accumbens Activity Dissociates Different Forms of
Salience: Evidence from Human Intracranial Recordings

Tino Zaehle,">* Eva M. Bauch,’* Hermann Hinrichs,' Friedhelm C. Schmitt,' Jiirgen Voges,' Hans-Jochen Heinze,'>
and Nico Bunzeck®

'Departments of Neurology and Stereotactic Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany, 2Department of Behavioral
Neurology, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany, and *Department of Systems Neuroscience, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany

Theoretical models and empirical work indicate a critical role of the NAcc in salience processing. For instance, the NAcc not only responds
to appetitive and aversive information, but it also signals novelty, contextual deviance, and action monitoring. However, because most
studies have investigated only one specific type of salience independently, it remains unclear how the NAcc concurrently differentiates
between different forms of salience. To investigate this issue, we used intracranial electroencephalography in human epilepsy patients
together with a previously established visual oddball paradigm. Here, three different oddball categories (novel, neutral, and target
images) were infrequently presented among a standard scene image, and subjects responded to the target via button press. This task
allowed us to differentiate “item novelty” (new vs neutral oddballs) from “contextual deviance” (neutral oddballs vs standard images)
and “targetness” (target vs neutral oddballs). Time-frequency analysis revealed a dissociation between item novelty and contextual
deviance on the basis of decreases in either 6 (4 -8 Hz) or 3 power (20-30 Hz). Targetness, on the other hand, was signaled by positive
deflections in the stimulus-locked local field potentials, which, importantly, correlated with subjects’ reaction times. These findings
indicate that, in an ongoing stream of information, the NAcc differentiates between types of salience by distinct neural mechanisms to

guide goal-directed behavior.

Introduction
The NAccis a core region of the ventral striatum, which has direct
and indirect connections to a wide range of brain structures,
including the prefrontal cortex, medial temporal lobe, and dopa-
minergic midbrain (Haber and Knutson, 2009). It has tradition-
ally been associated with reward learning (e.g., O’'Doherty, 2004),
but recent evidence suggests that it has a much broader function.
In particular, the NAcc is involved in goal-directed behavior
(Goto and Grace, 2005), and it responds to novelty (Wood and
Rebec, 2004), contextual deviance (Axmacher et al., 2010), and
aversive stimuli (Becerra et al., 2001; Baliki et al., 2010), which
points toward a prominent role in salience processing (Horvitz,
2000; Zink et al., 2003, 2006; Cooper and Knutson, 2008). How-
ever, the precise neural mechanisms in support of distinct forms
of salience within the NAcc remain unclear.

A distinction between different types of salience can be made
on the rationale that stimuli are salient because of (1) their first

Received Nov. 13, 2012; revised April 3, 2013; accepted April 10, 2013.

Author contributions: T.Z,, EM.B., H.H., H.-J.H., and N.B. designed research; T.Z., F.C.S., and J.V. performed
research; E.M.B. and N.B. analyzed data; T.Z., E.M.B., and N.B. wrote the paper.

This work was supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft)
toT.Z,,J.V.,and H.-J.H. (SFB 779), and N.B. (BU 2670/1-1), and Hamburg state cluster of excellence (neurodapt!) to
N.B. We thank all patients for their willingness to participate in this study.

The authors declare no competing financial interests.

*T.Z.and E.M.B. contributed equally to this work.

Correspondence should be addressed to Dr. Nico Bunzeck, Department of Systems Neuroscience, University
Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. E-mail: n.bunzeck@uke.de.

DOI:10.1523/JNEUR0SCI.5276-12.2013
Copyright © 2013 the authors ~ 0270-6474/13/338764-08%15.00/0

encounter (i.e., “item novelty”), (2) their contextual rareness
(i.e., “contextual deviance”; here items are familiar to the subject
but contextually deviant), or (3) their behavioral significance in a
given context (i.e., “targetness”; here rare items require a motor
response). Although previous studies could show NAcc activity
to contextual deviance, for instance by using intracranial record-
ings (Axmacher et al., 2010), there is only indirect evidence for
the involvement of the NAcc in processing item novelty (e.g.,
Guitart-Masip et al., 2010; Daniel and Pollmann, 2012). This is
surprising given that a prominent theoretical model of novelty
processing suggests that the NAcc plays an important role in
transferring novelty signals from the medial temporal lobe to the
dopaminergic midbrain (Lisman and Grace, 2005; Lisman et al.,
2011). This so-called hippocampal-substantia nigra/ventral teg-
mental area loop is supposed to underlie encoding of novel
information into long-term memory possibly via neural 6 os-
cillations (Duzel et al., 2010).

Here, we used intracranial recordings in seven epilepsy pa-
tients together with a modified version of a previously established
oddball paradigm (Bunzeck and Duzel, 2006; Bunzeck et al.,
2007) that allowed us to differentiate item novelty from contex-
tual deviance and targetness. We predicted that neural responses
to contextual deviance emerge in the local field potentials (LFPs)
at ~400 ms (Axmacher et al., 2010), and we assessed whether this
response is generic for item novelty and targetness. Furthermore,
on the basis of previous scalp recordings investigating novelty
and/or saliency (e.g., Brenner et al., 2009; Bunzeck et al., 2011;
HajiHosseini etal., 2012), we tested whether neural oscillations in
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(VLMT) (Helmstaedter et al., 2001), figural
memory (DCS) (Weidlich et al., 2001), and
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see Materials and Methods).

the 6 (4—8 Hz) and 3 (20-30 Hz) frequency range are modulated
as a function of item novelty and whether they provide a mecha-
nism to differentiate between all three types of salience (i.e., item
novelty, contextual deviance, and targetness). Finally, we tested
the prediction (again derived from scalp recordings) that en-
hanced NAcc 6 power during encoding drives subsequent recog-
nition memory (e.g., Klimesch et al., 1996; Osipova et al., 2006).

Materials and Methods

Task. All subjects were instructed to complete five blocks of a modified
visual oddball paradigm (Bunzeck and Duzel, 2006; Bunzeck et al., 2007)
using photographs of outdoor scenes. In each block, there were 50 stan-
dard images (i.e., one frequently repeated scene), 10 target oddballs (i.e.,
one infrequently presented scene requiring a button press), 10 neutral
oddballs (i.e., one infrequently presented scene), and 10 novel oddballs
(i.e., 10 different unfamiliar scene images), yielding a total of 50 stimuli
per oddball class (Fig. 1). Before the experiment, the target stimulus was
introduced and subjects were required to make a simple button press to
each of its subsequent appearance in the experiment using their right
index finger. No motor responses were associated with any of the other
stimulus classes.

During the experiment, pictures were presented for 1500 ms followed
by a white fixation cross (presented for 1500 ms) on gray background
(gray-value = 127). The intertrial interval was jittered between —50 ms
and +50 ms (uniformly distributed). The order of stimuli was fully ran-
domized. All subjects performed a short practice run before the actual
experiment started.

Approximately 15 min after the oddball paradigm, subjects completed
a recognition memory test. Here, all 50 studied novel oddballs (now old
items) were presented intermixed with 50 unstudied distractor images
(new items), and participants discriminated the old/new status by button
presses. Each picture was presented until a button was pressed (old vs
new), and this was followed by a fixation cross for 1500 ms. Similar to the
oddball task, all subjects performed a short practice run before the actual
experiment started.

Participants, surgery, and electrode implantation. Bilateral stereotacti-
cally guided implantation of quadripolar brain electrodes (model 3387,
Medtronic) in the NAcc (Fig. 2) was performed in seven patients
(mean = SD age: 40 * 9.02 years; 3 male/4 female, all right handed) with
a history of severe, drug-resistant epilepsy. The study was approved by
the local ethics committee (University of Magdeburg), and all patients
gave written informed consent.

Table 1 summarizes individual clinical background and neuropsycho-
logical test results. Neuropsychological assessment was performed before
the surgical intervention and included tests regarding verbal memory

Experimental design, novelty task. Each scene image was presented for 1500 ms, followed by a fixation cross for 1500
ms (=50 ms, A). Novel, neutral, and targetimages were infrequently presented among a frequently presented standard image (B,

sustained attention (d2) (Brickenkamp, 2000).
The VLMT measures verbal list learning and
memory by assessing recall and recognition of
unstructured word lists over immediate and
delayed trials. Analogously, the DCS measures
learning ability and performance of visual
memory by assessing the recall and reproduc-
tion of symmetrical geometric drawings. In the
“d2” test of attention, subjects are presented
with lines of d’s and p’s, which can have up to
two marks on top and below (i.e., a maximum
of four marks per letter). The task is to strike
out those d’s that have exactly two marks on
top or two marks below and ignore all other
letters; it is timed and has to be performed as
fast and accurately as possible.

Treatment planning standards and surgical
procedures were performed as described previ-
ously (Voges et al., 2002). Briefly, the target for
the deep brain stimulation electrode was de-
fined as the point 2 mm rostral to the anterior
border of the anterior commissure at the level
of the mid-sagittal plane, 3-4 mm ventral and 6—8 mm lateral of the
midline. These are standard coordinates, which have to be modified
according to the individual planning MRI. An important landmark is the
vertical limb of Broca’s diagonal band, which can be clearly visualized in
coronal MRI scans. The target was placed 2—2.5 mm lateral of this struc-
ture. The contacts within the NAcc were placed in the caudomedial part,
which, according to histochemical criteria, represents the remnant of the
shell area in the primate. Different from rodents, the shell area has re-
gressed in the primate and is no longer clearly distinguishable, except for
the fact that it carries the typical receptors.

To further indicate the coordinates of the most caudal NAcc electrode, we
transformed all patients’ MRI images to MNI space. The resulting MNI
coordinates were (x, y, z) as follows: 7, 6, —10 (right hemisphere) and —38, 6,
—10 (left hemisphere). Figure 2 depicts one patient’s non-normalized MRI
image and the planned trajectories of the leads/electrodes.

Apart from the NAcg, all patients received implantations of elec-
trodes in the bilateral anterior nuclei of thalamus (Samadani and
Baltuch, 2007). Data from these electrodes will not be reported in this
manuscript. Also, the rationale behind deep brain stimulation in ep-
ilepsy patients will be explained in detail elsewhere.

Intraoperatively, the localization of the leads was documented by
stereotactic x-ray imaging using x-ray tubes installed in the operating
room. Additionally, postoperative CT examination (2 mm slice thick-
ness) was performed. After transformation of postoperative CT- and
x-ray images with the stereotactic treatment planning MRI, the ste-
reotactic coordinates were defined for each electrode contact of the
leads and visualized on frontal sections of the stereotactic brain atlas
of Morel. Postoperatively, electrode leads were externalized allowing
electrical test stimulation with different parameters and the recording
from the depth contacts in different psychological tasks. Subse-
quently, electrode cables were connected to an impulse generator
located beneath the left pectoral muscle (Kinetra, Medtronic) similar
to a cardiac pacemaker.

Data recording and analysis. All recordings were conducted using a
Walter Graphtek system (Walter Graphtek). Intracranial EEG (iEEG)
signals were digitized continuously at a sampling rate of 512 Hz, and
behavioral responses were made via an EEG-compatible response
pad. Because of technical issues, behavioral responses could not be
recorded during the oddball paradigm for one subject. As described
above, there were four intracranial electrode contacts (platinum-
iridium contacts, 1.5 mm wide with 1.5 mm edge-to-edge distance)
both in the left and right NAcc. Following previous studies (Staudigl
etal., 2012; e.g., Litvak et al., 2012), each electrode contact was refer-
enced to its neighboring electrode (three bipolar channels per hemi-
sphere: 1-2, 2-3, 3—4) to limit the effects of volume conduction from
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Figure2. Individual T1-weighted MRlimage. For each patient, an individual MRl image was
acquired before bilateral NAccimplantation. Red and yellow lines represent the planned trajec-
tories of the leads/electrodes.

distant sources and to maximize spatial selectivity. Data were ana-
lyzed with MATLAB version 7.8 (MathWorks) and EEGlab toolbox
(Delorme and Makeig, 2004).

Analysis of local field potentials. The continuous iEEG data were oft-
line filtered between 0.5 and 20 Hz and epoched from 100 ms before to
1000 ms after item onset. To remove possible artifacts, trials were auto-
matically rejected when they contained iEEG activity that exceeded 3 SDs
from the mean at a specific bipolar channel. Subsequently, all trials were
visually inspected and manually rejected if they still contained any arti-
facts. None of the analyzed trials contained epileptic spike activity. This
step resulted in the following number of trials per condition: standard,
233 (range 196-250); target, 47 (43-50); neutral, 47 (41-50); and novel,
46 (39-50). Subsequently, LFP waveforms were computed for each sub-
ject and bipolar channel separately by averaging all trials per condition.

To statistically test whether LFPs were modulated by item novelty
(novel vs neutral), contextual deviance (neutral vs standard), or target-
ness (targets vs neutral) repeated-measures ANOVAs were conducted on
the mean amplitude for the time window 100-500 ms (see below). These
analyses included the within-subject factors hemisphere (left/right), site
(3 bipolar channels), and item type: deviance (standard/neutral), novelty
(novel/neutral), or targetness (target/neutral), respectively. Significant
main effects and interactions were followed by additional analyses to
understand the nature of the effect. Greenhouse-Geisser-corrected de-
grees of freedom (df) and p values are reported where necessary to ac-
count for possible violations of the sphericity assumption (Keselman and
Rogan, 1980).

Time-frequency analysis. IEEG data were high-pass filtered with a cut-
off point of 0.5 Hz to remove slow drifts, and segmented into epochs that
extended from —800 ms to 2100 ms. This epoch length ensured that
time-frequency information could be extracted from —200 ms before
until 1000 ms after stimulus onset without any edge effects. Artifact
detection included an automatic and manual step (as described above).
None of the analyzed trials contained epileptic spike activity.

Spectral decomposition was applied to the preprocessed data at a trial-
by-trial level using Morlet wavelets (Percival and Walden, 1993) in 1 Hz
steps in the frequency range of 4 to 30 Hz (Niedermeyer and da Silva,
2004). The analysis was conducted with 4 cycles in the lower frequency
range and 6 cycles for the higher frequencies with a sliding time window
of 20 ms between —200 ms and 1 s. The frequency power was baseline
corrected to the average frequency power in the time window from —200
ms to —100 ms before item onset via a subtraction approach for each
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frequency (4-30 Hz) across each data point of the epoch (see e.g.,
Hanslmayr et al., 2009). Finally, the time-frequency power across all
trials was averaged for each condition (i.e., standard, target, novel, and
neutral events). The mean number of trials (range) for those four condi-
tions were 231 (196-250), 47 (44-50), 47 (39-50), and 47 (39-50),
respectively.

As for the LFPs, statistical analysis for 6 power (4—8 Hz) and 3 power
(20-30 Hz) was based on ANOV As with the within-subject factors hemi-
sphere (left/right), electrode site (3 bipolar channels), and item type
(item novelty: novel/neutral, contextual deviance: neutral/standard, and
targetness: target/neutral).

The nature of our paradigm and concept of what defines novelty,
contextual salience, and targetness require a direct comparison between
novel versus neutral (item novelty), neutral versus standards (contextual
deviance), and targets versus neutral (targetness). All other direct com-
parisons (e.g., targets vs novel) would be difficult to interpret because
these conditions differ in more than one dimension (e.g., targets are
familiar and require a motor response vs novel items that do not require
a motor response). Therefore, entering all conditions into one statistical
model (e.g., one ANOVA) would be unjustified.

All reported p values are based on two-tailed tests.

Results

Behavior: oddball task

All subjects performed the task according to the instructions.
They responded with high accuracy to the target stimulus (hit-
rate, 0.97 = 0.03; false-alarm rate, 0.01 = 0.01; average reaction
time, 588.83 *+ 106.43; mean = SEM).

Behavior: recognition memory

One patient had to be excluded from the analyses because he did not
perform the task according to the instruction (i.e., he constantly
pressed only one button to all images). For the remaining six sub-
jects, the hit-rate was 0.45 = 0.31, false-alarm rate was 0.29 * 0.26,
and resulting D-prime (Stanislaw and Todorov, 1999) was 0.58 *
0.32. Although this relatively low D-prime indicates poor recogni-
tion memory performance, it was positive for each patient and above
chance level across the entire group (p < 0.05).

LFPs
The grand averaged LFP signals from the nucleus accumbens for
standard, neutral, novel, and target events are displayed in Figure 3.

Repeated-measures ANOVAs on the mean amplitudes were
conducted for the time window 100—500 ms and the conditions
“novel versus neutral” (item novelty), “neutral versus standard”
(contextual deviance), and “target versus neutral” (targetness)
(see Materials and Methods). This particular time window was
chosen because contextual deviance effects in the NAcc were re-
ported to peak at ~400 ms (Axmacher et al., 2010) and because
neural novelty responses can emerge at the scalp surface already
at ~100 ms (Tsivilis et al., 2001; Bunzeck et al., 2009).

The ANOVA on targetness revealed a significant main effect
(F(1,6) = 10.33; p < 0.05), which was most pronounced at L2 (p <
0.05; see Fig. 3). There were no significant main effects or
interactions for contextual deviance (p > 0.123) or item nov-
elty (p > 0.113).

The direct comparison between the LFPs for targetness
(targets-neutral) versus novelty (novel-neutral), and targetness
(targets-neutral) versus contextual deviance (neutral-standards),
respectively, revealed a significant (p < 0.05) and a marginal
significant difference (p = 0.089) at channel L2.

To further link the LFP effects with behavior, a correlation
analysis was performed between subjects’ reaction times and sig-
nal changes to target items (100—500 ms). Here, we first rectified
individual LFPs by computing their absolute value (Sauleau etal.,
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Table 1. Patient data
Epilepsy Verbal memory Figural Sustained
Sex, age, duration of 1Q Immediate free  Delayedfree ~ Recognition memory  attention
Patientno. epilepsy (years) Syndrome  Lateralization ~ Seizure onset Etiology AEDs (HAWIE-R)  recall (z-score)  recall (z-score) ~ (z-score) (z-score)  (z-score)
A01 F,36,15 Multifocal ~ Bilateral Frontotemporal  Cryptogenic INS 400 mg 68 38(—1.6) 8(—13) 11(—=0.75) 25(—1.4) 350(—0.5)
LCM 400 mg
0XC 1200 mg
A02 F, 52,19 Multifocal ~ Bilateral Mesiotemporal  Cryptogenic LCM400mg 742 40 (—0.65) 5(—1.6) 9(—1) 8(—1.6) 199(—22)
LTG 200 mg
A03 M, 35,9 Focal Right Temporal Right temporal LEV2000mg  124.9 57 (—0.65) 12(0.2) 15(1.1) 39(—1) 486 (0)
encephalocele  ESL 1200 mg
A04 F, 28,12 Multifocal ~ Bilateral Temporal Cryptogenic LTG 200 mg 94 53(—0.4) 13(0.2) 15(1.1) 23 (-1 424 (—0.8)
LCM 200 mg
A05 M, 40, 31 Focal Left Temporal Left hippocampal ~ LTG 400 mg 90.2 36 (—1.6) 9(—0.9) 9(—13) 16(—=16) 275(—22)
sclerosis’ LCM 400 mg
A06 M, 41,12 Multifocal ~ Bilateral Frontotemporal  Cryptogenic 103 51(=0.1) 9(—0.9) 12(—05)  37(0.8) 507 (0.7)
A07 F, 52,17 Focal Left Temporal Cryptogenic LTG 250 mg 78.6 62(1.6) 12(0.2) 11(—=0.7)  40(0.9) 318 (—1.5)
LCM 400 mg

AEDs, Antiepileptic drugs; F, female; M, male; HAWIE-R, Hamburg-Wechsler Intelligence Test for Adults; ZNS, zonisamide; LCM, lacosamide; OXC, oxcarbazepine; LTG, lamotrigine; LEV, levetiracetam; ESL, eslicarbazepine acetate.
“The patient underwent a left cortico-amygdalohippocampectomy 9 years before deep brain stimulation intervention.
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Figure3.  Grand mean LFPs for all conditions and bipolar channels. There was a significant main effect of targetness in the time window of interest (100 —500 ms, highlighted in gray), which was
most pronounced at L2 and expressed as positive deflection for target oddballs versus neutral oddballs. Positive values are plotted upward; waveforms are low-pass filtered (15 Hz) for display

purposes.

2009) and used the nonparametric measure Spearman’s p (p),
which seems particularly useful for small sample sizes, and it
offers the advantage of being less sensitive to possible outliers.
This analysis revealed a statistically significant correlation
for R2 (p = 0.87, p = 0.019) but no other contact (p > 0.05)
(Fig. 4A).

Time-frequency analysis

Data were analyzed with respect to their oscillatory power in the
0 (4-8 Hz) and B range (20-30 Hz). Consistent with the LFP
data, the time window of interest for statistical analyses was 100—
500 ms.

ANOVA on mean oscillatory 6 power (4—8 Hz) revealed no
significant item novelty effect (neutral-novel, p = 0.244). How-
ever, planned paired sample ¢ tests (see Introduction; Bunzeck et
al., 2011) showed a significant 6 power decrease for novel com-
pared with neutral items for the right bipolar channel R2 (p <
0.05; Fig. 5C). The ANOVAs for contextual deviance (neutral vs

standard) and targetness (targets vs neutral) revealed no signifi-
cant effects (p > 0.335).

The direct comparison of 6 power at R2 for item novelty
(novel-neutral) versus contextual deviance (neutral-standards)
and contextual deviance (neutral-standards) versus targetness
(target-neutral), respectively, resulted in a significant (p < 0.05)
and marginal significant difference (p = 0.060).

In a next step, ANOVAs were conducted for the 8 frequency
range (20-30 Hz; 100500 ms). For contextual deviance (stan-
dard vs neutral), there was a significant interaction between con-
textual deviance and hemisphere (F(, ¢ = 10.07; p < 0.05).
Further analyses, separate for the left and right hemisphere (av-
eraged across all bipolar channels of the corresponding site),
showed significant effects for left (F(, s, = 12.71; p < 0.05) but
not right NAcc (p = 0.544). Further post hoc t tests revealed that
this effect was mainly driven by B power decreases for neutral
items in contrast to standard items at L2 (p < 0.05; see Fig. 5A).
The ANOVAs for item novelty (novel vs neutral items) and tar-
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Time-frequency plots. A, At left bipolar channels, B power decreased for contextual deviance (neutral oddballs vs standards). €, At R2, 6 power decreased for item novelty (novel vs

neutral oddballs). B, There were no statistically significant targetness effects in the time window of interest (100 ~500 ms) in the 6and /3 band. The time—frequency plots were smoothed for visual

purposes.

getness (target vs neutral items) did not reveal any significant
effects (p > 0.151).

The direct comparisons of 3 power at L2 for contextual devi-
ance (neutral-standards) versus item novelty (novel-neutral) and
contextual deviance (neutral-standards) versus targetness
(targets-neutral), respectively, revealed a significant (p < 0.05)
and marginal significant difference (p = 0.078).

Relationship between NAcc 0 and recognition memory

We further investigated the relationship between the novelty-
related 6 effect at bipolar channel R2 and subsequent recognition
memory performance. We found a positive correlation between
the mean 6 power to novel oddballs (time window 100—-500 ms)
and D-prime (p = 0.87; p = 0.019; Fig. 4B).

We computed the correlation between D-prime and 6 power
instead of the DM effect (difference resulting from later memory)
because most participants had an insufficient number of trials for
remember and/or forgotten items (Paller et al., 1987).

Discussion

We used intracranial recordings to investigate the neural mech-
anisms of salience processing in the NAcc. Our results demon-
strate that oscillatory 6 power decreases closely relate to item
novelty, whereas contextual deviance is signaled by changes in 3
oscillations. Moreover, LFPs signaled targetness and predicted
subjects’ reaction times. These findings suggest that the NAcc
concurrently differentiates between different types of salience by
distinct neural mechanisms to guide goal-directed behavior.

Theoretical models suggest that the NAcc is an important
relay station for the transfer of neural novelty signals from the
medial temporal lobe (including hippocampus and surrounding
cortex) to dopaminergic midbrain regions (Lisman and Grace,
2005; Lisman et al., 2011). Evidence comes primarily from an-
imal studies showing, for instance, that stimulation of the
ventral subiculm (a primary output structure of the hip-
pocampus) leads to increased firing of the NAcc, which, by
inhibiting the ventral pallidum, increases the number of ton-
ically activated dopamine neurons in the substantia nigra/
ventral tegmental area (Floresco et al, 2001, 2003).
Furthermore, in rats the exploration of novel, but not familiar,
environments increases neural firing in the NAcc (Wood and
Rebec, 2004). Our findings conform to this work, and they
suggest that 6 seem to be the primary frequency band by which
stimulus novelty is signaled in the human NAcc.

In physiological terms, 6 oscillations may allow for binding
the distributed neural assemblies that jointly signal novelty/
familiarity processing (Buzsaki and Draguhn, 2004). In rats hip-
pocampal 6 has been related to the exploration of novelty by
showing a reduction of 6 frequency in novel compared with fa-
miliar environments (Jeewajee et al., 2008). In humans, 6 power
over frontal and temporal MEG sensors was attenuated for novel
items, and it increased with stimulus repetition (Bunzeck et al.,
2011). Our results extend these findings to the NAcc by showing
decreased 6 power to novel in contrast to neutral oddballs (i.e.,
repeated scene images).
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Along the same lines, within the network of novelty sensitive
brain regions, 6 oscillations have been suggested to provide a
mechanism for mnemonic functions (Cashdollar et al., 2009; Ny-
hus and Curran, 2010; Fell and Axmacher, 2011). This notion is
based on animal studies showing consistent 6 activity patterns
during spatial memory tasks in the hippocampus, prefrontal cor-
tex, and ventral striatum (for review, see Duzel et al., 2010). In
humans, M/EEG studies (e.g., Klimesch et al., 1996; Molle et al.,
2002; Osipova et al., 2006; Hanslmayr et al., 2011) demonstrated
that 6 power during encoding is enhanced for items that are later
remembered versus items that are later forgotten (so-called “DM
effect”) (Paller et al., 1987). Although our positive correlation
between D-prime (i.e., recognition memory accuracy) and 6
power for novel items (Fig. 4B) is consistent with these scalp
recordings, and therefore provides further evidence for a specific
role of the NAcc not only in novelty processing but also in declar-
ative memory encoding, there are other studies revealing the op-
posite pattern (i.e., decreased 6 for later remembered items) (e.g.,
Sederberg et al., 2007; Guderian et al., 2009; Burke et al., 2013). It
has been argued before that differences in stimulus material, test-
ing procedures (Duzel et al., 2010), or postprocessing steps
(Burke et al., 2013) might help to explain these diverging find-
ings. Clearly, future work is needed to explore how 6 novelty
effects relate to subsequent memory performance.

In our paradigm, contextual deviance, which was induced by
the rare occurrence of repeated items, was associated with de-
creased B power. This finding partly conforms to previous hu-
man M/EEG studies suggesting that neural oscillations in the 3
frequency range signal deviance. For instance, scalp recorded 8
power increases in response to rare auditory sounds (in contrast
to frequent sounds) in healthy controls, and this effect was di-
minished in schizophrenia patients (Brenner et al., 2009). Simi-
larly, increases in 3 power (again as measured by scalp M/EEG)
were linked with salience in sensory gating paradigms (Kisley and
Cornwell, 2006), processing of unexpected rewards (HajiHos-
seini et al., 2012), and reward anticipation (Bunzeck et al., 2011).
Although these scalp recordings and our intracranial data point
toward a role of B in deviance processing, it should be noted that
the effects in our iEEG study and the outlined scalp recordings
have opposing directions (increases vs decreases in [3). Because
scalp recorded M/EEG signals are unlikely to reflect direct NAcc
activity, it remains unclear whether and how both effects (NAcc
and scalp surface) are related.

As evident in the LFPs, the NAcc also signaled targetness (tar-
get vs neutral oddballs) and activity changes correlated with re-
action times. Because target stimuli were not only contextually
deviant (as neutral oddballs) but also required a motor response,
this condition was behaviorally most relevant and could be de-
scribed as “task-driven salient” (Kisley and Cornwell, 2006). In-
deed, the NAcc has been proposed to play a prominent role in
goal-directed behavior by integrating inputs from other limbic
structures and the prefrontal cortex (Goto and Grace, 2005).
More precisely, Goto and Grace (2005) pointed out that the NAcc
is, in anatomical terms, ideally located to integrate affective in-
formation from the amygdala, contextual information from the
medial temporal lobe, and executive/motor plans from prefron-
tal regions to guide goal-directed behavior. Our findings support
this notion, and they are in line with previous intracranial record-
ings in humans, showing that the NAcc is involved in action
monitoring (Miinte et al., 2007, 2008) possibly by integrating
signals from dopaminergic midbrain regions (Boehler et al.,
2011). It should be noted that changes in LFPs do not allow direct
conclusions regarding increases or decreases in underlying neural
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activity. Therefore, the observed positive correlation (Fig. 4A)
can be taken as evidence for a relationship between changes in
neural activity and reaction times rather than evidence for in-
creased neural activity as a function of reaction times.

In contrast to our expectation, we did not find significant
contextual deviance effects in the LEPs. This is inconsistent with a
previous iEEG study (Axmacher et al., 2010) and might be the
result of at least two factors. First, the study designs differ in
several ways: most importantly, Axmacher et al. (2010) induced
contextual deviance by changes in stimulus category (faces vs
houses) and background color (red vs green); in contrast, we only
used one stimulus category (scenes) and contextual deviance was
induced by the infrequent occurrence of one (repeated) oddball.
Furthermore, in our study, subjects used button presses only to
report the presentation of a target image; in Axmacher et al.
(2010), subjects had to rate the pleasantness of each item (also by
button presses). Apart from the study design, the second main
difference lies in the clinical population: while we investigated
patients suffering from drug-resistant epilepsy, Axmacher et al.
(2010) recruited patients with major depression. Although both
conditions are not primarily associated with the NAcc, there is
some evidence indicating differential pathological changes of the
NAcc in depression (Warner-Schmidt et al., 2012) and epilepsy
(Deransart et al., 2001).

Several other human recording studies of the NAcc have fo-
cused on the neural mechanisms of reward processing (e.g., Co-
henetal., 2009, 2012). One of the interesting findings with regard
to our results is that anticipation of monetary wins, in contrast to
losses, enhances § power (Cohen et al., 2012). Together with our
observation of changes in 6 to novel items, this suggests that
NAcc 0 oscillations may underlie both reward and novelty pro-
cessing. Indeed, 6 power at the scalp surface (using MEG)
changes in response to novelty and reward (Bunzeck et al., 2011),
and there are a number of studies pointing toward a functional
and anatomical overlap of reward and novelty processing
(Guitart-Masip et al., 2010; e.g., Bunzeck et al., 2010). It remains
unclear, however, why novelty and reward processing lead to
opposite changes in NAcc 6 power while they both increase he-
modynamic activity in other parts of the mesolimbic system, such
as the substantia nigra/ventral tegmental area (Wittmann et al.,
2005; Adcock et al., 2006; Bunzeck and Duzel, 2006; Bunzeck et
al., 2007).

On a final note, we would like to acknowledge that a larger
sample size could increase the power of our statistical results.
However, because access to suitable patients is limited and re-
quires a careful selection based on clinical grounds, our sample
size is (as in comparable studies, e.g., Cohen et al., 2009, 2012;
Axmacher et al., 2010) smaller than 10. To keep the number of
statistical comparisons to a minimum, we limited our analyses to
one predefined time window of interest, the LFPs, and two fre-
quency bands for which we had a priori defined hypotheses.
Therefore, at this stage, we refrain from further exploratory anal-
yses of other time points and frequency bands.

Together, our findings demonstrate that, within an ongoing
stream of information, the NAcc codes different forms of salience
by distinct neural mechanisms: decreases in 6 power signaled
item novelty, decreases in 3 power signaled contextual deviance,
and positive deflections in the stimulus-locked LFP signaled tar-
getness. These findings further indicate the importance of the
NAcc in integrating information from interconnected brain re-
gions, and they suggest that the NAcc differentiates concurrently
behaviorally relevant from irrelevant forms of salience to guide
decision-making. Furthermore, the positive relationship be-



8770 - J. Neurosci., May 15, 2013 - 33(20):8764 - 8771

tween 6 power during encoding and subsequent recognition
memory provides evidence for a role of NAcc 6 oscillation in
mnemonic functions possibly by binding neural activity that is
shared between different mesolimbic brain regions (i.e., medial
temporal lobe and dopaminergic midbrain).
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