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The human frontal pole (FP) approximately corresponds to Brodmann’s area 10 and is a highly differentiated cortical area with unique
cytoarchitectonic characteristics. However, its functional diversity is highly suggestive of the existence of functional subregions. Based on
anatomical connection patterns derived from diffusion tensor imaging data, we applied a spectral clustering algorithm to parcellate the
human right FP into orbital (FPo), lateral (FPl), and medial (FPm) subregions. This parcellation scheme was validated by corresponding
analyses of the left FP and right FP in another independent dataset. Both visual observation and quantitative comparison of the anatom-
ical connection patterns of the three FP subregions revealed that the FPo showed greater connection probabilities to brain regions of the
social emotion network (SEN), including the orbitofrontal cortex, temporal pole, and amygdala, the FPl showed stronger connections to
the dorsolateral prefrontal cortex of the cognitive processing network (CPN), and the FPm showed stronger connections to brain areas of
the default mode network (DMN), including the anterior cingulate cortex and medial prefrontal cortex. We further analyzed the resting-
state functional connectivity patterns of the three FP subregions. Consistent with the findings of anatomical connection analyses, the FPo
was functionally correlated with the SEN, the FPl was correlated with the CPN, and the FPm was correlated with the DMN. These findings
suggest that the human FP includes three separable subregions with different anatomical and functional connectivity patterns and that
these subregions are involved in different brain functional networks and serve different functions.

Introduction
The frontal pole (FP) is the frontal part of the prefrontal cortex
(PFC) and approximately corresponds to Brodmann’s area (BA)
10, specifically area 10p of the human brain (Ongür et al., 2003;
Ramnani and Owen, 2004). The human FP (area 10p) has unique
and homogeneous cytoarchitectonic characteristics that distin-
guish it from the rest of the PFC (Ongür et al., 2003). Compared
with the corresponding brain region in other mammals, the hu-
man FP has undergone great evolutionary expansion and exhibits
a considerable increase in overall size and connections, especially
with higher-order association areas (Semendeferi et al., 2001).
Although data from humans are lacking, tracer studies in nonhu-
man primates have shown that the medial (FPm), lateral (FPl),
and orbital (FPo) parts of the FP possess different anatomical

connection patterns (Petrides and Pandya, 2007; Burman et al.,
2011), suggesting the possibility of parcellating the human FP
based on anatomical connection patterns.

Despite its cytoarchitectonic homogeneity, the human FP has
been shown to be a functionally heterogeneous region
(Dumontheil et al., 2008). The human FP works together with the
orbitofrontal cortex (OFC), temporal pole (TP), and amygdala
(Amyg) to process social and emotional information (Olson et
al., 2007), such as reward-related information (Koechlin and
Hyafil, 2007; Boorman et al., 2009) and facial expression (Tsao et
al., 2008). The FP also plays a critical role in many aspects of
complex cognitive tasks (Burgess et al., 2006; Gilbert et al., 2006),
including relational integration (Wendelken and Bunge, 2010),
multitasking (Koechlin et al., 1999; Burgess et al., 2006; Medalla and
Barbas, 2009), selection of processes or subgoals (Fletcher and
Henson, 2001), and memory tasks (Ramnani and Owen, 2004; Badre
and D’Esposito, 2009). Furthermore, the human FP is functionally
correlated with the default mode network (DMN), which is involved
in internally focused tasks, such as prospecting the future (Schacter
et al., 2007), autobiographical memory retrieval (Maguire et al.,
2001), and envisaging the perspectives of others (Amodio and Frith,
2006). The functional diversity of the human FP suggests that it may
consist of functional subregions, and this idea is supported by a
meta-analysis of task activation that reported functional variation
between FP1 and FPm (Gilbert et al., 2006b).

Diffusion tensor tractography (DTT) can show inter-regional
anatomical connectivity in vivo and has been used extensively to
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parcellate heterogeneous brain regions based on their anatomical
connection patterns (Behrens et al., 2003b). According to previ-
ous anatomical connection studies of the animal FP and func-
tional studies of the human FP, we hypothesize here that the
human FP includes at least three functionally independent sub-
regions. We further hypothesize that each FP subregion has dis-
tinct anatomical and functional connectivity patterns and is
involved in different brain functional networks. To test these
hypotheses, we applied a DTT-based parcellation scheme to the
human FP and studied the anatomical and functional connection
patterns of each FP subregion from the perspective of functional
networks.

Materials and Methods
Subjects and data acquisition. Two different datasets were obtained in this
study. Dataset 1 was obtained from 12 healthy, right-handed subjects
(five males; mean age, 25.5 years; range, 22–28 years), whereas dataset 2
was obtained from another cohort of eight healthy, right-handed subjects
(three males; mean age, 22.3 years; range, 19 –24 years). Dataset 1 in-
cluded diffusion tensor imaging (DTI), structural MR imaging, and
resting-state functional MRI (fMRI) data, whereas dataset 2 only in-
cluded DTI with different scan parameters and structural MR imaging
data. All MR images were acquired using a Signa HDx 3.0 tesla MR
scanner with an eight-channel phased-array head coil. DTI data were
acquired by a single-shot echo planar imaging sequence. The DTI param-
eters of dataset 1 were as follows: repetition time (TR), 15 s; echo time
(TE), 73 ms; matrix, 128 � 128; field of view (FOV), � 256 � 256 mm 2;
slice thickness, 2 mm without gap; 69 axial slices; 50 non-collinear diffu-
sion gradients (b � 1000 s/mm 2) and three non-diffusion-weighted im-
ages (b � 0 s/mm 2). Sagittal three-dimensional T1-weighted images
were acquired by a brain volume sequence (TR, 7.8 ms; TE, 3.0 ms;
FOV, 256 � 256 mm 2; matrix, 256 � 256; slice thickness, 1 mm, no
gap; 188 slices). The DTI parameters of dataset 2 were the same as for
dataset 1 except for the following: TR, 10 s; TE, 64.2 ms; slice thick-
ness, 3 mm; 45 axial slices; and 55 diffusion gradients. The structural
images of dataset 2 were the same as for dataset 1 except for the
following: TR, 8.0; TE, 3.0 ms; and 176 slices. The resting-state fMRI
data of dataset 1 were obtained using a gradient-echo single-shot
echo-planar imaging sequence with the following parameters: TR,
2000; TE, 30 ms; slice thickness, 3 mm, 1 mm gap; matrix, 64 � 64;
FOV, 240 � 240 mm 2; 38 transverse slices; 180 volumes. During fMRI
scans, all subjects were instructed to keep their eyes closed, to stay as
motionless as possible, to think of nothing in particular, and not to
fall asleep. The study was approved by the Medical Research Ethics
Committee of Tianjin Medical University, and all participants pro-
vided written informed consent forms.

Definition of seed and target masks. The human FP seed masks were ex-
tracted from the Harvard–Oxford cortical structural atlas (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/Atlases and http://www.cma.mgh.harvard.
edu/manuals/parcellation) with a threshold of 50% minimum probability
and wrapped back to the individual native DTI space using the inverse of
linear transformation and nonlinear deformations. The FP seed mask was
checked on the coronal planes slice by slice to include all tissue commonly
assigned to the FP and to ensure that its posterior boundary was rostral to the
anterior termination of the olfactory sulcus (Ramnani and Owen, 2004; John
et al., 2007). In accordance with previous tract tracing (Petrides and Pandya,
2007; Burman et al., 2011) and anatomical studies (Ongür and Price, 2000;
Kondo et al., 2003; Ongür et al., 2003) in nonhuman primates, six target
brain regions (Table 1) in the same hemisphere were included in the FP
connectivity fingerprints calculation (Lavenex and Amaral, 2000). The target
regions were also extracted from the Harvard–Oxford cortical structural
atlases using the same approach as for the extraction of the FP and subse-
quently transformed into individual diffusion space.

DTI data preprocessing. Both the DTI and T1-weighted data were vi-
sually inspected by two radiologists for apparent artifacts arising from
subject motion and instrument malfunction. Distortions in the
diffusion-weighted images caused by eddy currents and simple head mo-
tions were corrected by the Diffusion Toolbox of Functional MRI of the

Brain (FMRIB) [FSL (FMRIB Software Library) 4.0; http://www.fmrib.
ox.ac.uk/fsl]. Skull-stripped T1-weighted images were coregistered to the
subject’s non-diffusion-weighted images (b � 0 s/mm 2) using statistical
parametric mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm), which
resulted in a set of coregistered T1 images in DTI space. The T1 images in
diffusion space were then transformed to the Montreal Neurological
Institute (MNI) space. Finally, the inverse transformation was used to
transform the FP mask into individual diffusion space.

Probabilistic tractography. Tractography was performed in diffusion
space using the FSL package. Voxelwise estimates of the fiber orientation
distribution were performed using Bedpostx. We calculated probability
distributions in two fiber directions at each voxel using multiple fiber
extension (Behrens et al., 2007) based on a previously published diffu-
sion modeling approach (Behrens et al., 2003a, b). We then estimated the
fiber connections between each voxel in the seed region and every voxel
of the whole brain. The connection probability between a seed and each
of the other voxels in the brain is obtained by calculating the number of
traces arriving at the target site. To reduce the false-positive connections,
we thresholded the path distribution estimates from ProbTrack using a
connection probability of p � 0.002 (10 of 5000 samples). For data stor-
age, all connectivity profiles of each voxel were downsampled to 5 mm
isotropic voxels (Johansen-Berg et al., 2004). Cross-correlation between
the connectivity patterns of all voxels in the seed mask were calculated
and used for automatic parcellation (Johansen-Berg et al., 2004).

Tractography-based parcellation. The cross-correlation matrix was fed
into a spectral clustering algorithm that used edge-weighted centroidal
voronoi tessellations for image segmentation (Wang et al., 2009) for
automatic clustering. The goal of clustering the cross-correlation matrix
was to group together voxels of the seed region that share similar con-
nection profiles with other voxels of the brain. However, the number of
component clusters was chosen by the experimenter.

Selection of cluster number. To avoid arbitrary choice of the number of
clusters, we used cross-validation to determine the number of clusters
that yielded optimal consistency across subjects and, hence, the optimal
number of clusters. Specifically, we used a leave-one-out method in
which each subject’s data were excluded from the averaging. For each
subject, we checked the consistency between the clustering results of the
single subject and the average across the remaining subjects using Cram-
er’s V. Cramer’s V has values in the interval [0, 1], and high values
indicate good consistency. A value of 1 indicates a perfect match. The
intersubject consistency was checked for k � 2, 3, 4, and 5 clusters.

Maximum probability map calculation. Considering inter-individual
differences in the FP parcellation, we calculated the maximum probabil-
ity map (MPM) to show the final results (Caspers et al., 2008). To do this,
we transformed each individual parcellation result from diffusion space
to the MNI template. The MPM was calculated in the MNI space by
assigning each voxel to the subregion to which it was most likely to
belong. For each FP subregion, we also calculated the probabilistic map
and distributions of the probability values. The probability map and its
corresponding probability distribution reflect the interindividual vari-
ability of each FP subregion.

Reproducibility. To validate the reliability of the spectral clustering
method, we also conducted our parcellation scheme on the left FP. In
addition, we recruited another independent dataset (dataset 2) with dif-
ferent scan parameters to validate the parcellation results of dataset 1.

Anatomical connectivity patterns of FP subregions. To show the different
anatomical connection patterns of the FP subregions, the whole-brain

Table 1. Target brain regions defined from previous tract tracing studies in
nonhuman primates

Brain areas Brodmann’s areas References

OFC BA 11–BA 14 Burman et al., 2011; Ongür and Price, 2000; Ongür et al., 2003
TP BA 38 Kondo et al., 2003; Burman et al., 2011
Amyg Petrides and Pandya, 2007
DLPFC BA 8, BA 9, BA 46 Petrides and Pandya, 2007; Burman et al., 2011
ACC BA 24, BA 32 Petrides and Pandya, 2007; Burman et al., 2011
MPFC BA 9, BA 32 Petrides and Pandya, 2007; Burman et al., 2011
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probabilistic tractography for each subject was run from each FP subre-
gion in individual diffusion space by estimating the fiber orientations in
each voxel (Behrens et al., 2007). To highlight the interindividual varia-
tion, the fiber tracts were then warped into standard space, and an aver-
aged fiber tract map was then computed for each FP subregion.

We also analyzed the probabilistic connections between each FP sub-
region and six predefined target regions (Table 1). For each FP subregion,
we drew 5000 samples from the connectivity distribution of each voxel in
the subregion and computed the probability of connections with all six
target regions. The averaged connectivity probability values between
each FP subregion and all the target regions were then calculated across
all the subjects, and the results were used to generate anatomical connec-
tivity fingerprints (Passingham et al., 2002).

Statistical analysis of connection probabilities was performed using
SPSS 17.0 (SPSS). Repeated-measures ANOVA was performed to test the
effects of hemispheres, FP subregions, and target regions on the connec-
tion probability values.

Resting-state fMRI data preprocessing. The resting-state fMRI data were
preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and
DPARSF (Data Processing Assistant for Resting-State fMRI) (Chao-Gan
and Yu-Feng, 2010).The first 10 volumes from each subject were dis-
carded to allow the signal to reach equilibrium and the participants to
adapt to the scanning noise. The remaining 170 volumes were corrected
for acquisition time delay between slices. Then, head motion parameters
were estimated; none of the subjects had a maximum displacement of �1
mm or a maximum rotation of �1.0°. A unified segmentation approach
was used to spatially normalize these functional images. The approach
included the following steps: (1) individual structural images were coreg-
istered to the mean functional image after motion correction; (2) the
transformed structural images were segmented into gray matter, white
matter, and CSF using a unified segmentation algorithm; and (3) the
motion-corrected functional volumes were spatially normalized to MNI
space using the normalized parameters estimated during segmentation,
and functional images were then resampled into a voxel size of 2 � 2 � 2
mm 3. After normalization, images were smoothed using a Gaussian ker-
nel of 6 � 6 � 6 mm 3 full-width at half-maximum. Several sources of
spurious variance, including the estimated motion parameters, the linear
drift, and the average BOLD signals in the ventricular and white matter
regions, were removed from the data through linear regression. Finally,
temporal bandpass filtering (0.01– 0.08 Hz) was performed on the time
series of each voxel to reduce the effects of low-frequency drift and high-
frequency noise. Four-dimensional residual time series data in the stan-
dard MNI space were acquired for each subject after the preprocessing.

Whole-brain resting-state functional connectivity pattern of each FP sub-
region. Each region of interest (ROI) of the FP subregion was defined as a
sphere (radius, 6 mm) centered at the peak coordinate of the probability
map of each FP subregion. To ensure that all voxels of each ROI were
within the gray matter, we multiplied each FP ROI by the gray matter
mask. The mean time series of each FP ROI was then extracted from the
four-dimensional residual time series data. For each subject, Pearson’s
correlation coefficients between the mean time series of each FP ROI and
that of each voxel of the whole brain were computed and converted to z
values using Fisher’s r-to-z transformation to improve the normality.
Then, individuals’ z-values were entered into a random-effect one-
sample t test in a voxelwise manner to identify brain regions that showed
significant correlations with the seed ROI. Multiple comparisons were
corrected for false discovery rate (FDR) with a threshold of p � 0.0001
and a cluster size of �100 voxels. A paired t test was used to identify the
resting-state functional connectivity (rsFC) differences between every
pair of FP subregions ( p � 0.05, FDR corrected).

Comparison between anatomical and functional connectivity patterns of
FP subregions. We calculated the ipsilateral rsFCs between each FP sub-
region and the six predefined target regions. Statistical analysis of rsFC
strength was performed using SPSS 17.0 (SPSS). Repeated-measures
ANOVA was performed to test the effects of hemispheres, FP subregions,
and target regions on the rsFC strength. Finally, direct comparisons of
anatomical and functional connectivity patterns were realized by finger-
print method.

Reference to macaque data. Area 10o of the macaque is the equivalent
area of the human FP (area 10p) (Ongür and Price, 2000). Although the
area 10o of the macaque has expanded dramatically and evolved into the
human area 10p, we were interested in whether consistent connection
patterns could be found in the corresponding areas of the two species. We
summarized the anatomical connections of the area 10o reported in the
previous tract tracer studies (Pandya and Seltzer, 1982; Morecraft et al.,
2004) in the macaque based on the CoCoMac database (http://cocomac.
org) (Stephan et al., 2001).

Results
Connectivity-based parcellation
In the spectral clustering method, it is important to select an
optimal number of clusters. Although there is no gold standard
for selecting the cluster number, we selected the optimal cluster
number using a cross-validation method based on the consis-
tency of clustering across subjects. We found that a cluster num-
ber of three gave the highest consistency of clustering across
subjects (Fig. 1).

From the MPM of the right FP, we were able to identify three
separable subregions of the FP: FPo, FPm, and FPl (Fig. 2A). This
parcellation scheme was validated by similar analysis of the left FP
(Fig. 2B) and the right FP in another independent dataset (Fig.
2C). The probabilistic map of each FP subregion is shown in
Figure 2D. The centriod distribution of each FP subregion across
subjects is in Figure 3A. The averaged MNI coordinates of the
centriods of the three FP subregions were as follows: FPo, left,
�22, 62, �9; right, 24, 62, �6; FPm, left, �10, 64, 2; right, 9, 64,
�1; and FPl left, �20, 61, 17; right, 20, 62, 16. To better visualize
the location of each FP subregion, we also showed the FP subre-
gions from different views (Fig. 3B).

Anatomical connectivity patterns of FP subregions
Using probabilistic tractography based on DTI data, fiber path-
ways of the three FP subregions were identified (Fig. 4). The fiber
pathways predominantly followed the courses of the arcuate fi-
bers, forceps minor, superior longitudinal fasciculus, cingulum,
and uncinate fasciculus. To visualize the differential anatomical
connection patterns of the three right FP subregions, we calcu-
lated the anatomical connections between each of the three FP
subregions and the six predefined target regions. The six target
regions were the OFC, Amyg, TP, dorsolateral PFC (DLPFC),
anterior cingulate cortex (ACC), and medial PFC (MPFC) (Table
1). The right FPo showed stronger connection probabilities to

Figure 1. Average Cramer’s V as an indication of clustering consistency. Cramer’s V has
values in the interval of [0, 1]; high values indicate good consistency. It is shown that the
three-cluster solution has the highest Cramer’s V for both the left (LFP) and the right (RFP) FPs.
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brain regions of the social emotion network (SEN), such as the
OFC, Amyg, and TP. The right FPl showed greater connection
probabilities to the right DLPFC, a critical node of the cognitive
processing network (CPN). The right FPm showed stronger con-
nection probabilities to brain areas of the DMN, including the
ACC and MPFC.

Quantitative comparisons of anatomical connections across
the three FP subregions
To quantify the differences in anatomical connections across the
three FP subregions, the connection probabilities with the six
target regions were normalized for the size of individual target
ROIs (Table 2). Normalized connection probabilities were en-
tered into a FP subregions (3 levels) � target regions (6 levels) �
hemispheres (2 levels) repeated-measures ANOVA. There were
no significant main effects in hemispheres (F � 0.143, p � 0.705)
and FP subregions (F � 0.142, p � 0.868), but there was a signif-
icant main effect in target regions (F � 5.616, p � 0.001). More-
over, there was a significant FP subregions � target regions
interaction (F � 33.692, p � 0.001). Post hoc comparisons were
performed to visualize the anatomical connection probabilities
differences across the three FP subregions (Table 3). The FPo
showed higher probabilities of connection with the OFC, Amyg,
and TP and lower probabilities of connection with the DLPFC

and ACC than the FPl. The FPl had a significantly higher proba-
bility of connection with the DLPFC and lower probabilities of
connection with the ACC and MPFC than the FPm. The FPm
showed higher probabilities of connection with the ACC and
MPFC and lower probabilities of connection with the OFC,
Amyg, and TP.

Quantitative comparisons of rsFCs across the three
FP subregions
Using the same method as the quantitative comparisons of ana-
tomical connections across the FP subregions, normalized rsFCs
were also entered into the repeated-measures ANOVA model.
There were no significant main effects in hemispheres (F � 0.036,
p � 0.849), but there were significant main effects in FP subre-
gions (F � 25.143, p � 0.001) and target regions (F � 20.937, p �
0.001). Moreover, there was a significant FP subregions � target
regions interaction (F � 3.676, p � 0.001). Post hoc comparisons
were performed to visualize the rsFCs differences across the three
FP subregions (Table 3). The FPl had a significantly higher rsFC
with the DLPFC than the FPo and FPm. The FPm showed higher
rsFCs with the ACC and MPFC than the FPo and FPl.

Anatomical and functional connectivity fingerprints of
FP subregions
The fingerprint method was used to directly compare the ana-
tomical and functional connectivity patterns of each FP subre-
gion (Fig. 5). Generally, target regions that showed strong
anatomical connections with an FP subregion also had strong
rsFCs with that subregion, but the number of target regions with
strong anatomical connections were much less than those that
showed strong rsFCs. Specifically, although the FPo showed
strong anatomical and functional connections with the TP and
OFC, it only showed strong rsFCs with DLPFC and MPFC. The
FPl showed higher anatomical and functional connections with
the DLPFC; however, it also showed strong rsFCs with the other
target regions. The FPm had strong anatomical and functional
connections with the MPFC and ACC, whereas it only showed
strong rsFC with the DLPFC.

Whole-brain rsFC pattern of each FP subregion
The whole-brain rsFC map of each FP subregion is displayed on
the Caret PALS template (Van Essen et al., 2001; Van Essen, 2005)
(Fig. 6). Overall, these three FP subregions showed different rsFC
patterns, indicating that they are involved in different neural net-
works. The FPo was mainly correlated with the brain regions of
the SEN, including the OFC and subgenual ACC (p � 0.0001,
FDR corrected). The FPl was mainly correlated with regions of
the CPN, such as the DLPFC (p � 0.0001, FDR corrected). The
FPm was correlated with the DMN, including the MPFC, poste-
rior cingulate cortex/precuneus (PCC/Pcu) and lateral parietal
cortex (p � 0.0001, FDR corrected).

To quantify the differences in rsFCs across the three FP sub-
regions, the rsFCs were quantitatively compared (p � 0.05, FDR
corrected) between every two FP subregions (Fig. 7). The FPo
showed higher rsFC with the OFC and subgenual ACC and lower
rsFC with the DLPFC than the FPl. The FPl had significantly
higher rsFC with the DLPFC and lower rsFC with the ACC,
MPFC, and PCC than the FPm. The FPm showed higher rsFC
with the ACC, MPFC, and PCC and lower rsFC with the OFC.

Reference to macaque data
The anatomical connection patterns of area 10o in the macaque
are shown in Figure 8. Area 10o in the macaque mainly connected

Figure 2. Connectivity-based parcellation of the human FP. The human FP can be reproduc-
ibly subdivided into orbital (yellow), lateral (blue), and medial (red) subregions, as shown in the
maximum probabilistic maps of the right (A) and left (B) FP of dataset 1 and the right FP (C) of
dataset 2. The probability map of each right FP subregion is shown in D. The color bars represent
the average probability across subjects at each voxel. Maps are displayed on a three-
dimensional brain surface using the Caret software.

Figure 3. Centroid distribution (A) and multiple views (B) of the FP subregions. FP subre-
gions are color coded as in Figure 2.
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to the OFC, ACC, MFPC, DLPFC, and TP,
which is closely resemble those in the hu-
man FP (area 10p). However, rich con-
nections with the Amyg were only found
in human FP.

Discussion
To the best of our knowledge, this is the
first study to parcellate the human FP
based on anatomical connection patterns
and to elucidate the anatomical and func-
tional connectivity patterns of the human
FP at the subregional level. The results
show that the human FP can be reproduc-
ibly subdivided into FPo, FPl, and FPm
subregions. Each FP subregion has spe-
cific anatomical and functional connec-
tivity patterns, and the three subregions
are involved in the SEN, CPN, and DMN,
respectively. These findings may improve our understanding of
FP connectivity and function at the level of subregions.

Method consideration
In the present study, we parcellated the human FP based on inter-
regional anatomical connection patterns derived from DTT,
which has been used extensively in previous parcellation studies
of the human medial frontal cortex (Johansen-Berg et al., 2004),
cingulate cortex (Beckmann et al., 2009), thalamus (Behrens et
al., 2003b), and Amyg (Bach et al., 2011). However, one should
bear in mind that the traditional DTT method is not the best one
for accurately characterizing fiber directions (Jones et al., 2012);
more plausible methods should be developed and used to parcel-
late human brain regions in vivo, such as parcellation based on
the orientation distribution functions derived from the high an-
gular resolution diffusion imaging data.

Spatial constraints have been used to reduce discontinuous vox-
els in parcellation results (Tomassini et al., 2007; Mars et al., 2012).
Here, we did not place any spatial constraints on our parcellation
scheme because the spectral clustering algorithm makes use of the
eigenvectors of the similarity matrix as the feature for clustering, and
this method is less sensitive to spatial distance effects than other
clustering methods, such as the k-means algorithm (Ng et al., 2002).
Moreover, how to balance connectivity information and spatial dis-
tance information in clustering when spatial constraints are included
is still an open question. Here, we used MPMs to show the parcella-
tion results for each FP subregion; this method could be effective in
reducing discontinuous voxels with low probabilities. The spatially
contiguous subregions also support the validity of our method.

FP subregions
In the present study, the human FP corresponds to area 10p, a
highly differentiated cortical area with unique cytoarchitectonic
characteristics (Ongür et al., 2003). However, as mentioned in
Introduction, tract tracing and functional neuroimaging studies
have suggested the existence of FP subregions. Ray and Price
(1992) subdivided the rat FP into medial and lateral subregions
based on thalamocortical connection patterns. The FP of nonhu-
man primates has been described as consisting of three subre-
gions, FPm, FPl, and FPo, based on their different anatomical
connection patterns (Petrides and Pandya, 2007; Burman et al.,
2011).

Compared with the animal FP, the human FP has undergone
great evolutionary expansion and exhibits a lower cell density,

richer dendritic spines, and more connections with the associa-
tion cortices (Semendeferi et al., 2001). Gilbert et al. (2006b)
found different activation characteristics for the lateral and me-
dial portions of the human FP and further subdivided the human
FP into lateral, anteromedial, and posteromedial subregions
based on a meta-analysis of task activations (Gilbert et al., 2006).
Based on anatomical connection patterns, we parcellated the hu-
man right FP into the orbital, medial, and lateral subregions and
validated this parcellation scheme by parcellation of the left FP
and through the use of another independent set of imaging data.
The fact that our parcellation results are not completely consis-
tent with those of Gilbert et al. (2006) can be ascribed to the
differences in imaging measures, the FP definition, and parcella-
tion methods between the two studies.

Connectivity profiles of the FPo
We found that the FPo is anatomically connected with the OFC,
TP, and Amyg and that it is functionally correlated with the OFC
and subgenual ACC. The FPo connects with the OFC through the
fronto-orbitopolar tract and with the TP and Amyg through the
uncinate fasciculus, which are consistent with a DTT study in
humans (Catani et al., 2012) and tract tracer studies in animals
(Terreberry and Neafsey, 1987; Neafsey, 1990; Hurley et al.,
1991). All of these brain regions are involved in the processing of
social and emotional information. Each of these brain regions has
been shown to be sensitive to different social or emotional tasks,
and each of these tasks induced activation of different combi-
nations of these brain regions. For example, the OFC is sensi-
tive to reward-based decision making (Bechara et al., 1999;
Boorman et al., 2009; FitzGerald et al., 2009; Elliott et al.,
2010), the subgenual ACC is sensitive to negative emotional
stimuli (Butler et al., 2005), the Amyg serves in the evaluation

Figure 4. Anatomical connectivity patterns (top row) and fingerprints (bottom row) of the FP subregions. The FP subregions are
shown in different colors (FPo, yellow; FPl, red; FPm, blue). The small polar plots are the individual parts of the main figure. L, Left;
R, right.

Table 2. Averaged normalized anatomical and functional connection strength
between FP subregions and target regions

FP
subregions

OFC Amyg TP DLPFC ACC MPFC

AC FC AC FC AC FC AC FC AC FC AC FC

Right FPo 0.425 0.491 0.348 0.254 0.600 0.307 0.029 0.469 0.053 0.240 0.114 0.448
Right FPl 0.018 0.627 0.108 0.331 0.160 0.452 0.580 0.853 0.274 0.472 0.317 0.765
Right FPm 0.098 0.456 0.059 0.338 0.035 0.405 0.127 0.606 0.539 0.574 0.606 0.893
Left FPo 0.473 0.486 0.235 0.129 0.591 0.394 0.109 0.488 0.066 0.236 0.094 0.369
Left FPl 0.064 0.669 0.086 0.307 0.153 0.532 0.763 0.934 0.326 0.419 0.107 0.717
Left FPm 0.094 0.449 0.055 0.306 0.102 0.401 0.069 0.622 0.598 0.553 0.662 0.873

AC, Anatomical connection; FC, functional connectivity.
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of emotional information (Bechara et al., 1999; Winston et al.,
2002), and both the TP and FPo are important for social and
emotional processing (Olson et al., 2007; Zahn et al., 2009).
Compared with the macaque FP, the human FPo had richer

connections with the Amyg, which may underlie the complex
emotion processing in human.

Connectivity profiles of the FPl
Anatomical and functional connectivity analyses have revealed
that the FPl is closely associated with the immediately adjacent
parts of the DLPFC, which is consistent with a human DTT study
(Catani et al., 2012) and tracer studies in the macaque (Stephan et
al., 2001). As shown in Figure 9, the lack of overlap between the
seed FP and BA 46 (a portion of the DLPFC adjacent to the FP),
suggesting that connection patterns of the FPl represent its
unique connection patterns but not a reflection of the contami-
nation of the BA 46. The strong connections between the FPl and
DLPFC suggest that they are implicated in similar functions, such

Table 3. Differences in the anatomical and functional connections between each pair of the FP subregions, shown with p values (Bonferroni’s corrected)

OFC Amyg TP DLPFC ACC MPFC

FP subregions AC FC AC FC AC FC AC FC AC FC AC FC

FPo versus FPl � 0.001 0.221 � 0.001 0.502 � 0.001 0.300 � 0.001 �0.001 0.005 0.015 0.482 �0.001
FPl versus FPm 1.000 0.088 1.000 0.472 0.704 0.893 � 0.001 0.003 0.001 0.309 � 0.001 0.183
FPm versus FPo � 0.001 1.000 � 0.001 1.000 � 0.001 1.000 1.000 0.308 �0.001 �0.001 � 0.001 �0.001

AC, Anatomical connection; FC, functional connectivity.

Figure 5. The comparisons between anatomical (red lines) and functional (blue lines) con-
nectivity patterns of the FPo (left column), FPl (middle column), and FPm (right column) of the
left (bottom row) and right (top row) hemispheres.

Figure 6. One-sample t test shows the rsFC patterns of FP subregions ( p � 0.0001, FDR
correction).

Figure 7. Contrast maps of the rsFCs between every two FP subregions.

Figure 8. Schematic drawings of areas connected with area 10o in the macaque. Color dots
indicate the presence of a connection with the lateral (blue), medial (red), and orbital (yellow)
parts of the area 10o. Connections depicted here were obtained from and named according to
the CoCoMac database (http://cocomac.org).

Figure 9. Overlap between the FP seed mask (red) and the BA 46 (green).
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as working memory and episodic memory retrieval tasks (Fuster,
2001; Ranganath et al., 2003; Constantinidis and Procyk, 2004;
Funahashi, 2006; Burgess et al., 2007; Cabeza and St Jacques,
2007; Koechlin and Hyafil, 2007; Smith et al., 2007; Badre and
D’Esposito, 2009). The FP is particularly important in perform-
ing tasks that involve a high cognitive load (Fuster, 2001), such as
relational integration (Wendelken and Bunge, 2010), multitask-
ing (Koechlin et al., 1999; Burgess et al., 2006; Medalla and Bar-
bas, 2009), and selection of processes or subgoals (Fletcher and
Henson, 2001). Consistent with our viewpoint that the FPl is a
critical node for cognitive processing, a meta-analysis showed
that the FPl was disproportionately activated by cognitive tasks
(Gilbert et al., 2006). Consistent with a finding that the human
inferior parietal lobule (IPL) had functional connectivity with the
FP that was not present in macaques (Mars et al., 2011), we also
found the rsFC between the FPl and the central two IPL subre-
gions (3 and 4), which are involved higher cognitive functions,
such as exploratory decision (Daw et al., 2006; Boorman et al.,
2009) and episodic memory retrieval (Velanova et al., 2003).

Connectivity profiles of the FPm
We found that the FPm is anatomically connected with the ACC
and MPFC and that it is functionally correlated with the ACC,
MPFC, PCC/Pcu, and lateral parietal cortex. The anatomical
connections of the human FPm are also found in the macaque
(Carmichael and Price, 1996; Ongür and Price, 2000; Petrides
and Pandya, 2007), but they are not shown in a previous DTT
study (Catani et al., 2012) because that study did not place an ROI
in the FPm. The FPm, ACC, and MPFC are activated when indi-
viduals undertake internally focused tasks, including prospecting
the future (Okuda et al., 2003; Addis et al., 2007; Schacter and
Addis, 2007; Schacter et al., 2007; Sharot et al., 2007; Szpunar et
al., 2007; Botzung et al., 2008), autobiographical memory re-
trieval (Maguire et al., 2001; Cabeza and St Jacques, 2007), self-
related mentalizing (Gusnard et al., 2001; Frith and Frith, 2003;
Amodio and Frith, 2006; Gilbert et al., 2006; Burgess et al., 2007;
Raposo et al., 2011), and envisaging the perspectives of others
(Saxe and Kanwisher, 2003; Amodio and Frith, 2006; Mitchell et
al., 2006).

Differences between anatomical and functional connection
patterns of FP subregions
We found that brain regions with strong anatomical connection
with an FP subregion also had strong rsFC with that subregion,
which is consistent with the statement that anatomical connec-
tion is the neural basis of rsFC (Petrides, 2005; Greicius et al.,
2009). However, many brain areas only showed strong rsFCs with
an FP subregion. These findings are consistent with previous
observations (Eickhoff et al., 2010) and suggest that a very weak
anatomical connection between two regions may still hold a high
functional significance (Friston, 2002; Grefkes et al., 2008). It is
more likely that the functional connectivity may reflect both di-
rect and indirect anatomical connections between two brain re-
gions (Honey et al., 2009).

Conclusion
In the present study, we found that the human FP can be divided
into three subregions that show different anatomical and func-
tional connection patterns. The three subregions are implicated
in three parallel neural networks that process cognitive, self-
referential, and socio-emotional information, respectively. Nota-
bly, the human FP is the convergent node of these three networks,
and the three FP subregions are closely connected with each

other, which permits information exchange among these net-
works. The organization of the human FP thus supports its role in
integrating various information sources to guide appropriate ac-
tions to a goal.
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