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Brain– computer interfaces have been proposed as a solution for paralyzed persons to communicate and interact with their environment.
However, the neural signals used for controlling such prostheses are often noisy and unreliable, resulting in a low performance of
real-world applications. Here we propose neural signatures of selective visual attention in epidural recordings as a fast, reliable, and
high-performance control signal for brain prostheses. We recorded epidural field potentials with chronically implanted electrode arrays
from two macaque monkeys engaged in a shape-tracking task. For single trials, we classified the direction of attention to one of two visual
stimuli based on spectral amplitude, coherence, and phase difference in time windows fixed relative to stimulus onset. Classification
performances reached up to 99.9%, and the information about attentional states could be transferred at rates exceeding 580 bits/min.
Good classification can already be achieved in time windows as short as 200 ms. The classification performance changed dynamically over
the trial and modulated with the task’s varying demands for attention. For all three signal features, the information about the direction of
attention was contained in the �-band. The most informative feature was spectral amplitude. Together, these findings establish a novel
paradigm for constructing brain prostheses as, for example, virtual spelling boards, promising a major gain in performance and robust-
ness for human brain– computer interfaces.

Introduction
Brain– computer interfaces (BCIs) use neural activity patterns to
control external devices, such as virtual spelling boards or pros-
thetic arms (Lebedev and Nicolelis, 2006). Their success is tightly
linked to the ability to extract rapidly and reliably detailed infor-
mation based on the patient’s recorded brain activity (Lebedev
and Nicolelis, 2006; Ifft et al., 2012).

For this purpose, BCIs have been constructed using noninva-
sive or invasive recording technologies. Noninvasive technolo-
gies comprise EEG, near-infrared spectroscopy, MEG, or fMRI.
Whereas MEG and fMRI are impractical for everyday use, EEG
and near-infrared spectroscopy allow healthy subjects to control
spellers (McFarland and Wolpaw, 2011), to operate actuators
(Blankertz et al., 2010; Gomez-Rodriguez et al., 2011), and to play
games (Blankertz et al., 2010) without surgical procedures. How-
ever, poor spatial resolution and low signal-to-noise ratio of EEG
and near-infrared spectroscopy are major limiting factors for

noninvasive technologies: information transfer rates (ITRs)
maximally reach �25 bits/min (van Gerven et al., 2009), even
when choices are made from multiple targets. This performance
corresponds to a spelling speed of only five letters/min, making
routine communication at least difficult.

Invasive recordings go along with substantially higher perfor-
mance (Schwartz, 2004; Wolpaw and McFarland, 2004; van
Gerven et al., 2009; Moran, 2010). Neural signals recorded intra-
cortically from the macaque monkey’s motor cortex allowed to
decode intended movements (O’Doherty et al., 2009; Andersen et
al., 2010) and to control a robotic arm (Wessberg et al., 2000;
Velliste et al., 2008). The ITRs for such recordings reach 144
bits/min for binary decisions (Santhanam et al., 2006). In con-
trast to motor-related signals, neural correlates of selective visual
attention were rarely used to control invasive BCIs, despite the
importance of attention-dependent modulations of P300-evoked
potentials (Brunner et al., 2011) or of steady-state visually evoked
potentials for noninvasive BCIs. One exception is a matrix speller
using electro-corticogram (ECoG) signals from human patients,
which achieved ITRs of �60 bits/min (Brunner et al., 2011) or
�12 letters/min. However, matrix spellers require multiple stim-
ulus presentations to identify a persistently attended character
and are therefore an inherently time-consuming approach. Spa-
tial selective attention bears the potential to solve this problem if
it can be deliberately and quickly shifted between numerous pos-
sible locations in visual space. This raises the question of whether
intracranial recordings from visual areas allow to distinguish the
direction of attention in a fast and spatially precise way. Here we
investigated this question for weakly invasive recordings with
high-resolution, epidural ECoG arrays in macaque monkeys per-
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forming a covert attention task. We found that the ITR can be
increased to 242 bits/min in 200 ms decoding intervals, going
along with an almost error-free classification, hence promising
typing speeds for virtual keyboards in the range of one character
per second.

Materials and Methods
Behavioral paradigm and visual stimulation. Two male rhesus monkeys
(Macaca mulatta) were trained to a shape-tracking task (Fig. 1C) (for a
detailed description of the stimuli, see Taylor et al., 2005). During train-
ing and recording, the monkeys sat in a primate chair with the head
restrained. Visual stimuli were presented on a 21” CRT screen with a
frame rate of 100 Hz and a distance of 81 cm from the monkey’s eyes.

The monkeys were presented with two sequences of morphing shapes.
They started a trial by fixating a central fixation point and pressing a
lever. After 650 ms, two shapes were presented. In conditions FarF and
FarM (recorded in Monkey F and Monkey M, respectively), stimuli were
placed in different hemifields, at both sides of the fixation point (stimu-
lus center 0.9° below the horizontal meridian and 2.9° aside the vertical
meridian). The stimuli covered a region with a diameter of �4° (Fig. 1A).
In condition CloseF, two smaller stimuli (diameter �0.8°, center-to-
center distance �1.35°, eccentricity 1–1.5°) were placed in the same
hemifield (Fig. 1B). One of the sequences (target sequence) was cued
within the first 200 ms of stimulus presentation by green coloring of the
shape that faded to white within the subsequent 400 ms. After a static
shape presentation of 1300 ms, both shapes morphed through a sequence
of different shapes, referred to as S2–S6 (Fig. 1C) according to their
sequential position. The monkeys had to release the lever at the reoccur-
rence of the initial shape in the target sequence. The response window
ranged from 400 ms before the end of a morphing cycle to 750 ms after
the beginning of the next cycle. The time of reoccurrence of the initial
shape was randomly selected from S3 to S6. The other shape sequence
served as a distracter. A reoccurrence of the initial shape in the distracter

sequence had to be ignored. A correct response was rewarded with a small
amount of fruit juice. If the monkeys broke fixation (rectangular fixation
window of �0.75° for conditions FarF and FarM, round fixation window
with a radius of 0.5° for condition CloseF), or responded too early or too
late, the trial was aborted without reward.

In general, epidural recordings have a limited resolution because they
average signals from neuronal populations with spatially distributed re-
ceptive fields. Hence, our motivation for the Close experiment performed
in Monkey F was to investigate whether at least some information about
the direction of attention can be decoded with epidural recordings if
stimuli are closely spaced.

For retinotopic mapping, small white squares (0.4° � 0.4°) were
flashed at different positions in the lower right quadrant of the visual field
while monkeys were engaged in a fixation task and kept their gaze within
�0.75° around the fixation point.

Surgical preparation. All surgeries were done under general anesthesia
and sterile conditions. After the monkeys mastered the fixation task, they
were implanted with a head post and a thin gold ring placed between the
conjunctiva and the sclera of one eye for measurement of gaze direction
using the indirect search coil method (Bour et al., 1984). After comple-
tion of the subsequent training for the shape-tracking task, the monkeys
were implanted with an array of flat platinum-iridium electrodes placed
epidurally over temporal cortex (mainly V4) and neighboring parts of
V1/V2 close to the lunate sulcus (Fig. 1E). The connector of the array was
embedded in acrylic cement on top of the skull. Stereotactic positioning
of the array was based on structural magnetic resonance images obtained
for each animal from a 4.7 T Bruker Biospec scanner. The precise location
of the implanted electrode array was estimated postoperatively by the
stereo-tactic coordinates determined during implantation, their com-
parison with structural magnetic resonance images obtained after im-
plantation, and morphological confirmation in one of the monkeys.

Recordings. For epidural recording of cortical field potentials, elec-
trode arrays (36 electrodes in Monkey M and 37 electrodes in Monkey F)
were used (Fig. 1 D, E). They were manufactured of Teflon-coated
platinum-iridium (90Pt/10Ir) wires (diameter 50 �m, Science Products)
and a 0.1 mm thick silicone foil (Goodfellow). Each electrode consisted
of platinum-iridium wire several centimeters long. One end of the wires
was uninsulated and bent into a loop with a diameter of 210 –220 �m.
These wires were inserted with a regular spacing of 3 mm into the silicone
foil with the uninsulated loop positioned in parallel to the foils’ surface
(and hence to the dura). At the foils’ side opposite to the dura, the wires
were glued with silicone (Dow Corning 734) to the silicone foil and
extended several centimeters over the arrays’ border. Their ends were
soldered to a connector (Binder). The electrodes’ impedances were typ-
ically 25 k� at 100 Hz. Two reference electrodes (platinum-iridium wire,
150 �m diameter) were placed frontally. In Monkey F, a third reference
was attached to the backside (i.e., directed to the bone) of the electrode
array (0.1 mm platinum-iridium foil, 4.5 mm diameter). For recording,
the array’s connector was connected to a multichannel head stage. Re-
cordings were referenced to the latter electrode in Monkey F and to a
frontal electrode for Monkey M. Signals were amplified (�40,000 in
Monkey F, �30,000 in Monkey M, bandwidth of 1–150 Hz) and re-
corded at a sampling rate of 1 kHz.

All surgical and experimental procedures were performed in accor-
dance with the European Communities’ Council Directive of November
24, 1986 (86/609/EEC) and with the regulations for the welfare of exper-
imental animals issued by the Federal Government of Germany and had
been approved by the local authorities.

Dataset seconds and data preprocessing. In each of the three datasets
(FarF, FarM with distant stimuli, and CloseF with near stimuli), trials that
terminated with a correct response were divided into two classes: class A
(attention on the one shape sequence) and class B (attention on the other
shape sequence). For one of the monkeys, some trials had to be rejected
because the signal occasionally saturated the amplifier.

The recorded field potentials were high-pass filtered with a digital filter
(Butterworth IIR filter, cutoff frequency 0.65 Hz at 3 dB, forward and
backward filtering to avoid phase shifts) to eliminate DC offset. Further-
more, the 50 Hz component corresponding to the line current was re-
moved from the measured data by the following procedure. The 50 Hz

Figure 1. Experimental paradigm and recording. A, B, Size and position of the two morphing
stimuli on the computer screen for the far (A) and the close condition (B). C, Time course of a trial
with four morph cycles. Shown are only the shapes of the target sequence. Gray shading repre-
sents the response window for this trial, and the blue region represents the time window TF. D,
Schematic drawing of a cross section of the array. E, Sketches of the position of the electrodes in
relation to visual areas V1 and V4. STS, Superior temporal sulcus; IOS, inferior occipital sulcus; LS,
lunate sulcus.
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line current signal was recorded during all trials. For each trial, a template
for the interference was calculated by cutting the time series of the trial
into �20 ms chunks that were time-locked to the zero-crossings of the 50
Hz signal. These chunks were averaged to yield a template, which was
subsequently subtracted from the original time series, again time-locked
to the zero-crossings of the line current.

For the datasets FarF and FarM, the current source density (Gevins,
1984) with unit V/m 2 was computed to suppress the effect of the com-
mon reference and to minimize spatial smearing (Nunez et al., 1997): For
each time bin, the second spatial derivative of the field potentials was
calculated with the Laplacian operator (Perrin et al., 1987) using Gauss-
ian radial basis functions for interpolation (Moody and Darken, 1989).

Data analysis and feature extraction. For each electrode �, the prepro-
cessed signals ��, j�t� with j denoting the trial number and t the time after
trial onset were convolved with complex Morlet wavelets ��t, f0�
(Kronland-Martinet et al., 1987) to obtain the wavelet coefficients
a�, j�t, f0� via the following:

a�, j�t, f0� � �
��

	�

���, f0��n, j�t � ��d� (1)

The spacing of frequency bands was logarithmic between 5 and 200 Hz,
chosen as f0�k� � �k�1f0�1� for k 
 1, . . . ,17 frequency bands starting
at f0(1) 
 4.84 Hz. For a sufficiently tight coverage of frequency space, we
set � 
 1.26. Because of the wavelet’s overlap in frequency space, data
from two neighboring frequency bands are not completely independent
(for ease of notation, we do not explicitly state the dependence of the
variables on frequency f0, trial number j, and electrode index � where
possible).

Based on the complex wavelet coefficients a(t), three features were
extracted from short time epochs in individual trials: average spectral
amplitude, average phase coherence, and average phase difference. By
introducing the amplitude 	 and phase �, we can write the wavelet
coefficients a as a 
 	exp(i�). For obtaining mean spectral amplitude A,
we averaged 	 over a time interval from t0 to t1:

A : �
1

t1 � t0
�
t
t0

t1

	�t� (2)

Using averaged data instead of the full set of all wavelet coefficients over
time led to a reduced complexity for the training of the classifiers, which
could be handled computationally. For obtaining phase coherence C and
phase difference �, we averaged phase differences between electrodes �
and �
 in the complex domain:

c�,�
 : �
1

t � t0
�
t
t0

t1

exp�i����t� � ��
�t��� (3)

giving us a complex number c from which C and � were extracted as
absolute value and angle via the relation c 
 C exp(i�), respectively. For
electrodes � and �
, �n,n
 represents the mean phase difference of the
phase difference distribution, whereas C�,�
 is inversely related to the
width of this distribution. The phase coherence assesses the stability of
the phase difference between two recording sites, yielding C 
 1 if the
phase differences are constant over a certain time interval, and C 
 0 if
the phase differences are equally distributed.

Coherence has a bias b that depends on the number N of independent

samples (degrees of freedom), which is in good approximation
�


2�N
for

N � 10 (Sun and Yang, 1992, their Equation 8). Because of the size of the
wavelet in the time domain, we get correlated values after spectral de-
composition of the signal, thus reducing degrees of freedom. The bias is
then mainly determined by the half-width of the wavelet’s envelope. For
Morlet wavelets with frequency f and scaling parameter k0, analyzing a

signal over a period T0, this bias becomes b �
1

2�k0

T0f
, which we verified

for our data. We always used k0 
 6 in our analysis, and T0 � T

�
2k0�2

2
f
denotes the part of the full analysis window of size T, which was

outside the Cone-of-Influence at the window’s borders.
In our analysis, this bias contains no extra information for decoding

the state of attention because we only compared coherence values with
the same degrees of freedom (i.e., analysis windows of equal length) via a
discrimination measure.

In total, a set of M electrodes allows one to analyze each of the (M 2 �
M)/2 different electrode pairs for the two data features average phase
coherence and average phase difference. In the following, we will leave
out the term “average” when referring to these features.

To investigate whether different directions of spatial selective atten-
tion can be reliably distinguished based on short data epochs in individ-
ual trials, we classified the recorded data according to the condition of
attention using support vector machines (SVMs) (Schölkopf et al., 2000;
Schölkopf and Smola, 2001), which deliver performances superior to
linear methods. For implementing the SVMs, we used the widely used
libsvm software package (Chang and Lin, 2011), which provides conve-
nient data preprocessing routines automatically searching the parameter
space of possible SVM realizations while calibrating the input data to
match the abilities of the classification algorithm. Radial basis functions
were chosen as kernels for classification.

Parameters of the SVM are always optimized on training data only,
whereas performance is tested on separate data. We divided each of our
three datasets into separate test and training data by a blockwise decom-
position. The data were first separated into six consecutive blocks of trials
(except for CloseF, where only five blocks were used) with approximately
the same number of trials per block. Each block contains the successful,
consecutive trials, which sometimes extend over consecutive recording
days. One of these blocks was used as the test dataset. The remaining
blocks were used as a pool for assembling the training dataset, for which
50% of all trials in that pool were selected randomly. This reduction of
training trial numbers by a factor of 2 was actually required by restric-
tions on the available computing power and led to a reduction of pro-
cessing time by a factor of 4. The selection was done such that the
proportion of trials for the two classes of attention in the full dataset was
conserved (i.e., chance levels pchance were constant). After classification of
the selected test block, the next block was taken as test data, and all other
blocks as the new training data pool. This procedure was repeated until
all data had been classified in a one-block-leave-out strategy, and the
resulting performances (percentage of correctly classified trials) were
averaged over all blocks, yielding the classification performance pc. This
kind of trial segmentation was necessary because the datasets were re-
corded in a block design, where attention was directed to the same loca-
tion in a series of subsequent trials. Without this procedure, slow
nonstationarities, lasting over several trials, would cause an artificial im-
provement in classification performance.

The chance level pchance of an uneducated guess was computed as the
percentage of occurrences of the most frequently presented class in all
trials. An increase (decrease) in performance above chance level was
considered to be significant if the probability to obtain an equal or higher
(equal or lower) performance by drawing from a binomial distribution
around pchance was �0.001.

Because of the differences in chance levels, we also computed the en-
tropy I (measured in bits) as a measure for the information obtained
from the signals. I allows a direct comparison of the classification power
between the three datasets and is computed via the following:

I � � pchance log2 �pchance� � �1 � pchance� log2 �1 � pchance�

� pc log2 �pc� � �1 � pc� log2 �1 � pc� (4)

Results
To investigate the potential of neuronal correlates of covert visual
attention in ECoG signals as a signal source for BCIs, we exam-
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ined how reliable the direction of attention to one of two spatially
separate stimuli in the visual field could be extracted from these
signals. Tables 1 and 2 contain detailed information about the
behavioral performance in the experiment. A typical example of
data obtained from the epidural ECoG recordings is given in
Figure 2A. It shows the average spectral power distribution along
the course of the trial for an attended stimulus, normalized to the
background activity before stimulus onset (for details, see Fig. 2
legend). A transient response to stimulus onset with a broad dis-
tribution over frequencies was followed by a sustained increase in
power, which was confined to the � frequency range between 30
and 100 Hz. As described previously (Taylor et al., 2005), the
mean power of this sustained �-band response averaged over
several hundred trials was strongly enhanced in the attended
condition compared with the nonattended condition (Fig.
2B), being visible even in single-trial local field potential (LFP)
traces (Fig. 2C).

Classification of attentional state
Because BCIs need to act in real time, we used short data episodes
taken from single trials to estimate which stimuli the animals
attended. For classification, we considered three “features” of the
LFP data, each of them averaged over a short time interval T.
These were spectral amplitudes A�, j� f0� for electrode � and fre-
quency band f0 in trial j, as well as phase coherences C�,�
, j� f0� and
phase differences ��,�
, j� f0� for electrode pairs (�, �
) (for defi-
nitions, see Materials and Methods). Chance levels (pchance) and
their corresponding threshold values for performances (pc) sig-
nificantly higher than chance level (p � 0.001) are listed in Tables
1 and 2.

High classification performance with a single electrode or
electrode pair
Classification performance for single electrodes (or single elec-
trode pairs) was estimated using data from time interval TF com-
prising the 1400 ms immediately preceding the monkey’s
response window. Figure 3A–C shows the classification perfor-
mance based on mean spectral amplitude A over TF for all single
electrodes, using all 17 frequency bands extracted between 5 and

200 Hz. In all datasets, temporal (T) recording sites showed the
highest classification performance. Electrodes corresponding to
occipital areas (O) allowed still good classification but with per-
formances that were considerably lower.

Classification performance based on the stability of the phase
difference between two recording sites as measured by the phase
coherence C for the same frequencies and time intervals TF is
shown in Figure 3D–F for all electrode pairs. The highest perfor-
mances in all three datasets were achieved with T–T pairs,
whereas they were clearly weaker for the O–O pairs and for the
T–O pairs, particularly in the Far condition. Similar results were
obtained from classification on the actual size of the phase differ-
ence �. Figure 3G–I shows that attention not only modulated the
precision of phase locking between two electrodes but also caused
the signals to lock at different phase differences.

Maximum performances obtained from, respectively, the best
electrode or best electrode pair, are summarized in Table 3. For all
three measures and datasets, high classification performance up
to a maximum of 94.8% was achieved. All listed values were
significantly different from chance level. This finding demon-
strates that all three features allowed good classification perfor-
mance for the location of attention. Interestingly, our control
experiment for nearby stimuli, originally expected to be most
difficult for distinguishing the direction of attention because of
the very small and closely spaced stimuli, consistently showed the
best classification performance in all three measures.

Classification performance improves with number of
electrodes/electrode pairs
Next, we investigated how performance depends on the number
of electrodes used for classification. For this, we combined data
from single electrodes (or electrode pairs) successively into mul-
tidimensional data vectors and classified them with SVMs: We
did this analysis for each of the three features (amplitude, coher-
ence, and phase difference) separately. Starting with the best elec-
trode (or electrode pair), further data were added with decreasing
rank in the single electrode (or electrode pair) classification per-
formances (again, each entry included all 17 frequency bins be-
tween 5 and 200 Hz) until values from 25 electrodes (or electrode
pairs) were combined. For each of the three features, classifica-
tion performance improved with increasing number of elec-
trodes (or electrode pairs) and saturated after adding 5–15
electrodes (or electrode pairs) (Fig. 4).

Maximal performances achieved by one of the combinations
comprising one to 25 electrodes (or electrode pairs) and the per-
formance for the full sets of 25 combined electrodes (or electrode
pairs) are listed in Tables 4 and 5, respectively. Best classification
rates were observed for the feature “amplitude” (Fig. 4).

Information about attentional state is maximal in the �-band
So far our analysis took signals from a broad frequency spectrum
between 5 and 200 Hz into account to identify the direction of
attention. To investigate how signals in different frequency bands
contribute to classification, we estimated for each of the three
features (amplitude, coherence, and phase difference) the classi-
fication performance based on each of the 17 single frequency
bands individually. We built three sets of electrodes (or electrode
pairs) containing the 25 electrodes (or electrode pairs) with high-
est ranks based on spectral amplitude (SetA), on phase coherence
(SetC), and on phase difference angle (Set�), respectively. The
spectral analysis of classification performance for these sets (Fig.
5) revealed that the majority of the information lies in the fre-
quency range �30 Hz. Peak values occurred predominantly be-

Table 1. Details about the distribution of trials and behavioral performancea

Correct trials
(attentional/nonattentional)

Mean response
time (ms)

Behavioral
performance (%)

FarF 4480 (2023/2457) over 15 d 1261 61.4
FarM 5209 (2639/2570) over 16 d 1380 78.8
CloseF 960 (546/414) over 5 d 1288 77.1
aThe first column shows the number of successful trials used for the presented analyses, recorded over the listed
number of days. The two ensuing values in parentheses break down the total number of trials into the two atten-
tional conditions. The second column lists mean times of the behavioral response relative to the beginning of the
morph cycle leading to the target shape. The third column reflects the behavioral performance of the animals and
shows the amount of correctly performed trials (disregarding eye-movement errors) during the whole experiments.

Table 2. Details about the significance levels for the resultsa

pchance

(%)
psig

( p � 0.001) (%) diff50% (%) diff75% (%) diff95% (%) diff99% (%)

FarF 54.8 57.1 �2.8 �2.4 �1.2 �0.6
FarM 50.7 52.8 �2.6 �2.2 �1.1 �0.6
CloseF 56.9 61.8 �5.8 �5.1 �2.7 �1.5
aThe first column contains the chance level of producing a correct answer with an uninformed guess. The second
column gives threshold levels of significance for deciding whether a performance value is significantly different from
chance level with an error probability p � 0.001. The remaining columns list maximum lower bounds for differences
in performance from which two given performance values pc1 and pc2 are considered to be significantly different
( p � 0.001). diff50% is for a range of classification performances pc1 in 0%–75%, diff75% for 75%–95%, diff95% for
95%–99%, and diff99% for 99%–100%. If the second performance value pc2 is, by the amount specified in the table,
either lower or higher than pc1 , the corresponding performance difference is significant.
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tween 60 and 80 Hz and came close to the values observed when
providing the SVM with data from all frequency bands together.
Hence, there was little, if any, nonredundant information outside
the �-band available, which could be exploited for classification
by SVMs. Similar as for classification based on all frequency
bands together, classification performance based on individual
frequency bands showed reduced performance if only single elec-
trodes instead of electrode (or electrode pair) sets were consid-
ered (for amplitude data, see Fig. 6A–C). Highest classification
performances based on only one frequency band for single elec-
trodes (or electrode pairs) are listed in Table 6. As for the elec-
trode (or electrode pair) sets, maximal information was
contained in the �-band between 61 and 97 Hz. Again, if the two
stimuli were closely spaced, highest classification performances
were observed (up to 91.8%). Comparison with the highest clas-
sification results obtained for single electrodes (or electrode
pairs) based on the full signal spectrum (Table 3) revealed a loss
in performance between �1% and 7%.

Figure 7 illustrates the good separation
of single-trial data between different con-
ditions of attention for all three features if
the two most informative individual fre-
quency bands from the best electrode (or
electrode pair) are considered. The red
and blue data clouds for the two atten-
tional conditions were well separable,
making classification even for simple lin-
ear classifiers easy.

High-performance classification is also
possible with short time windows
Using relatively large time windows of
1400 ms resulted in classification perfor-
mances, which can already saturate at
�90 –99% correct. For increasing the bit
rate of a BCI based on visual attention, it
might thus be possible to decrease the size
of the time window without reducing per-
formance by the same factor. Based on the
sets of 25 electrodes (or electrode pairs)
described above (SetA, SetC, and Set�),
which had shown best performance for
the respective feature, we analyzed time
windows from 1400 ms down to 20 ms to
quantify how performance scales with its
length. The maximal performance over all
window positions was selected for each
window size. Figure 8A–C shows that deg-
radation of classification performance
was rather small. Substantial degradation
was only found for window lengths of
�200 ms. For Monkey F, performance
was maximal at a window size of 1000 ms,
achieving 99.9% for the feature “ampli-
tude” and closely spaced stimuli. With
decreasing window size classification,
performance dropped faster for coher-
ence and phase difference values than for
amplitude A. However, performance ex-
pressed as ITR in bits per minute (Fig. 8D)
was highest for very short time window
sizes (i.e., for 30 – 60 ms), showing that the
reduction in time necessary for perform-

ing the classification outweighed the loss in classification perfor-
mance. Based on amplitude values from 25 electrodes, the ITR for
these time window sizes reached values between 260 and 580 bits
per second.

Classification performance is modulated with morph cycle
Analyzing classification performance within sliding 200 ms time
windows allows to investigate the dynamics of attentional mod-
ulation of LFP signals along the time course of the trial (Fig. 9). It
turned out that classification rate changed dynamically along the
trial. It was lowest around the time when the morphing shape
reached one of the original shapes that were used to construct the
morphing sequence (at t 
 0 in Fig. 9A). Because for the target
shape, the mean response was 298 ms before this state, these were
times during the morph cycle where the monkey had already
identified the stimulus as being or not being the target shape. In
contrast, during the transition between two shapes A and B, clas-
sification performance for attention was large. Over these peri-

Figure 2. Basic LFP features. A, Time-frequency plot showing the average spectral power of one electrode over the time course
of a trial, in condition FarF. Neuronal data were recorded over temporal cortex and showed the largest classification performance in
dataset FarF. Spectral power (A 2) was normalized to the baseline activity before stimulus onset via (A2/A2,baseline) � 1. B, Corre-
sponding difference plot between the attentional conditions (attention inside the receptive field�attention outside the receptive
field). C, Raw LFP data for the attention inside (red) and the attention outside the receptive field condition (blue). Gray lines
between B and C indicate the morph cycle from which the data were taken.
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ods, the stimulus was highly ambiguous but began to provide
information about the shape B into which it will morph. Here the
monkey needed to identify and hence to attend the upcoming
shape to respond if necessary. To test whether this dynamic re-
flects solely the dynamics of shape deformation, we compared
this result with the time course for the first morph cycle. Al-
though the dynamics of the stimulus were the same as for the

Figure 3. Classification performance on data from single electrodes and single electrode pairs. A–C, Results for classification based on spectral amplitude A for the stimulus
configurations: A, FarF; B, FarM; C, CloseF. Performance values that were not significant (i.e., p � 0.001) are shown in pale blue font. The color scale on the right represents classification
performance. Classification performance based on phase coherence C (D–F ) and panels based on phase difference � (G–I ), for all single electrode pairs in the stimulus configurations:
D, G, FarF; E, H, FarM; F, I, CloseF. Performance is coded according to the color bar shown to the right of each panel. The white box represents T–T interactions; the green box, O–O
interactions; and the cyan boxes, O–T interactions. All other interactions include electrodes over regions that were not driven by the stimuli. For all panels, 17 frequency bands between
5 and 200 Hz from the time interval TF were used.

Table 3. Maximum classification performances on 17 frequency bands between 5
and 200 Hz on single electrodes (or single pairs of electrodes) over temporal
cortex, using time interval TF

a

A � C

FarF 79.3/0.258 82.7/0.329 79.7/0.265
FarM 83.2/0.347 81.8/0.315 67.9/0.094
CloseF 92.7/0.609 94.8/0.691 94.2/0.667
aValues are given as %/bit.

Figure 4. Changes in classification performance with number of signals used. Classifi-
cation on spectral amplitude A (black), on phase coherence C (blue), and on phase differ-
ence � (red) is shown for all three datasets: A, FarF; B, FarM; C, CloseF. One to 25 electrodes
(or electrode pairs) were subsequently included into the classification analysis, according
to their rank defined by their single electrode (or electrode pair) classification perfor-
mance. Again, datasets included all 17 frequency bands between 5 Hz and 200 Hz from
time interval TF.
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subsequent morph cycles shown in Figure 9A, the shape S2 at the
end of the cycle could never have been the target shape. We found
that classification performance is much lower (Fig. 9B, compare
equivalent periods shaded in blue). This result was similar for the
FarF condition but not for the FarM condition where perfor-
mances were comparable.

Finally, we investigated whether combining information from
different features of the LFP data increases classification perfor-
mance. For reasons of computational complexity, we investi-
gated these aspects for reduced sets containing only the temporal
electrodes. We found that classification based on phase coher-
ence C or phase difference �, combined with spectral amplitude
A, did not surpass classification performance on spectral ampli-
tude alone (Fig. 9). Combining C and � provided an improved
classification performance compared with the individual features
(data not shown) but lower classification performance than any
combination, including the spectral amplitude.

Discussion
The results showed that it is possible to decode the allocation of
attention to one of two morphing shapes based on epidural field
potential recordings over visual cortex. Classification was per-
formed rapidly and reliably on single trials in this framework.
Signal features supporting high classification performance in-
cluded the spectral amplitude of �-band activity between �30
and 100 Hz as well as the phase coherence and the phase differ-
ence between signals from different electrodes in the same fre-
quency range. Most informative recording sites concentrated at
temporal cortex-containing area V4. Using more than one elec-
trode (or electrode pair) improved classification considerably
and allowed very high performances up to 99% within analysis
windows of 1400 ms width. Using shorter analysis windows

caused an only moderate reduction in
classification performance. Correspond-
ingly, the ITR was maximal for windows
of 30 – 60 ms, reaching up to 580 bits/min.
The time course of classification perfor-
mance based on 200 ms windows revealed
a characteristic modulation paralleling
the putative attentional requirements of
the task.

Thus, recordings with chronically im-
planted epidural electrode arrays over vi-
sual cortex provide signals that are highly
informative about states of spatial visual
attention. With respect to stimulus shape,
a high and attention-dependent level of
discriminability was previously shown for
epidurally recorded V4 and V1 field po-
tentials (Rotermund et al., 2009) and for
not simultaneously recorded populations
of single units (Zhang et al., 2011). The
finding that such high amounts of infor-
mation were obtained from single trials
within only a few hundred milliseconds
suggests that this type of recording is an
interesting source of signals for high-

performance BCIs. The remarkable performance was achieved
despite using epidural field potential recordings, which are com-
monly expected to deliver a low signal-to-noise ratio and
assumed to be less specific than subdural or intracortical record-
ings. Clearly, the epidural technique is less invasive and associ-
ated with smaller risks. Therefore, it may be more acceptable if

Figure 5. Discriminability of the attentional condition based on data from single frequency
bands. Classification performance on spectral amplitude A (black, SetA), phase coherence C
(blue, SetC), and phase difference (red, Set�), for the stimulus configurations: A, FarF; B, FarM; C,
CloseF. All data were taken from the period TF. The green line represents the chance level; and
the orange line represents the significance level with a p value of 0.001. Peak performance for all
datasets and features was always between 60 and 80 Hz.

Figure 6. Discriminability of the attentional condition based on data from single frequency bands. The panels show classifica-
tion performance on spectral amplitude A in dependence on frequency band and electrode (or electrode pair) index according to
the color bar to the right, for the stimulus configurations: A, FarF; B, FarM; C, CloseF. Electrode(-pair)s are ordered according to
descending performances. Differences of chance levels result in different background color levels in the plots. Classification per-
formance for each frequency band is indicated in the corresponding axis label. All data were taken from the period TF.

Table 4. Maximum classification performances achieved by combining data from
up to 25 single electrodes (or electrode pairs)a

AMax �Max CMax

FarF 93.3/0.639 87.1/0.439 91.3/0.567
FarM 95.3/0.726 87.1/0.445 87.1/0.445
CloseF 99.0/0.905 98.2/0.856 97.9/0.839
aValues are given as %/bit. Classification was based on 17 frequency bands between 5 Hz and 200 Hz and time
interval TF.

Table 5. Classification performance obtained from the entire set of the 25 best
electrode (or electrode pairs)a

A25 �25 C25

FarF 92.7/0.616 86.1/0.412 91.0/0.557
FarM 94.2/0.680 85.4/0.400 86.3/0.424
CloseF 98.9/0.899 98.1/0.850 97.5/0.818
aValues are given as %/bit. Classification was based on 17 frequency bands between 5 Hz and 200 Hz and time
interval TF.

Table 6. Maximum performance for classification based on one frequency band
with a single electrode (or electrode pair), using time interval TF

a

A � C

FarF 76.2/0.202@77Hz 80.8/0.288@61Hz 77.5/0.224@77Hz
FarM 79.0/0.258@77Hz 77.9/0.238@77Hz 66.1/0.076@77Hz
CloseF 91.8/0.577@97Hz 87.5/0.443@77Hz 87.8/0.451@97Hz
aValues are given as %/bit.
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patients are either in a state in which
opening of the dura should be avoided, or
if the expected improvements of life qual-
ity by a BCI do not justify possible risks by
a more invasive approach.

A second important aspect with re-
spect to BCIs was the temporal stability of
the ECoG measurements and the analyzed
features over extended periods of time.
Although the datasets to train the SVMs
and test datasets were not from inter-
leaved blocks or trials, and mainly from
different recording days, classification
performance and ITR were high. In con-
trast, in numerous studies using action
potential data, (e.g., Wu and Hatsopoulos,
2008;Lietal.,2011), thevariabilityofrecorded
responses required retraining of the decoding
algorithms in each session.

A third important factor critical for
BCIs is a sufficient ITR. In our setting, we
observed nominal performances of up to
139, 204, and 242 bits/min (depending on
the dataset) when decoding from 200 ms
time windows, which seems the shortest
time scale on which attention can be de-
liberately switched (Wolfe et al., 2000).
With a 1000 ms time window, ITRs de-
creased to 40.5, 46.3, and 58.5 bits/min.
However, these lower ITRs were accom-
panied by a higher reliability of a single
classification, which might be preferable
in settings where incorrect decisions re-
quire a large effort from the user to be
canceled. The most informative feature
was spectral amplitude, which can be ex-
tracted rapidly, and on-line, from recorded data. The excellent
separability of the data (as shown in Fig. 7) is a further advantage
because linear classifiers can be used without much loss in per-
formance. This becomes important if decoding algorithms need
to be adapted on-line (Rotermund et al., 2006; Li et al., 2011),
which is achieved faster for linear algorithms. Furthermore, suc-
cessful decoding in short time windows allowed observing rapid
fluctuations in the time course of classification performance,
which were maximal during the transition between two shapes.
At these times, an ideal observer would most accurately monitor
the stimulus for figuring out whether it will morph into the be-
haviorally relevant shape. In addition, performance was lower if
the morphing cycle was terminated by a shape that never could
have been the target shape. Together, these observation suggest
that the classification dynamics is linked more strongly to fast
variations of attentional demand during stimulus morphing than
to the actual stimulus dynamics. Given such changes of task de-
mands, highly trained animals are well known to modulate their
attentional efforts correspondingly (Ghose and Maunsell, 2002).
In addition, behavioral performance and neuronal activity pat-
terns have been shown to be influenced by fast and uncontrolled
fluctuations of attention (Cohen and Maunsell, 2010). The ability
to classify successfully even in short windows enables BCIs to
identify such fluctuations of selective attention. This can help to
identify and selectively access short periods providing highly re-
liable estimates for the focus of attention.

A fourth and unexpected observation was the high spatial
resolution of decoding the focus of attention based on epidurally
recorded ECoGs. The good performance for small and very close
stimuli suggests that the classification does not require the two
neuronal stimulus representations to be located far apart from
each other or even in different hemispheres. A possible reason for
the surprising discernibility are the particularly strong effects of
spatial selective attention on neuronal activity patterns, which
occur if target and distracter stimuli are located within the same
receptive fields, strongly competing for being processed (Moran
and Desimone, 1985; Reynolds et al., 1999; Lee and Maunsell,
2010). Evidence for such enhanced competition between stimuli
has not only been described for single-cell recordings, but also for
fMRI data (Pessoa et al., 2003), which are tightly related to the
here investigated �-band activity (Logothetis et al., 2001). Hence,
it is plausible that, in the present case, strong competition for the
same neuronal substrate between closely spaced stimuli enforces
more distinct activation patterns compared with conditions with
no competition for the same recorded neuronal population. If
this high resolution extends to stimulus constellations with more
than two stimuli, it would become possible to gain more than one
bit of information for each attentional selection of a stimulus by
displaying more than only two potential targets of attention
simultaneously.

This raises the question whether visual areas, such as V4, are
the optimal site for decoding the direction of attention with high
spatial resolution. It has been proposed that the direction of spa-

Figure 7. Discriminability of the attentional condition based on data from single frequency bands. The graphs represent the
data clouds for the two attentional conditions (in red and blue). The rows represent dataset FarF (A–C), dataset FarM (D–F ), and
dataset CloseF (G–I ). The columns represent the features spectral amplitude A (A,D,G), phase difference � (B,E,H ), and phase
coherence C (C,F,I ). Each dot represents one trial. For the scatter plots, the two most informative frequency bands of the best
electrode (or electrode pair) for the corresponding feature were selected. Classification performance for each frequency is indicated
in the corresponding axis label. All data were taken from the period TF.
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tially selective attention derives from the occulomotor system
programming ocular movements (Rizzolatti et al., 1987). In line
with such a premotor theory of attention, local electrical stimu-
lation in the frontal eye fields, an area tightly involved in saccade
planning, causes attention-like modulations of stimulus-driven
activity in retinotopically corresponding locations of area V4
(Moore and Armstrong, 2003). Furthermore, attending a certain
stimulus results in �-band synchronization of the corresponding
locations of the two areas (Gregoriou et al., 2009), indicating
their enhanced interaction (Womelsdorf et al., 2007).

Therefore, the occulomotor system might also provide signals
that allow for the decoding of the direction of attention. How-
ever, it has been shown that allocation of spatial attention and
planning of a saccade are not the same processes but can be dis-
sociated in physiological (Lebedev and Wise, 2001; Juan et al.,
2004; Lebedev et al., 2004) as well as psychophysical (Hunt and
Kingstone, 2003) investigations. In particular, the attention-
dependent synchronization with V4 neurons is observed selec-
tively for FEF visual neurons but not for movement or
visuomovement neurons (Gregoriou et al., 2012). These findings
suggest that neuronal activity related to saccade planning is not
necessarily representing the direction of attention and therefore
not a preferable choice for decoding the direction of attention.

Decoding the focus of attention depended on the number of
recording sites. For each of the three features (amplitude, coher-
ence, and phase difference), it improved with increasing number
of electrodes (or electrode pairs) and saturated after combining
5–15 electrodes (or electrode pairs) (Fig. 4). We attribute this
early saturation in classification performance to two factors: (1)
single electrode performance was already �80% correct, leaving
only limited space for further improvements; and (2) because of
the layout and placing of the electrode array, not more than �10
electrodes received stimulus-driven responses from temporal
cortex, which contained the recording sites most strongly mod-
ulated by attention.

Comparison of classification performance achieved for the
three features revealed comparable performances for single elec-
trodes (or electrode pairs) (Tables 3 and Table 6). Using multiple
electrodes (or electrode pairs) showed an advantage for the fea-
ture “amplitude” in the �-band for the set of very similar stimuli
in our experiment. This effect was most pronounced for analysis
window sizes �200 ms. The lack of gain in classification perfor-
mance achieved by combining different features might be attrib-
uted to two basic effects: (1) information among different
features can be highly redundant; and (2) providing more feature
dimensions with a less than linear increase in contained informa-
tion introduces additional noise, which will make learning of a
suitable classifier difficult. Because combinations rather de-
graded performance, it cannot be excluded that the model-free
approach with an SVM, which can only provide a lower bound on
information content, combined the different features also in a
destructive way. Therefore, advances in understanding the dy-
namics of cortical processing and how they express in the three
different features might allow for model-based approaches,
which use possibly existing nonredundant information.

A prototypical application for an attention-controlled BCI
application is the virtual spelling board (Blankertz et al., 2011;
Treder et al., 2011) using EEG recordings and stimuli consisting
of a matrix with several symbols. The user selects one of these
symbols by directing covert attention to it (Treder et al., 2011).
This approach can be most useful for patients who suffer from an
inability for volitionally controlled eye movements. Unlike EEG
recordings, ECoG recordings have a high spatial resolution and

Figure 9. Time courses of classification performance during the trial. Performance was
computed for subsequent, 200 ms time windows whose centers are marked by the dots.
The solid black line represents performance on spectral amplitude, and the dotted lines
represent classification performance on feature combinations (black-red for A and phase
difference �, black-blue for A and phase coherence C, and red-blue for � and C). The
frequency bands between 30.6 and 193.6 Hz, and all temporal electrodes (or the corre-
sponding electrode pairs) were used. The orange lines represent the significance level
( p � 0.001), and the green lines represent the chance level. A, The origin of the time axis
is centered at 1400 ms (one morph cycle, time course of cycle indicated below graph)
before the behaviorally relevant stimulus (target) appeared. B, First morph cycle from
shape S1 to shape S2, with time axis relative to trial onset. A, B, The blue shading repre-
sents the middle of a morph cycle.

Figure 8. Classification performance in dependence on time window size. Results are dis-
played as percentage correct for the features “spectral amplitude” A (black), “phase difference”
� (red), and “phase coherence” C (blue) for the configurations: A, FarF; B, FarM; C, CloseF. Data
from 25 electrodes (or electrode pairs) were used for the frequency bands between 30.6 and
193.6 Hz for time windows 
200 ms width (i.e., 200, 400, 700, 1000, 1200, 1400, and 1600
ms). For window sizes �200 ms (i.e., 20, 24, 30, 34, 40, 50, 74, 86, 100, and 150 ms), only
frequency bands for which the corresponding wavelets were fully fitting into the window were
taken. D, Same data displayed as performance measured in bits per minute for the configura-
tions: FarF (solid line), FarM (dashed-dotted line), and CloseF (dashed line), but only for spectral
amplitude A. For all these plots, time windows 
200 ms were stepped in 100 ms intervals, and
time windows �200 ms were stepped with half their size. We analyzed data from a time
interval starting 1700 ms before the beginning and ending 100 ms after the beginning of the
response window. The mean response times in the three conditions were outside the analysis
window (mean response time relative to the end of the analysis window: FarF, 171 ms; FarM,
290 ms; and CloseF, 198 ms). For all possible windows fitting within this time interval, the
classification performances were calculated and their individual maxima for each window size is
shown. D, The vertical blue line represents the border below it would not have been possible to
achieve a continuous repositioning of the focus of attention within the used time window. The
orange line represents the significance level ( p � 0.001), and the green line represents the
chance level.
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show stimulus specificity (Yoshor et al., 2007; Jacobs and Kahana,
2009). Given the speed, decoding accuracy, and high spatial res-
olution we already achieved with our straightforward approach
based on �-band signals from ECoG recordings, it appears feasi-
ble to realize a virtual speller with the whole set of characters and
based on covert attention. The most important limiting factor
would be the time to shift attention between targets rather than
the time window required for decoding the attended stimulus.
Because the focus of attention can be shifted volitionally 3–5
times in a second (Wolfe et al., 2000), spelling speeds of hundreds
of characters/min would be possible.

In our current setting, we trained a different SVM for each
subsequent time window after stimulus onset. This is adequate
for estimating information content but impractical for an appli-
cation where a continuous on-line classification is intended. If
construction of a corresponding “global” classifier should not be
possible, a virtual spelling board application is still feasible if the
stimulus has a well-defined onset (e.g., by showing a blank screen
before displaying the matrix of letters). After this onset, our cur-
rent classification scheme can be used with different SVMs on
subsequent time intervals. Classification results would then be
pooled for determining the currently selected letter. The advan-
tage of assessing the dynamics of attention over classification on
the whole presentation interval is that intended states of sus-
tained attention will possibly be better distinguished from
meaningless transient states. Such dynamical differences
might indicate whether a user wants to accept or to cancel the
current selection.

Together, the present work suggests that epidural field poten-
tial recordings can provide surprisingly detailed information
about cognitive states, such as the direction of covert attention
with high speed and accuracy. This provides a basis for new
high-performance BCI applications based on these states,
which provide the information transfer rate required for ef-
fective applications.
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