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Research has linked oscillatory activity in the « frequency range, particularly in sensorimotor cortex, to processing of social actions.
Results further suggest involvement of sensorimotor « in the processing of facial expressions, including affect. The sensorimotor face
area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how
oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscilla-
tory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful,
neutral, or happy expressions. Induced changes in « power during the different morphs, source analysis, and graph-theoretic metrics
served to identify the role of o power modulation and cross-regional coupling by means of phase synchrony during facial affect recog-
nition. Changes from neutral to emotional faces were associated with a 10 -15 Hz power increase localized in bilateral sensorimotor areas,
together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in
the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased
transregional connectedness as measured by node degree. Results suggest that modulations in o power facilitate early registration, with
sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disrup-
tive input and that subsequent o power decrease together with increased connectedness of sensorimotor areas facilitates successful facial

affect recognition.

Introduction

Identifying others’ emotional expressions is fundamental to so-
cial interaction. It has been suggested that emotional stimulus
processing involves recruitment of aspects of the neural and pe-
ripheral efference that occurs when one experiences that emotion
(Lang, 1979; Niedenthal, 2007). With the discovery of the mirror
neuron system in nonhuman primates as a background
(Rizzolatti and Craighero, 2004), lesion and neuroimaging stud-
ies in humans have shown similar sensorimotor activation during
both execution and observation of facial expressions (Adolphs et
al., 2000; van der Gaag et al., 2007) and impaired performance in
facial expression recognition after perturbation of activity in
the somatosensory face area (SFA) via transcranial magnetic
stimulation (Pitcher et al., 2008). Recent evidence suggests
that facial affect perception and recognition vary with the in-
tensity of affect expressed, with ~50% of an emotional expres-
sion transition sufficient for recognition with accuracy >80%
(Furl et al., 2007).
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Evidence further suggests a link between brain oscillations,
particularly activity near the « frequency range (~8-15 Hz), and
cortical processes supporting the perception and recognition of
facial affect. For example, indicative of mirror neuron system
activity, EEG studies demonstrate that 8—13 Hz oscillations over
sensorimotor regions (also termed the u rhythm) are suppressed
during an imagined social action (Pineda, 2005; Oberman et al.,
2007; Moore et al., 2012). A recognition-facilitating role of «
modulation may be inferred from the increasingly accepted no-
tion that the amplitude of « oscillations reflects the excitatory-
inhibitory level of neuronal ensembles (Pfurtscheller and
Aranibar, 1977; Klimesch et al., 2007), with decreases in a power
reflecting excitatory and increases of a power reflecting inhibi-
tory states (Haegens et al., 2011). Furthermore, a framework pro-
posed by Jensen and Mazaheri (2010) suggests that these local
excitability changes, mediated via o power, shape the architecture
of functional networks. These properties of « oscillations make
them a prime candidate for optimizing performance in task-
relevant regions and reducing processing capabilities in task-
irrelevant regions.

The present study sought to identify the role of sensorimotor
a during perception and recognition of emotional expressions,
by characterizing what occurs within sensorimotor areas (includ-
ing SFA) and by exploring overall connectedness as well as the
patterns of connectivity between sensorimotor and other regions
during the unfolding of facial affect recognition. The typical pre-
sentation of static images may not suffice to unravel the full
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dynamics of facial recognition. Therefore, dynamic facial expres-
sions were used. Because sensor-level analyses can confound local
brain events with activity generated elsewhere in the brain (e.g.,
intermingling SFA activity with concomitant visual sensory acti-
vation), brain activity was further analyzed in source space. The
primary hypothesis was that facial affect processing and recogni-
tion are accompanied by local modulation of sensorimotor «
power, which shape the integration of this region into a distrib-
uted network, in line with the Jensen and Mazaheri (2010)
framework.

Materials and Methods

Participants

The study included 15 male (age: mean * SD, 29.5 *+ 7.4 years) and 15
female (25.7 £ 3.2 years) white volunteers, screened with the Mini Inter-
national Neuropsychiatric Interview (Ackenheil et al., 1999) to exclude
psychiatric or neurological disorder. Participants had normal or
corrected-to-normal vision; 11 males and 14 females were right-handed
according to the Edinburgh Handedness Inventory (Oldfield, 1971). Par-
ticipants signed written informed consent before the experiment and
received 40 Euro at the end of the study. The study was approved by the
ethics committee of the University of Konstanz.

Stimulus material and procedure

Facial pictures of 20 white male and 20 white female models were selected
from the Radboud Faces Database (Langner et al., 2010). Faces had a
neutral expression or expressed fear or happiness. Each of the 40 models
provided all three emotional expressions (fear, neutral, happy). Three
videos were produced for each of the 40 models. Two showed a transition
from a neutral face to a fearful expression (NF) or a happy expression
(NH) of the same model. In the third video for each model, the transition
altered facial features (mouth, nose, or eye) of a neutral face of one model
toward the neutral face of another model of the same gender (NN). Thus,
instead of a feature change that required the recognition of a change in
emotional expression, the feature change in this condition required the
recognition of a change in model identity. This condition controlled
for effects of recognizing a change of invariant facial aspects without
emotional involvement. Videos were created using the face morphing
software Fantamorph (http://www.fantamorph.com/). Each video
lasted for 5's.

During MEG recording, subjects were instructed to passively view the
video sequences with emotional and neutral trials differing only by the
morph type described above. During the first second of each 5 s trial,
the video presented a static image of the initial expression (always neu-
tral). Across the next 3 s, the images gradually morphed toward the target
facial expression (either same model with fearful or happy expression or
different model with neutral expression) in 45 morph steps, such that
33% of the final expression was reached at the end of the 2 s and 100% at
the end of 4 s (Fig. 1 ). In the fifth second, the video presented a static
image of the final expression. To keep figure-ground contrasts constant,
a gray mask covered hair, ears, and neck so that for all stimuli only the
face was seen.

Across the 120 videos, 40 NF, 40 NN, and 40 NH were presented in
pseudo-random order, separated by a 5(*1) sec jittered intertrial inter-
val, in which a white fixation cross appeared in the center of a black
screen. Videos were presented via a projection system on a screen ~50
cm distant from the subject during MEG recording. The experimental
period lasted ~18 min.

In a subsequent session, the participant’s recognition performance
was assessed by self-report ratings. For these ratings, 7 frames were ex-
ported from 10 videos of 5 female and 5 male actors, representing 7 levels
of transition (neutral/emotional in percentages: 80/20, 70/30, 60/40, 50/
50, 40/60, 30/70, and 20/80). This resulted in a total of 140 pictures that
were used in the rating sessions. Pictures were presented randomly on a
15 inch computer screen for 50 ms each after a 2 s fixation-cross (base-
line) period. After each 50 ms face presentation, drawings of three man-
ikins appeared on the screen, whose eyes and mouths were formed to
indicate fear, neutral, or happy expressions; in addition, the (German)

J. Neurosci., April 3, 2013 - 33(14):6018 — 6026 * 6019

Cl) 0 33 67 100 1C|)0 Morph [%]

| | | |
neutral " “ I | %7 V-‘ | fearful
L~ 4 b= k=4 k=4 k=4 L=4
neutral

~-HHEEEE
~-HEEEEE-
= el Bl Bl ElE

Time [sec]

Figure 1. Example of pictures used for videos during MEG and subsequent rating task. The
x-axis above the faces indicates the percentage of emotional expression in the particular frame.
The axis below the faces indicates the corresponding period on the time scale of the unfolding
video (in seconds). The top row of faces represents the transition from a neutral to a fearful face
(NF); the middle row, transition from one identity to another without changes (NN); and the
bottom row, the transition from a neutral to a happy face (NH).

words for “fearful,” “neutral,” or “happy” were printed underneath the
faces across the respective manikin. Participants were instructed to move
the cursor to the manikin that reflected the emotion of the face just
presented and confirm their decision by left mouse click. An additional
left mouse click started the next picture. Performance scores were calcu-
lated by dividing emotional by neutral accuracy within morph level and
actor. Chance performance was 33%.

Data acquisition and analyses

MEG was recorded with a 148-channel whole-head magnetometer
(MAGNES 2500 WH, 4D Neuroimaging) in a magnetically shielded
room while subjects lay on their back. Before each session, subjects na-
sion, inion, Cz, left and right ear canal, and head shape were digitzed with
a Polhemus 3Space Fasttrack. Subjects were instructed to passively watch
the videos and avoid, if possible, any body movements. The continuous
MEG time series was recorded with a sampling rate of 678.17 Hz and a
bandwidth of 0.1-200 Hz. Epochs lasting from 3 s before to 7 s after the
onset of each video were extracted. For artifact control, epochs contain-
ing movement artifacts or SQUID jumps were first rejected based on
visual inspection. Then, epochs containing heart, eye-blink, and hori-
zontal eye-movement artifact were rejected based on independent com-
ponent analysis. The three conditions (NF, NN, and NH) did not differ in
the average number of good trials retained per subject (mean * SD: NF,
38.5 = 1.9; NN, 38.7 = 1.6; NH, 39.1 = 1.2).

Planar gradient calculation. MEG data were transformed into a planar
gradient configuration for each sensor using signals from neighboring
sensors (Bastiaansen and Knosche, 2000). This procedure is a spatial
high-pass filter emphasizing activity directly above a source, simplifying
the interpretation of sensor-level data (Hamaldinen et al., 1993).

Frequency analysis. Spectral analysis followed the procedures de-
scribed previously (Tallon-Baudry et al., 1997). The signal from each trial
was convolved with a complex Morlet wavelet: w(t, f,) = Aexp(—t/
20 )exp(2imfyt), where o, = m/27rf,, i was the imaginary unit, and A =
(o\/m) "2 was the normalization factor. The trade-off between fre-
quency and time resolution was determined by the constant 1 = 7. The
time-frequency representation of power was calculated by averaging the
squared absolute values of the convolutions over trials.

Source analysis. A frequency-domain adaptive spatial filtering algo-
rithm (dynamic imaging of coherent sources) served to estimate the
sources of activity that contributed to the effects at the sensor level (Gross
et al., 2001). This algorithm uses the cross-spectral density matrix ob-
tained from the data to construct a spatial filter optimized for the specific
location (voxel). Time windows and frequency bands of interest were
based on results obtained at the MEG sensor level. Using individual head
shapes, individual structural MRIs were coregistered to the MEG coor-
dinate system via NUTMEG (Neurodynamic Utility Toolbox for Mag-
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netencephalography; Dalal et al., 2004). A realistic, single-shell brain
model (Nolte, 2003) was constructed based on the structural MRI col-
lected for each participant (Philips Gyroscan ACS-T 1.5 T, field of view
256 X 256X 200 sagittal slices). An MEG source-space voxel size of 10
mm? was used for the leadfield computation. The difference in source
estimates between prestimulus baseline and recognition-related activity
was evaluated for each condition (NF, NN, and NH): first, sources were
quantified for each subject within each condition across trials, compar-
ing differences in variance across trials by ¢ tests. Then, t values were
converted into z values (spm_t2z.m-SPM8; http://www.fil.ion.ucl.ac.
uk/spm/) to normalize the power values; this z transformation corrects
for extreme variance, which can bias grand averages and group statistics.
Thus, z values represent the normalized differences of source estimates
between prestimulus baseline and recognition-related time windows.
Source estimates were interpolated onto the individual anatomical
images and subsequently normalized to a standard MNI brain for
group statistics and for illustrative purposes. This interpolation to
finer voxel space does not alter the resolution at which source activity
was originally modeled (grid spacing at 1 cm). Group differences were
calculated using dependent-sample ¢ tests. If not indicated otherwise,
reported comparisons and, hence, thresholds in statistical images
used an « level of p < 0.05.

Functional connectivity analysis. Functional connectivity between cor-
tical regions involved in facial affect decoding was assessed by means of
phase synchrony (Lachaux et al., 1999). Whereas uniformly distributed
phase differences between two oscillations reflect independence of the
associated generators, consistency in phase difference indicates an inter-
action between the two oscillations and/or a common driving force.
Phase synchrony, applied to source estimates similar to the procedures
described by Keil et al. (2012), was computed for time and frequency
windows of interest derived from the sensor-level analysis for each voxel
relative to all other voxels within the entire brain volume. More spe-
cifically, the single-trial data for the time and frequency range iden-
tified in the sensor-level analysis was extracted after Fourier
transformation applying a 0.5 s sliding Hanning window. Based on
the cross-spectral density matrix, the single-trial complex values were
then transformed into source space by multiplication with beam-
former spatial filters. These filters were constructed from the covari-
ance matrix of the single trials and the respective leadfield computed
by applying a linear constrained minimum variance beamformer
(Van Veen et al., 1997). Filters were constructed for an interval cor-
responding to the time window identified in the sensor-level analysis.
This procedure yields complex values for every voxel and single trial.
The complex values were then used to compute the phase-locking
value between each voxel and all other voxels.

Analysis of functional connectedness by node degree. The Jensen and
Mazaheri (2010) framework predicts that @ power increase in a given
cortical region facilitates or modulates an integration of the respective
cortical region into a distributed network. This prediction can be tested
by quantifying overall connectedness of the elements (nodes) in the net-
work as the sum of the connections (edges) each single node has with
all other nodes in the network (www.brain-connectivity-toolbox.net;
Rubinov and Sporns, 2010). In graph theory, this metric is commonly
known as node degree (Bullmore and Sporns, 2009). Derivation of
graph-theoretic measures, such as node degree, requires an adjacency
matrix (A), in this case consisting of entries with the value 1 for the
presence of a connection between two nodes and a 0 for the absence of a
connection. A single A matrix was used with each row and each column
being a voxel, and each entry in the matrix being the representation of the
relationship between 2 voxels. In the present context, nodes may be
clusters of voxels or individual voxels. Because brain connectivity is not
binary, arbitrary thresholds are applied to generate A.

For obtaining A in the present study, a connection between two voxels
was considered meaningful if the probability under the null hypothesis
that the phase differences are drawn from a uniform distribution was
0.1% (Rayleigh test; Fisher, 1993), with A entry = 1if p < 0.001 and 0 if
p > 0.001. Node degrees were also calculated using thresholds of 5% and
1%. Because the outcomes were virtually identical, only data thresholded
at 0.1% are reported. Node degrees were calculated separately for condi-
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tions for a baseline and simulation period of an equal length respectively.
Recognition-related modulations of node degree were expressed relative
to the baseline period ([recognition degree — baseline degree]/baseline
degree), where positive values indicate an increased overall connected-
ness and negative values an overall decreased connectedness of the re-
spective voxel with all other potentially related voxels.

Statistical analysis. For each subject, time-frequency windows of sig-
nificant differences between conditions were defined via cluster-based,
dependent-sample t tests with Monte Carlo randomization following the
procedure described by Maris and Oostenveld (2007). The Monte Carlo
estimate describes the comparison of randomized test statistics with the
observed test statistic and identifies sensor clusters with significant group
differences on both sensor and source levels. Pairwise differences be-
tween conditions (NF-NN, NH-NN, and NF-NH) in sensor clusters were
accepted as statistically significant when they were below the 5% level,
with the test statistic having been defined as the sum of the ¢ statistics of
the sensors or source-space voxels within the respective cluster. Normal-
ized power changes ([activity — baseline]/baseline) were computed sep-
arately for the three conditions at each sensor. The baseline period was
defined as 3 s before face onset.

Offline treatment of the MEG signals was accomplished mainly
with the MATLAB-based open source signal processing toolbox field-
trip (Oostenveld et al., 2011) complemented by in-house MATLAB
functions.

Results

The major goal of the present study was to elucidate the local and
network-level dynamics in the « frequency range during facial
affect processing. The following analysis steps served this goal.
First, behavioral data (collected after the MEG session) were an-
alyzed to determine the level of transition (from neutral to emo-
tional) at which emotional expressions were reliably identified.
The resulting level of transition for reliable affect recognition was
then assigned to the respective time during the video presentation
at which this level of transition was reached. This allowed the
definition of a prerecognition phase (up to the critical level of
transition) and a postrecognition phase (thereafter). MEG anal-
yses considered these two phases separately. Next, following the
goal to describe local a dynamics, local synchronization (power)
in the « frequency range was analyzed on the sensor level and on
the level of potential generators (source level). Second, serving
the goal to determine network level dynamics, the level of con-
nectedness was investigated in the two time periods on the source
level via the node degree metric. As an additional step, the pattern
of connectivity in the prerecognition period was examined in
more detail using the sensorimotor cortices as seed regions. This
analysis served partly as a control to rule out trivial effects, such as
volume conduction, which may adversely affect node degree. The
subsequent description of results will follow this sequence of
analyses.

Recognition performance: determining the level of expression
in the unfolding emotion that allows reliable facial affect
recognition

Figure 2 illustrates recognition performance during the post-
MEG procedure expressed as mean reported recognition as a
function of percentage of transition from neutral to emotional
expression. These morph proportions are associated with partic-
ular phases of the dynamic video stimuli (Fig. 1) viewed during
MEG. This provided per-subject definitions of prerecognition
and recognition periods in the analysis of MEG data. Figure 2
shows that, when the presented face morphed to a 50% fearful or
happy expression, on average subjects correctly recognized the
expression on >80% of the trials, with no reliable differences
between fearful and happy conditions (ANOVA with Huynh-
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Figure2. Group mean percentage of correct indication (by mouse click) in the rating session
of the recognized emotion (ordinate) as a function of the proportion of transition from neutral
to emotional expression (abscissa), which varied between 30% and 70% emotional. Error bars
indicate SEM.
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Local neuronal dynamics in the prerecognition period reflect
«a power modulation in sensorimotor and visual areas

Figure 3A depicts power changes from prestimulus baseline for
the three conditions, averaged across sensors and participants.
Video onset prompted an increase in « (10—15 Hz) power with
maximum between 1 and 3 s. (The change from neutral to emo-
tional started at 1 s and reached 67% of morph proportion by 3 s.)
As verified by nonparametric permutation analyses, the power
increase was smaller over a frontocentral sensor cluster (Fig. 4A)
for NN (no change in emotion) than for NF and NH (NF vs NN,
p < 0.01; NH vs NN, p < 0.03). Power increase was larger when
neutral expressions changed to fearful than for transitions to
happy, confirmed for a left centroparietal sensor cluster (p < 0.01).
In the same time range, « power decreased over parieto-
occipital sensors (Fig. 3B). Source reconstruction (Fig. 3C)
suggested origins of the a power in-
crease in bilateral sensorimotor areas
and origins of the o power decrease in
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cortices. Source reconstruction (Fig.
4C) verified significant differences in «
power for both emotional conditions
relative to the neutral conditions in bi-
lateral sensorimotor (a power increase),
visual cortical areas (a power decrease),

change from baseline [%]

1
&
|

Figure3.

occipital gyrus, 43, —77, 2; middle occipital gyrus, — 14, —89, 12.

Feldt correction: morph percentage, F(4 4, = 257.93, p < 0.001;
emotion, F(; 5oy = 0.024, not significant; morph X emotion,
Fiy116) = 242, p < 0.08). In light of this time course in the
relationship between proportion of morph and judgment perfor-
mance, MEG data were analyzed for the periods 1-3 s (largely
before recognition) and 3.5-5 s (largely after).

A, Time-frequency representations of power for the NF, NN, and NH conditionsillustrating grand-averaged activity for
all subjects across two representative sensors (marked by black dots in B). Video began at 0 ms on the lower x-axis. The upper x-axis
indicates the percentage of emotional expression in the particular frame. B, Scalp topography of 1015 Hz activity 1-3 s after
stimulus onset (dashed rectangles in A). C, Source reconstruction of the «z power modulation: colored areas define voxel of
significant differences between prestimulus baseline and task-related windows, the color bar (right) indicates z-transformed ¢
values (see Materials and Methods). Only voxels with differences (z values) at << 0.05 significance level are presented with warm
colorsindicating an  powerincrease in bilateral SFA brain areas. Cold colors indicate a bilateral power decrease over visual cortical
areas. MNI coordinates for significant areas are as follows: postcentral gyrus, 47, —19, 53; postcentral gyrus, 47, — 19, 55; middle

and left occipitoparietal regions (larger
decrease for NF than NH). Thus, local «
dynamics in the critical period of facial
affect recognition are characterized (in
both sensor and source space) by a pat-
tern of power increase in sensorimotor
and decrease in visual cortices.

change from baseline [%]

Network dynamics in the
prerecognition period show that a
power changes are accompanied by
inverse modulations of node degree
Changes in node degree associated with
these condition-specific changes in « ac-
tivity are summarized in Figure 5. Figure
5A illustrates the connectivity at a fre-
quencies 1-3 s after video onset. Reduced
node degree indicated overall disconnec-
tion of both sensorimotor cortices deter-
mined as generating o power increase (see
above). In the same interval, visual areas,
including bilateral fusiform face areas, de-
termined as generating o power decrease
(see above) exhibited an increase in node
degree. Figure 5A (scatter plots) illustrates
relationships between « power and node
degree. The respective values were ex-
tracted from bilateral sensorimotor and
visual areas, respectively. As no hemi-
spheric differences were evident, values
were averaged across hemispheres. A sig-
nificant negative relationship between «
power increase in sensorimotor areas and node degree indicates
that higher oscillatory power was associated with less connectivity
with all other brain regions (Pearson correlations: NF, r = —0.61,
p < 0.001;NN, r = —0.34, p = 0.06; NH, r = —0.55, p < 0.003;
Spearman correlations: NF, r = —0.56, p < 0.002; NN, r =
—0.31, p = 0.09; NH, r = —0.53, p < 0.003). A test of homoge-

z-values
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of the postcentral gyrus potentially, in-
cluding the SFA as well as extended areas
over the left precentral and middle frontal
gyri) were less connected with other brain
areas in NF and NH than in NN (Fig. 5B, B
left and middle panels). NF prompted
even more disconnection of the bilateral
sensorimotor areas together with stronger
connectedness of the medial postcentral
gyrus than did NH (Fig. 5B, right panel).

Node degree effects are caused by
modulations of

long-range synchronization

Using phase synchrony as a metric to de-
rive node degree does not exclude the
possibility that differences between con-
ditions reflect local or interregional
changes in connectivity. The former
might affect the node-degree analysis via
volume conduction, which cannot be
completely controlled (Schoffelen and
Gross, 2009). Even though volume con-
duction by trivial power differences do
not seem very likely due to the inverse re-
lationship between o power and node de-
gree, the reported effects could still be
confounded by local phase synchroniza-
tion differences. In particular, the
condition-specific spatial filters used for
source reconstruction might affect con-
nectivity estimates, in that stronger o
power could result in more focal spatial filter estimates. As a
consequence, focal spatial filters associated with fewer local vox-
els with a significant phase-locking value and therefore reduced
node degree may affect connectivity results. To evaluate this pos-
sible confound and with the additional goal of quantifying a more
specific pattern of connectivity changes for sensorimotor areas
(including SFA) as the regions showing the greatest affect-related
effects, the connectivity analysis was repeated with bilateral sen-
sorimotor areas as the predetermined seed region (MNI coordi-
nates: SFA,.; = —46, —25, 58; SFA;,, = 46, —25, 58). The
Euclidian distance between the seed and other local peaks ranged
from 1.8 cm (premotor area) to ~4.5 cm (occipital brain areas).
Furthermore, spatial filters were based on the entire —3 to 3 s
period around video onset for all three conditions collapsed to-
gether. A potential confounding effect of local & power on con-
nectivity should result in higher degrees of connectivity with a
maximum exactly at the seed region, decreasing monotonically as
a function of distance from the corresponding seed voxel. Figure
6 clearly shows that this was not the case. Indeed, the minimum
distance of 1.8 cm still exceeds the 1 cm spacing of grid points in
MEG source space. The connectivity profile of the SFA is charac-
terized mainly by long-range disconnections with prefrontal

difference in change
from baseline [%]

z-values

Figure4. A, Difference in time-frequency representations of power during the initial registration stage for the contrasts NF >
NN, NH > NN, and NF > NHiillustrating grand-averaged activity for all subjects across sensors of significant clusters (marked by *
inB). Axes as in Figure 3. B, Scalp topography of the difference in 10 —15 Hz activity 1-3 s after stimulus onset (dashed rectangles
in A). Sensors marked with * are part of significant clusters obtained after permutation analysis ( p << 0.05). €, Source reconstruc-
tion of the difference in « power modulation confirmed in B. Colored areas define voxel of significant differences based on
z-transformed t values (color bar on the right; analysis as described for Fig. 3¢). Warm colors indicate group differences in « power
increase, and cold colors indicate group differences in o power decrease. MNI coordinates for areas of significant activity differ-
ences: NF versus NN, postcentral gyrus, — 56, —29, 48; postcentral gyrus, 51, — 16, 48; superior frontal gyrus, —5, 4, 69; middle
frontal gyrus, 29,61, 14; middle frontal gyrus, — 28,61, 15; NHversus NN, postcentral gyrus, — 56, — 27, 51; superior frontal gyrus,
—3,0,71; middle frontal gyrus, 32, 17,62; cuneus L, —4, — 93, 31; NF versus NH, cuneus, — 16, — 94, 21; superior parietal lobule,
32, —60, 61; superior frontal gyrus, 8, — 20, 72; middle frontal gyrus, 25, 17, 61.

(MNI: 11, 46,45) and parieto-occipital (MNIL: —1, —72,52) brain
areas, implying that the reported node degrees are not an artifact.

Local neuronal dynamics in the postrecognition period reveal
a pattern of & power and connectedness opposite to the
pattern in the prerecognition period

Oscillatory activity was examined for the 3.5-5 s epoch of face
presentation during which morph proportion and recognition
performance reached ~100%. The time-frequency representa-
tion of power for the NF versus NN and NH versus NN contrasts
during the postrecognition period in Figure 7A shows more
power decrease in the 8—14 Hz range for emotional than for
neutral faces over bilateral central and left temporal sensor clus-
ters (Fig. 7A, scalp topography plots, NF > NN, p < 0.02; NH >
NN, p < 0.02). Source reconstruction suggested an origin of the
power decrease primarily in the left somatosensory face area
along with larger power increase in primary and secondary visual
areas (Fig. 7B). These brain regions were again characterized by
relative decrease and increase in connectedness with other brain
regions, respectively (Fig. 7C). Thus, in this later interval, viewing
emotional faces was associated with enhanced connection of the
left sensorimotor face area to other brain regions and relative
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A, Distribution of significant (z-transformed) ¢ values illustrating increases or decreases in connectivity relative to prestimulus baseline for the NF, NN, and NH conditions. Cold colors

indicate a decrease in connectivity (decoupled cortical area), and warm colors indicate an increase in connectivity to other brain regions (coupled cortical area). The scatter plots in A illustrate the
relationship between connectivity and e power modulation (assessed across participants, with each dot representing one participant) for the averaged activity extracted from bilateral sensorimotor
cortex (SC) nodes and bilateral occipital face area (OFA) nodes. Significant relationships were observed only for the NF and NH conditions specifically in the SFA. Bar plots illustrate slope differences
confirming a stronger power-connectivity relationship for the fearful than for the neutral (**p << 0.01) and happy (*p << 0.05) conditions. B, Distribution of significant (z-transformed) ¢ values
indicating stronger decoupling of bilateral somatosensory and left prefrontal areas (negative values) for the NF > NN, NH > NN, and NF > NH contrasts. MNI coordinates: NF versus NN, postcentral

gyrus, —47, —32,48; precentral gyrus,

—44, —6,48; postcentral gyrus, 56, —32, 48; NH versus NN, inferior parietal lobule, —52, —36, 43; postcentral gyrus R, 59, —33, 52; paracentral lobule,

3, —33,72; NF versus NH, postcentral gyrus, —61, —25, 41; postcentral gyrus, 61, —29, 43; paracentral lobule, 0, —48, 66.

disconnection of the bilateral occipital gyri, including the fusi-
form face areas.

Discussion

Dynamics of a power and connectivity suggests a two-stage
process in perception of emotional facial expressions

The present hypothesis of a particular role of « oscillatory activity
in the decoding and recognition of facial expressions was derived
from evidence highlighting the role of the human somatosensory
face area (SFA) in facial affect recognition (Adolphs et al., 20005
Pitcher etal., 2008), the significance of rhythmic signal variations
in the a frequency range for perception and cognition (Klimesch
et al., 2007; Hanslmayr et al., 2011; Jensen et al., 2012), and the
suppression of « (mu) activity over central EEG electrodes during
observation of social interaction (Oberman and Ramachandran,

2007; Oberman et al., 2007; Moore et al., 2012). Behavioral data
indicated that ~50% transition from neutral to emotion expres-
sions was required for reliable recognition. Based on this finding,
analyses of o dynamics during videos of unfolding facial affect
expressions were separated into prerecognition and postrecogni-
tion periods. The distinct dynamics of a power modulation in
local activity and network connectivity observed in these two
time periods supported the notion of distinct, large-scale neuro-
nal processes. In the prerecognition period, a specific pattern of «
oscillatory power increase could be observed particularly in sen-
sorimotor areas thought to include the SFA, accompanied by a
decrease in visual sensory areas during the prerecognition period.
This was followed by a reversed pattern in the postrecognition
period. Importantly, power changes were paralleled by inverse
patterns of connectedness of the relevant brain regions, provid-
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connectivity

Connectivity analysis using left and right SFA as seed regions (left graph; crossing of red lines indicates MNI coordinates). Left graphs, Brain regions exhibiting connectivity decrease

~20% from prestimulus baseline during NF versus NN (top) or NH versus NN (bottom) are indicated by blue colors for coronal, sagittal, and transversal slices.

ing the first direct support of a framework proposed by Jensen
and Mazaheri (2010): in the prerecognition period, sensorimotor
a power increase was accompanied by considerable decoupling
as indicated by decreased node degree, and decreased o power in
visual cortex was associated with increased connectedness. The
opposite pattern unfolded during the postrecognition period.
Thus, using dynamic stimuli, the present study provided initial
evidence of a two-phase pattern of & modulation as well as iden-
tifying relevant neural generators.

Functional meaning of & power and connectivity
modulations in the prerecognition and postrecognition
periods

In the framework of Jensen and Mazaheri (2010), these distinct
power and connectivity modulations may be interpreted as fol-
lows. Depending on the stage of facial affect processing, informa-
tion in either visual or sensorimotor systems is either prioritized
or actively suppressed; both processes are putatively mediated via
aactivity in the respective regions. At an initial registration stage,
increased input gain in visual areas (power decrease/connectivity
increase) is required along with circumscribed decoupling of the
sensorimotor (face) area (power increase/connectivity decrease).
This initial processing is followed by a recognition stage charac-
terized by the opposite pattern, increasing local & power and
decreasing information flow to the rest of the brain from visual
cortex, as visual input is no longer required. In line with the
notion that a specific reactivation of neuronal circuits is necessary
for subjects to retrieve the association of certain facial configura-
tions with particular emotions (Adolphs et al., 2000) and that
sensorimotor representations are prerequisite to processing
emotions (Damasio, 1994), successful recognition requires in-
creased information flow particularly between SFA and the rest of
the brain, the latter provided by increased processing gain («
power decrease) and increased connectivity upon recognition in
the postrecognition period.

An increase in a power in sensorimotor areas was linearly
associated with reduced node degree (Fig. 5, left column of scatter
plots) that resulted mainly from decoupling of regions associated
with the SFA from other regions (Fig. 6). Assuming that an in-
crease in o power in task-irrelevant brain areas reflects the priv-
ileging of information flow to task-relevant brain areas (Klimesch
etal., 2007; Jensen and Mazaheri, 2010), this suggests a significant

role of SFA in mediating perception of facial affective expression
(Adolphs et al., 2000; Pitcher et al., 2008). It is possible that the
timing of involvement of sensorimotor systems along with their
integration into a widely distributed network is critical for facial
affect recognition. Premature activation of these regions before
sufficient visual information flow might facilitate erroneous af-
fect recognition. As rapid and precise encoding of facial expres-
sion is beneficial in social interaction, a precise and selective
mechanism is needed to separate expression-relevant from task-
irrelevant facial features. The observed pattern of a power
increase and connectivity decrease may serve this function. Spe-
cifically, to minimize interference of sensorimotor activity flow
from visual processing, the former regions are functionally de-
coupled via a power increase (Jensen and Mazaheri, 2010;
Klimesch et al., 2007).

Limitations of the present study
The present design compared facial affect and facial identity rec-
ognition. The latter, as suggested by Figure 3, seemed to induce «
power increase that then decreased after the time window of facial
affect registration, whereas the a power level within the NN con-
dition remained more or less constant. Conditions were carefully
designed to be comparable with respect to physical properties. As
the same posers etc. were used for all conditions, and levels of
transition during the video were identical, any differential impact
of physical properties should be small. However, differences in
the amount of physical feature or complexity change might have
contributed to condition-specific changes in oscillatory activity.
Subtle differences in physical image complexity between all three
conditions cannot be ruled out, given that the expression of fear
involves corrugator muscles more than zygomatic muscles and that
the expression of happiness involves the opposite pattern, whereas a
change from one neutral into another neutral expression involved
the size of mouth and eyes. Observed changes in oscillatory activity
were prominent when images morphed toward affect expression
and not when images morphed toward a different poser with a neu-
tral expression. Complexity differences are likely to have been min-
imal, however, as similar complexity of the present images was
confirmed via compressed mpeg file size and by using similar exten-
sion of eye and mouth changes across conditions.

Changes in « power upon every stimulus onset may reflect
nonspecific arousal changes. However, the nonspecific arousal im-
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recognition of identity change is not com-
mon in social interaction. As a conse-

ook s o 8'2'5 Lo 1% 100010 quence, recognition of facial affect, driven

S by anticipation, occurs quickly, whereas

T 15 15 S5 identity changes may prompt ongoing
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Figure7. A, Differencein time-frequency representations of powerin the later recognition stage for the NF > NN and NH > NN
contrasts averaged across sensors of significant clusters (marked by * in the corresponding scalp topographic plots, p << 0.05). Axes
asin Figure 3. Dashed rectangles indicate time-frequency windows of significant condition differences, 8 —14 Hz during 3.5- 4.7 s
after stimulus onset. B, Source reconstruction of the difference in o power modulation illustrated in A. Warm colors indicate group
differences in o power increase, and cold colors indicate group differences in o power decrease (MNI coordinates: postcentral
gyrus, —59, —26, 511; precentral gyrus, 50, —9, 51; cuneus, 12, —92, 9). (, Brain regions exhibiting group differences in
connectivity for the NF versus NN and NH versus NN contrasts thresholded at 80% of maximum. Cold colors indicate group
differences in decoupling, whereas warm colors indicate group differences in increased connectivity to other brain regions for the
emotional relative to neutral faces (MNI coordinates: postcentral gyrus, —52, —33, 50; precuneus, —8, —77,43; precuneus, 9,

—82,43; inferior occipital gyrus, — 35, —88, —12; inferior occipital gyrus, 36, — 85, —12).

pact of the stimulus should have influenced oscillatory activity at
video onset, whereas the present study targeted later processing
stages, which were hypothesized to modulate arousal differentially.
Most important, condition-specific « modulation was evident in the
comparison between the NN and NF/NH condition. This o modu-
lation reflects arousal related specifically to the processing of emo-
tional valence or facial affect.

It is also conceivable that o power increase reflected evalua-
tion of emerging identity, which was recognized at a later stage
than recognition of facial affect. With multiple experiences in
social interaction, a facial expression may be anticipated from
perceiving or sampling few or subtle changes in facial features
(e.g., mouth, eyes, eyebrows) and their relationship, whereas

tification of identity change. If « oscilla-
tions are considered an indication of a
sampling mechanism, providing tempo-
ral windows for information processing
(Klimesch et al., 2007; Landau and Fries,
2012), regardless of whether sampling in-
volves features of facial affect or facial
identity, the processing of changes (mo-
tion) and relationships between facial fea-
tures could be independent of the
emotion(s) expressed. The present results
may point to a general role of & dynamics in
perception and anticipation-modulated
recognition, which awaits further study.

Another limitation concerns the inter-
pretation of functional connectivity using
MEG data, This is not trivial in the light of
several confounding factors. The most
important issue is volume conduction,
with spurious connectivity caused by the
fact that activity in one generator will be
captured at multiple measurement sites.
Although analysis of connectivity in
source rather than sensor space mitigates
this issue, this problem cannot be com-
pletely resolved. Present connectedness
(node degree) results survive this concern
for several reasons. (1) The overall nega-
tive relationship between o power and
connectedness argues directly against vol-
ume conduction driving the effects. (2)
The seed region analysis (Fig. 6) indicates
that the (negative) peaks of the connectiv-
ity effects are at least 1.8 cm distant from
the seed. This exceeds the analytic grid
distance of 1 cm, whereas volume con-
duction would lead to maximum effects
directly neighboring the seed. (3) Ap-
plying spatial filters rules out the possi-
bility that differences in node degree were solely the result of
different beamformer filter characteristics. Thus, the obtained
node-degree effects are very likely genuine differences in long-
range connectivity.

No consensus is available yet in the literature for the threshold
used with the adjacency matrix for the present connectivity met-
ric. A general threshold that objectively defines the presence or
absence of a connection (in the present case, operationalized via
phase synchrony) seems difficult or even impossible to deter-
mine. We used three criteria on an exploratory basis: p < 0.05,
p < 0.01, and p < 0.001. They produced very similar overall
results, and we opted to report the results from the most conser-
vative threshold (p < 0.001).

difference in change
from baseline [%)]

ange

from baseline

difference in ch

difference in
connectivity degree
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As a further limitation, MEG recording and ratings of dy-
namic faces were done in separate sessions, to avoid movement
artifact compromising the MEG recordings. Finally, although the
present interpretation of findings would appear to apply to face
processing in general, results were confined to certain types of
dynamic face stimuli, and so, do not permit an assessment of the
generality of the interpretation.

In conclusion, the present findings suggest a two-stage model
of facial affect recognition: (1) a registration stage, with SFA
largely functionally disconnected and thereby protected from ad-
ditional, disruptive input; and (2) a recognition stage, with in-
creased SFA coupling with other brain regions, fostering efficient
distribution of locally processed information to other cognitive
systems. Importantly, present data suggest oscillatory activity in
the « frequency range as a mediator of this decoupling/coupling
sequence.
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