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Neuronal dynamics is intrinsically unstable, producing activity fluctuations that are essentially scale free. Here we study single cortical
neurons of newborn rats in vitro, and show that while these scale-free fluctuations are independent of temporal input statistics, they can
be entrained by input variation. Joint input– output statistics and spike train reproducibility in synaptically isolated cortical neurons
were measured in response to various input regimes over extended timescales (many minutes). Response entrainment was found to be
maximal when the input itself possesses natural-like, scale-free statistics. We conclude that preference for natural stimuli, often observed
at the system level, exists already at the elementary, single neuron level.

Introduction
Variability is a most prominent property of neural activity, both
spontaneous and evoked. At the single neuron level, variability is
observable in practically all aspects of evoked activity: irregularity
of the spike train and trial-to-trial variability in spike counts, as
well as irreproducibility of train structure evoked by identical
input series (Faisal et al., 2008; Yarom and Hounsgaard, 2011).
However, as demonstrated in several cases, response variability
might be quenched by a variation introduced to the input itself
(Churchland et al., 2010).

At the single neuron level, it was demonstrated that when
stimulated with constant input, neuronal spike trains differ sub-
stantially between trials (Bryant and Segundo, 1976; Mainen and
Sejnowski, 1995). In contrast, when stimulated with a fluctuating
(filtered white noise) input, the reproducibility of the spike train
is dramatically improved to the point of perfect repeatability,
locking itself to (i.e., entrained by) input fluctuations, reliably
encoding its structure. This key property was reproduced in a
stochastic simulation of a Hodgkin–Huxley neuron, relating it to
the properties of the underlying ion channels (Schneidman et al.,
1998). While these measurements and simulations were limited
to a timescale of seconds, it is known that when neuronal activity
is observed over extended timescales, slower effects ensue

(Marom, 2010). In a recent work (Gal et al., 2010) we have shown
that, indeed, when presented with long (�1 h) sequences of pulse
stimuli, single neuron response dynamics becomes intermittent
and irregular, exhibiting scale-free fluctuations (e.g., with auto-
correlation that lacks a characteristic scale). Given these slower
modulatory processes, it is not obvious that the statistically un-
structured random input series, which are capable of quenching
response variation over limited timescales, will effectively entrain
response variability over extended durations. The biophysical
mechanism underlying the capacity of unstructured random in-
put to entrain response variability relies on matching between
timescales of input variations and timescales of the stochastic
processes that generate the action potential. In contrast, when
longer stochastic processes are allowed, they are left unmatched
by the above unstructured input. It is therefore natural to hy-
pothesize that to entrain neuronal response over extended time-
scales, the variations of the input series must match the scale-free
temporal structure of intrinsic neuronal response dynamics. In-
deed, at least at the system level, neuronal response variability is
reduced under natural or natural-like sensory input (Aertsen and
Johannesma, 1981; Baddeley et al., 1997; de Ruyter van
Steveninck et al., 1997; Yu et al., 2005; Garcia-Lazaro et al., 2006,
2011). These natural-like signals are often characterized by long-
range temporal correlations, and a general scale-free temporal
structure (Voss and Clarke, 1975; De Coensel et al., 2003;
Simoncelli, 2003).

In this study we directly measure the impacts of input tempo-
ral structure on response variability over extended timescales in
isolated cultured cortical neurons. We show that while the re-
sponse of neurons is temporally scale free, independently of input
statistics, entrainment is maximal when the input itself has a
matching, scale-free structure. We also perform analogous anal-
yses to those of Mainen and Sejnowski (1995), quantifying the
reproducibility of spike trains under different types of input.
Here too, natural-like input minimizes the trial-to-trial variabil-
ity of the spike train. We conclude that the rich and complex
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neuronal dynamics enable the neuron to match its dynamics to
that of the natural environment, and that “tuning” to natural
input statistics arises already at the atomic level of neural
processing.

Materials and Methods
Culture preparation. Cortical tissues were obtained from newborn (�24 h)
rats (Sprague Dawley) of either sex and dissociated following procedures
described previously (Marom and Shahaf, 2002). The cells were plated
directly onto substrate-integrated multi-electrode arrays (MEA) and de-
veloped for a time period of 2–3 weeks before their use. A total amount of
�10 6 cells was seeded on polyethyleneimine-coated MEAs. The prepa-
rations were kept in Minimal Essential Medium supplemented with heat-
inactivated horse serum (5%), glutamine (0.5 mM), glucose (20 mM), and
gentamycin (10 �g/ml), and maintained in an atmosphere of 37°C, 5%
CO2, and 95% air in an incubator as well as during the recording phases.
An array of Ti/Au/TiN extracellular electrodes, 30 �m in diameter, and
spaced either 500 �m or 200 �m from each other (MCS) were used.
Synaptic transmission in the network was completely blocked by adding 20
�M amino-5-phosphonovaleric acid, 10 �M 6-cyano-7-nitroquinoxaline-
2,3-dione, and 5 �M bicuculline-methiodide to the bathing solution. All
experiments were performed in accordance with the regulations (and under
the supervision) of the Technion–Israel Institute of Technology Animal Care
Committee.

Measurements and stimulation. A commercial amplifier (MEA-1060-inv-
BC; MCS) with frequency limits of 150 –3000 Hz and a gain of �1024 was
used. Rectangular 200 �s biphasic 600 – 800 mV voltage stimulation
through extracellular electrodes was performed using a dedicated stim-
ulus generator (STG4004; MCS). In the context of this study, no differ-
ence was observed in the behavior of neurons under current or voltage
stimulation. Data was digitized to 16 bits using a USB-ME256 system
(MCS). Each recorded channel was sampled at a frequency of 20 kHz.
One hour after the addition of synaptic blockers, the stimulation elec-
trode was selected as one evoking well isolated spikes with high signal-
to-noise ratio, in as many recording electrodes as possible. From the
selected recording electrodes, voltage traces of 15–20 ms poststimulus
were collected. Spike detection was performed off-line by a manual
threshold-based procedure. A 3 ms spike shape was extracted for each
response for further noise cleaning and analysis. Stability of spike shape
and activity dynamics criteria were applied to validate experimental sta-
bility, as described by (Gal et al., 2010). Random stimulation sequences
were generated by modulating a constant stimulus interval sequence with
a noise signal. This noise signal was either a white Gaussian noise or 1/f
Gaussian noise generated by weighting the frequency components of the
Gaussian white noise. In both cases a low cutoff was applied to have a
minimum interval of 20 ms. The standard deviation (SD) of the noisy
stimulation interval sequence was set such that its coefficient of variation
will match the coefficient of variation of its response constant interval.
For example, if a neuron responded to a 100 ms constant interval se-
quence with an average interspike interval (ISI) of 200 ms and SD of 40
ms, the SD of the noisy interval sequence was set to 20 ms.

Data analysis. Analysis throughout this study was performed on
either the spike time series, or on a smoothened firing rate time series,
produced by filtering the spike train with a sliding rectangular win-
dow (Fig. 1C). Spectral analysis was performed on a binned time
series, with a bin size of 1 s. The power spectrum density (PSD) was
estimated using a modified periodogram. The Allan variance, which is
commonly used to identify fractal point processes (Lowen and Teich,
1996, 2005) was calculated by binning the time series with different
bin sizes T. For each binned time series, the Allan variance is defined

as A�T� �
� ZT�k� � ZT�k � 1� � 2

2 � � ZT �
, where ZT is the binned series,

and �� mark the average over k. Another measure, widely used to charac-
terize the temporal statistics of long memory and nonstationary time series,
is detrended fluctuation analysis (DFA; Peng et al., 1995), in which the fluc-
tuations (in terms of mean square error) around a piecewise linear fit to the
time series are quantified, for different segment durations. Since both
the periodogram and the Allan variances can be regarded as power law for

the purpose of this work, power law functions were fitted to the tail of these
curves, and their exponents were used as descriptive statistics (Gal et al.,
2010).

The similarity between two spike trains was assessed with two distance
measures. (1) a correlation-based metric, defined as one minus the cor-
relation between binned time series (Za, Zb): d � 1 � corr(Za, Zb). This is
a rate-based measure, which is insensitive to temporal features of the
spike train below resolution dictated by the bin size. (2) The Victor—
Purpura (VP) spike train metric (Victor and Purpura, 1997; Victor, 2005;
Toups et al., 2011), which defines the distance between the two spike
trains as the minimal cost of transforming one into the other. Briefly, a
spike train is modified by a combination of three possible steps: inserting
or deleting a spike, with a cost of 	1, and moving a spike in time, with a
cost of q�dt, where q is a temporal resolution parameter. The value of q
sets the sensitivity of the metric to fine temporal features, and is set here
to a default value of q � 1 s. The dependence of the results on the value of
q is shown in Figure 4. The VP metric was calculated using MATLAB
code downloaded from the Web site of Jonathan Victor.

Results
Unexplained response variability is minimized by
scale-free input
In this paper we investigate the response properties of individual
neurons, independent of synaptic and network effects. To that

Figure 1. Data analysis and stimulation regimes. A, Examples of voltage traces recorded
following several stimulation pulses, delivered at 15 Hz. In response to such a pulse, a neuron
sometimes emits a spike (blue traces) or fails to do so (red traces). Stimulation pulses are 400 �s
wide and start at t � 0. B, Color representation of response traces. Each line represents a single
response trace. Responses to consecutive stimulation pulses, delivered at 15 Hz, are ordered top
to bottom. Voltage is color coded: red for high voltage and blue for low. It can be seen that spikes
are fired in response to some of the stimulations, in a seemingly random and complex manner.
C, Examples for stimulation sequences, each of 1 h length. The signals shown are stimulation
rates, the reciprocals of the stimulation interval series. Examples are given of the three stimu-
lation regimes (see Results): constant interval (top, blue), white noise (middle, red), and scale
free (bottom, green). D, The autocorrelation function for the white noise (red) and scale-free
(green) sequences. E, PSD for the white noise (red) and scale-free (green) sequences.
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end, experiments are conducted on cultured cortical neurons,
functionally isolated from their network by means of pharmaco-
logical block of both glutamatergic and GABAergic synapses (Gal
et al., 2010; see Materials and Methods). Individual neurons are
stimulated with sequences of short, identical extracellular electri-
cal pulses. In response to a single pulse, a neuron either responds
by emitting a spike, or fails to do so (Fig. 1A); neuronal responses
are monitored by extracellular recording electrodes. As previ-
ously reported (Gal et al., 2010), when repeatedly stimulated over
extended durations (minutes and more) with a low (�1 Hz)
stimulation rate, a neuron responds to each and every stimula-
tion pulse (1:1 mode). As stimulation rate increases, the excitabil-
ity of the neuron declines, and at a certain, neuron-specific
critical stimulation rate, the 1:1 response mode breaks, and the
neuron exhibits rich and complex response dynamics (Fig. 1B).

Here, we study the properties of response dynamics evoked by
three statistically different regimes of stimulation series: (1) con-
stant interval regime, (2) white noise regime in which the interval
series is modulated by a Gaussian white noise process, and (3)

Figure 2. Response statistics under the three stimulation regimes. Main parts show raw data
and statistical measures of a typical neuron to the three regimes (1 h of stimulation for each
sequence): constant interval (blue), white noise (red), and scale free (green). Insets show results
from a neuron subjected to a control experiment where the significance of the differences in
responses to each of the regimes are assessed by 10 repetitions of each stimulation block. A,
Extracts from the firing rate of the neuron in response to the three stimulation types (8 min
length, 1 s bin width). B, Histograms of firing rate values from one repetition, calculated with 5 s
bin size. The inset shows the distribution of mean firing rate value from each of the 10 repeti-
tions in the control experiment. Filled box represents the 25–75% range, and whiskers extend
to the extreme values. C, Histograms of ISI values from one repetition. The inset plots the range
of values of the ISI coefficient of variation under 10 repetitions. D, Response PSD from one
repetition, on double logarithmic axes. The inset depicts the range of exponent values for a
power law fit to the low-frequency tail of the PSD. E, DFA (see Materials and Methods) of the
responses from one repetition. The inset depicts the range of exponent values for a power law fit
to the fluctuation curve. F, Allan variance of the responses from one repetition. The inset depicts
the range of exponent values for a power law fit to the linear tail of the curves.

Figure 3. Input and output correlations under the three stimulation regimes. A, Ex-
tracts from the response rates of a neuron to long stimulation (1 h) under the three
regimes. Responses and stimulation are binned with a 5 s bin size; 30 bins are shown.
Mean is subtracted to have the input and output aligned. The responses under white noise
and scale-free regimes follow the stimulation closely (black line), while for constant
interval the variability is freely running. B, Extracts from the same experiment, using a
100 s bin size; 30 bins are shown. The response in the scale-free regime is still locked to
stimulus fluctuations, while input fluctuations in the white noise regime are substantially
diminished, therefore unable to lock response variability. C, A scatter plot of the stimula-
tion rate against response rates, calculated with a 5 s bin size. White noise input in red,
scale-free input in green. Mean is removed for visual clarity, and both axes are in stan-
dardized units. While the marginal distributions for both inputs are similar, the correla-
tion in the scale-free case is significantly higher. D, Scaled correlation analysis. The
correlation between input and output rates are calculated in different timescales for white
noise and scale-free regimes. The correlation in a given timescale T is calculated by
smoothing the series with a rectangular window of width T, and subtracting a version of
the series smoothed with a window of size 25T, effectively bandpassing the time series. E,
Dependence of the input– output correlation on the exponent � of the input. Neurons
(n � 31) were stimulated with blocks of 70 min duration with exponent ranging from 0 to
2. The input– output correlation (c�) was calculated from the responses of each block,
using a 1 s time bin. The graph shows the population statistics of the ratio c�/c0 for each �,
using box-and-whisker plot. The red horizontal line marks the median, the box marks the
lower and upper quartiles and the whiskers the range of data values. Outliers (values
outside the range of 3 SD units from the average value) are marked with red points. F,
Distribution of preferred exponent values (the exponents, which result in the strongest
correlation for each neuron). G, Extracts comparing the entrainment for � � 1 (left) and
� � 2 (right), from a single neuron, demonstrating lack of entrainment for the fast
fluctuations for the latter case. Traces are smoothed with a 2 s rectangular window,
timescale is identical for the two extracts.
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scale-free regime in which the intervals are modulated by a 1/f �

process, with parameter � � 1, which is more representative of
natural sensory input (Voss and Clarke, 1975; De Coensel et al.,
2003; Simoncelli, 2003) and similar to activity properties of cor-
tical neurons in vivo (Lowen and Teich, 1993, 1996; Teich et al.,
1997; Lowen et al., 2001; Bhattacharya et al., 2005). The term
scale-free is used here to designate a time series with an autocor-
relation that decays slowly, usually as a power law without a
typical scale. White noise on the other hand, which has a delta-
function autocorrelation, is regarded as a zero scale signal. The
choice of � � 1 is typical to a wide range of natural signals, in
natural environments, and in biological systems. As will be
shown, the results of this work are not sensitive to the exact value
of �, consistent with previous studies (Garcia-Lazaro et al., 2006).
Interval sequences in all stimulation regimes were normalized to
have the same mean and SD (the latter is applicable only to the
second and third regime). The mean stimulation rate (the recip-
rocal of the mean stimulation interval) was set to a high enough
value to drive the neuron beyond its critical point, leading to
response failures and intermittency (Gal et al., 2010). The interval
SD was chosen to approximately match the intrinsic SD of the
response to constant interval stimulation. Figure 1D shows ex-
amples of extracts from the three stimulation regimes, as well as
their autocorrelation functions and the PSD.

Our analysis starts by stimulating neurons with long se-
quences (�1 h) of each of the stimulation regimes. Figure 2A
shows an example of the response of the same neuron to the three
regimes. It is immediately obvious that the three input regimes
did not cause a significant difference in the statistical properties
of the responses. This is formally shown in the plots of the PSD,
Allan variance, DFA, rate histograms, and ISI histograms (Fig.
2B–F). Clearly, the macroscopic properties of the evoked spike
trains are the same under all stimulation regimes: the neuron
exhibits scale-free dynamics, characterized by power law statis-
tics, in accordance with previously published analysis (Gal et al.,

2010). To confirm the insignificance of the differences between
the different statistical measures under the three regimes, a con-
trol experiment was performed, in which four neurons were
stimulated and recorded, and each stimulation block was re-
peated 10 times. For each statistical analysis presented in Figure 2,
B–F, the relevant parameter was estimated independently from
the response to each repetition. The value ranges of these param-
eters from a single neuron are depicted in the insets of each part,
and show that indeed the temporal statistics are the same under
the three regimes. We emphasize that the claim made here is not
that the specific model chosen for each statistic is the correct one
(i.e., that the PSD is an exact power law), rather that these fits are
good enough representative shapes, useful for comparing the
population statistics. The above results imply that the various
membrane and cellular processes underlying the stochastic re-
sponse fluctuations are effectively insensitive to the statistical
structure of the input regime.

1/f-type response statistics can be interpreted as a modulation
of neuronal excitability by a cascade of oscillating processes at
various timescales. An oscillator can be entrained (i.e., phase
locked) by a driving stimulus at a frequency that matches the
oscillator’s natural frequency, and with a magnitude propor-
tional to the oscillation amplitude. This suggests that the 1/f in-
trinsic fluctuations could be entrainable by a matching 1/f
stimulation.

Figure 3 demonstrates this effect: the stimulation and re-
sponse of a neuron are plotted in two timescales, for the three
stimulation regimes. On the short timescale (Fig. 3A; 5 s bin size),
the response in the white noise and scale-free regimes nicely fol-
lows the stimulation, while in the constant interval regime, the
input has no bearing on timing of the output fluctuations. On a
longer timescale (Fig. 3B; bin size of 100 s), the white noise input
is practically flattened, becoming constant; as a result, it fails to
entrain the response. In contrast, in the scale-free regime entrain-
ment is evident throughout. Figure 3C shows a scatter plot of the

Figure 4. Repeatability of neuronal response. A, The firing rates of a neuron under 10 identical stimulation sequences, under the three regimes. Responses to the constant interval stimulation
show no reproducibility at all. Responses to the white noise input show reproducibility on short timescales, as can be seen in the inset. At longer timescales there is again no response repeatability.
The responses to the scale-free sequence are the most reproducible, and lock to the input on many timescales. Stimulation rates are plotted in black for the three plots, but are normalized to have
the mean and SD of the responses for clear visualization. B, Pairwise distance matrices between responses to repetitions of the same stimulation sequence, calculated according to correlation metric
(left) and the VP distance with temporal parameter q�1 (right; see Materials and Methods). Distance values are color coded, and for each metric the color scale was normalized to the maximal value.
Diagonal pixels were whitened for visual clarity. C, The purple line designates the mean and SD of the pairwise distances (d) depicted in B, for the correlation metric, quantifying the change in
repeatability under the three regimes. Also shown are the means for all 14 recorded neurons (gray for those which showed significant improvement for scale-free input regime, brown for those which
did not). D, Same as C, but for VP distance. E, Mean and SD of the average firing rate per trial for the neuron of A (purple). The firing rate significantly increases for scale-free input for this neuron. While
this is not generally true across the population of neurons recorded, the firing rate never significantly decreases for scale-free input. F, The effect of the temporal scale q on the results for the spike
train metric. q is varied from 0.25 s (light gray) to 10 s (dark gray). While the typical values differ, the effect exists for any choice of q, as can be expected from the lack of typical scale for the
phenomena. The red curve is for q � 1.
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input and output rates of the neuron, calculated with a 5 s bin
size. As expected from the data of Figure 2, the input and output
ranges of the white noise (red) and scale-free (green) regimes are
practically identical. However, the correlation in the scale-free
data is much higher, as expressed in the reduced variability
around the linear trend line. This indicates that indeed the scale-
free fluctuations in neuronal dynamics are best entrained by
scale-free input. For 13 of the 17 recorded neurons, the input–
output correlation coefficient significantly increases under scale-
free input regime, compared with white noise regime. A
Wilcoxon signed rank test yields p � 0.01 for the effect of the
input regime on input/output correlation. Thus, under scale-free
input, there is no change in the amount of variability in neuronal
response, but more of it is explained by the input. Figure 3D
shows a scaled correlation analysis: the correlation between input
and output is calculated for responses in white noise and scale-
free regimes on different timescales. The correlation in a given
timescale T is calculated by smoothing the stimulation and re-
sponse series with a rectangular window of width T, and subtract-
ing from it a version of the series, smoothed with a window of size
25T. This effectively bandpasses the time series around T. While
the correlation in the short timescale regime is similar for the
white noise and scale-free regimes (the apparent increase for
white noise is nontypical, a Wilcoxon signed rank test yields in-
significant difference), for longer timescales it decreases in the
case of white noise compared with scale-free regimes (p � 0.01,
Wilcoxon signed rank test).

The above results show that there is a significant increase in
correlation upon change from white noise (i.e., � � 0) to scale-
free (� � 1) input. However, there is nothing unique about � �
1: other types of inputs might serve just as well. To assess the
sensitivity of the increased input– output correlation to the value
of �, neurons (n � 31) were exposed to nine stimulation blocks,
each characterized by a different value of �, ranging from 0 to 2,
and lasting 70 min. For each block, the correlation between input
and response was computed and compared with the correlation
for � � 0. The population statistics of this correlation ratio are
depicted in Figure 3E, and show a clear concave shape, with a
peak in the mid-range values, and a decrease toward lower and
higher values of �. A similar peak is observed when plotting the
distribution of preferred exponents (i.e., the exponents which
results in the strongest correlation for each neuron; Fig. 3F).
These peaks around � � 1, however, are wide, suggesting that the
variability between neurons is considerable, and that inputs char-
acterized by a wide range of exponents are equally effective in
entraining neuronal responses.

The decrease of the correlation for input with large exponents,
which are dominated by slow oscillations, is important for the
understanding of this phenomena. Figure 3G shows extracts
from the response to 1/f stimulation (left) and 1/f 2 stimulation
(right). It is easy to see how, for 1/f 2, the faster fluctuations re-
main unentrained, while slower oscillations are nicely locked by
modulations in the input.

Neuronal response repeatability is maximized by
scale-free input
Another functionally relevant aspect of the entrainment de-
scribed above concerns response repeatability. It is well estab-
lished that despite the extensive variability of neuronal responses,
spike train structure is repeatable when the input is fluctuating,
both at the single neuron and sensory system levels (Mainen and
Sejnowski, 1995; de Ruyter van Steveninck et al., 1997; Churchland
et al., 2010). In the following set of experiments we ask whether a

scale-free stimulation regime enhances repeatability in general,
and over long timescales in particular. To this aim we stimulated
neurons with 10 repetitions of the same input sequence under
each of the three stimulation regimes: constant intervals, white
noise, and scale free. Each sequence lasted 10 min, separated by a
10 min break. Figure 4A shows responses of one neuron to 10
identical sequences under each stimulation regime. It is immedi-
ately obvious that although some reproducibility exists under the
white noise regime, the reproducibility of responses to scale-free
sequences is much higher. This is a direct consequence of the
previous section analysis: if responses are more correlated to the
input, they will be more correlated between themselves under
repetitions of the same input sequence. This observation is quan-
tified using two kinds of spike train similarity measure: a rate-
based measure (the correlation distance between spike
histograms, calculated with 1 s bins; see Materials and Methods),
and a time-based measure (Victor and Purpura, 1997; Victor,
2005; the VP distance, Toups et al., 2011). Figure 4B depicts the
pairwise distance matrices of the responses of Figure 4A, calcu-
lated using these two metrics. Responses to white noise stimula-
tion are significantly more reproducible than responses to
constant input; this is in agreement with Mainen and Sejnowski

Figure 5. A, Metric analysis on surrogate data (see Results); the purple curve is metric anal-
ysis results, as in Figure 4, on surrogate data generated by applying a Bernoulli response model
with a mean equaling the average response of the neuron, using VP distance with q � 1. The
orange curve is results of the same analysis applied to data generated by a Bernoulli response
model conditioned on the last interval, according to the curve in B. The gray curve is the actual
experimental result for this neuron. B, The response probability of a neuron, conditioned on the
last stimulation interval, for white noise input (red, lower curve) and scale-free input (green,
upper curve). Both curves, as expected, are mostly increasing. The difference between the
curves implies the dependence of the probability on history longer than the last interval. Since
the scale-free input contains correlations between intervals, its response curve differs from the
white noise curve. C, The effect of block length. The metric analysis of Figure 4 was repeated
with various block sizes, i.e., with analysis performed on the first T seconds of each repetition,
using the correlation metric. Data was taken from the onset of the stimulation block, including
the transient phase. This analysis shows how the responses to the constant interval input and
white noise input are drifting apart relatively rapidly (mean distance increases), while the
responses to the scale-free input are forced together by the input dynamics, and show only a
slow and moderate gain in distance. D, Block length analysis as in C, using VP distance . Both
metrics used here are effectively normalized to the input length, in contrast to metrics like
Euclidean and others, which are extensive in input length.
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(1995). But as expected from the results presented above (Fig. 3)
the responses to the scale-free sequences are significantly more
reproducible than those of white noise input. The purple lines of
Figures 4, C and D, depict the mean and SD of the values in the
distance matrices shown in Figure 4B. Of 14 recorded neurons, 11
showed significant improvement in reproducibility for scale-free
sequences compared with constant interval and white noise, as
quantified by the two metrics (there were no cases of disagree-
ment). The gray lines depict the trends of mean distances calcu-
lated for all of the 14 recorded neurons. A Wilcoxon signed rank
test for the mean pairwise distances shows an overall significant
effect for the input regime on response repeatability (p � 0.01 for
both white noise vs constant and for scale free vs white noise, for
both metrics). The results are insensitive to the choice of the
temporal parameter q of the spike train metric (Fig. 4F), which
may point to the lack of characteristic scale in this phenomenon.
The above enhanced reproducibility does not stem from a de-
creasing spike rate. Next to the preservation of the mean stimu-
lation rate in all sequences, the spike rate itself does not decrease
for scale-free input (Fig. 4E). For all of the 14 cells recorded, there
was no significant decrease in firing rate under the scale-free
regime compared with constant and white noise.

Since the scale-free input itself is structured, it is expected that
even a “Bernoulli” neuron, which has a constant probability of
response to a pulse stimulation, will have some reproducibility of
its output spike train. Figure 5A shows a comparison between
metric analyses on actual responses (gray), and on a surrogate
Bernoulli neuron (purple) that responds with a constant proba-
bility (set to the mean response probability of the real neuron). As
expected, the responses of the simulated neuron are indeed more
reproducible for scale-free input, but not as consistent as the real
neuron. It is also possible to construct a more detailed neuronal
response curve, which takes into account the dependency of the
response probability on the last interval between stimuli (an ex-
ample for such a curve is given in Fig. 5B). Interestingly, the
curves of the white noise and scale-free regimes substantially dif-
fer, pointing to a strong history dependence in response proba-
bility. As shown in Figure 5A, the resulting metric analyses
(orange) behave more like the real neuron when compared with
the Bernoulli neuron, yet cannot account for the entire effect. It is
reasonable to believe that one might construct a response model
that takes into account deeper history of the stimulation and
response sequences to produce better fitting. It should be empha-
sized though, that while these neuronal response models do re-
produce the repeatability effect to a significant extent, they do not
reproduce the intrinsic scale-free fluctuations, and cannot be
considered as successful explanatory models.

A scale-free input is characterized by the abundance of rela-
tively long “breaks” in stimulation, or long periods with low stim-
ulation rate, enabling recovery of internal processes from
previous activations. As repeatedly shown over the past 15 years,
the longer a neuron is exposed to repeated activations, longer
recovery times are required (Toib et al., 1998; Ellerkmann et al.,
2001; Fairhall et al., 2001; Lundstrom et al., 2008; Marom, 2009).
Scale-free input statistics is inherently matched to such a mech-
anistic context: elongating a scale-free input series naturally gives
rise to longer breaks, hence allowing for stabilization on every
scale. An illustration of this property is provided by reanalyzing
the data of Figure 4 over blocks of increasing lengths. The results
are summarized in Figure 5, C and D, showing that the accumu-
lation of variability (or divergence of response) with increasing
block size (1–10 min range) is significantly slower than its accu-
mulation in responses to other stimulation regimes.

Discussion
In this paper we have shown how a natural-like, scale-free input
entrains fluctuations of single neuron responses over extended
timescales. We have demonstrated this property by comparing
neuronal responses in three different stimulation regimes: con-
stant interval, white noise, and scale-free. In the case of the scale-
free regime, the correlation between the input and the response is
significantly higher, and the repeatability of response is con-
siderably enhanced. These characteristics are stable over long,
practically unlimited durations. While the results do show a
preference to mid-range values of � (around 1), there is noth-
ing special about the exact value; what seems to be important
is that the entrainment decreases when the slow-frequency
component in the input becomes either too dominant (large
�) or marginal (low �).

It has long been acknowledged that responsiveness of neural
systems is optimized to the ranges of statistics found in natural
inputs (Aertsen and Johannesma, 1981; Baddeley et al., 1997; de
Ruyter van Steveninck et al., 1997; Yu et al., 2005; Garcia-Lazaro
et al., 2006, 2011). Here we show that preference to natural sta-
tistics is not limited to large-scale neural systems; rather, it goes
all the way down, to the atomic level of neural organization,
namely the single, isolated neuron.

At the shorter timescales, the entrainment of neuronal fluctu-
ations by white noise input is explained by the fast stochastic
processes underlying the generation of action potentials
(Schneidman et al., 1998). There, a variation in input allows for
recovery of inactivation processes, unlike the case of a constant
input that drives the neuron to operate around the limit of chan-
nel availability threshold, making it highly sensitive to stochastic
events. It is reasonable to assume that a similar explanation would
also be appropriate over extended timescales: a long break (or a
period of low-rate stimulation) enables recovery of slow pro-
cesses, in contrast to constant input (or shortly correlated input)
that drives these processes to a highly stochastic operation point.
Possible candidates for such processes might include slow inacti-
vation properties of the ionic channels themselves (Toib et al.,
1998; Ellerkmann et al., 2001; Marom, 2009; Soudry and Meir,
2010), or other cellular modulatory processes (e.g., protein phos-
phorylation, protein synthesis, and metabolic cycles).

From the more abstract, functional point of view, when the
temporal structure of the input is relatively dull, it can only en-
train a narrow range of cellular processes underlying neuronal
dynamics. Under these conditions, a large fraction of the re-
sponse variability is tagged “unexplained.” However, when the
input is temporally rich, it matches the temporally complex
structure of the intrinsic dynamics, and the former “unex-
plained” variability becomes information carrying. Thus, a neu-
ron can be viewed as a collection of entangled information
channels, distributed over a continuum of timescales. In this pic-
ture, information transfer is maximized when there is informa-
tion to be transferred on any given scale.
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