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Enteric neural crest-derived cells (ENCCs) migrate from the anterior foregut in a rostrocaudal direction to colonize the entire gastroin-
testinal tract and to form the enteric nervous system. Genetic approaches have identified many signaling molecules regulating the
migration of ENCCs; however, it remains elusive how the activities of the signaling molecules are regulated spatiotemporally during
migration. In this study, transgenic mice expressing biosensors based on Forster resonance energy transfer were generated to video the
activity changes of the signaling molecules in migrating ENCCs. In an organ culture of embryonic day 11.25 (E11.25) to E13 guts, ENCCs
at the rostral wavefront migrated as a cellular chain faster than the following ENCCs that formed a network. The faster-migrating cells at
the wavefront exhibited lower protein kinase A (PKA) activity than did the slower-migrating trailing cells. The activities of Racl and
Cdc42 exhibited an inverse correlation with the PKA activity, and PKA activation decreased the Racl activity and migration velocity. PKA
activity in ENCCs was correlated positively with the distribution of GDNF and inversely with the distribution of endothelin 3 (ET-3).
Accordingly, PKA was activated by GDNF and inhibited by ET-3 in cultured ENCCs. Finally, although the JNK and ERK pathways were
previously reported to control the migration of ENCCs, we did not find any correlation of JNK or ERK activity with the migration
velocities. These results suggest that external cues regulate the migration of ENCCs by controlling PKA activity, but not ERK or JNK

activity, and argue for the importance of live imaging of signaling molecule activities in developing organs.

Introduction

Cells of the enteric nervous system (ENS) are originated from
enteric neural crest-derived cells (ENCCs), which undergo mi-
gration, proliferation, differentiation, and colonization during
embryonic development (Yntema and Hammond, 1954; Le
Douarin and Teillet, 1973). Shortly after emigration from the
neural tube, ENCCs invade into the anterior foregut at embryonic
day 9 (E9)-E9.5 and migrate in a rostrocaudal direction, approach
the termination of the bowel at E13.5, and colonize the entire gas-
trointestinal tract by E14.5 (Durbec et al., 1996; Druckenbrod and
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Epstein, 2005; Anderson et al., 2006; Burns and Thapar, 2006). Dur-
ing migration, some ENCCs proliferate (Young et al., 2005) or dif-
ferentiate into neuronal or glial cells (Conner et al., 2003; Young et
al., 2004). This process is elaborately regulated by intrinsic programs
and also by extrinsic cues, and aberrance therein causes serious dis-
orders such as in Hirschsprung’s disease (Heanue and Pachnis, 2007;
Gershon, 2010).

A number of molecules have been shown to play critical roles
in the development of the ENS in vertebrates (Young, 2008;
Burzynski et al., 2009). In addition to proteins that are expressed
specifically in ENCCs, including Ret and endothelin receptor B
(EDNRB), ubiquitously expressed signaling molecules have also
been shown to affect the fate of ENCCs. For example, protein
kinase A (PKA) is a key component in the integration of signals
from Ret and EDNRB. Inhibition of PKA abrogates GDNF-
mediated chemotaxis of ENCC in vitro (Barlow et al., 2003). Fur-
thermore, mutation of a putative PKA phosphorylation site of
Ret has been shown to cause ENCC migration defects and agan-
glionosis (Asai et al.,, 2006). Meanwhile, Rho-family GTPases,
including RhoA, Racl, and Cdc42, are molecular switches that con-
trol actin dynamics (Heasman and Ridley, 2008). They play central
roles in neuronal morphogenesis (Luo, 2000; Rupp and Kulesa,
2007), and also play important roles in neuronal migration and pro-
liferation of ENCCs (Stewart et al., 2007; Fuchs et al., 2009).

Detailed analysis of the signaling molecules in ENS has been
hampered by two problems. First, methods to monitor the activ-
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ities of signaling molecules in situ are limited. Second, identifica-
tion of signaling molecules requires fixation or homogenization
of the cells. A solution to these problems is the use of biosensors
based on the principle of Forster resonance energy transfer
(FRET). For a long period, however, the use of FRET biosensors
was limited to tissue culture cells due to a lack of methods to
establish stable expression in mice (Aoki et al., 2012). Recently,
we and others have reported the establishment of transgenic mice
expressing FRET biosensors (Yamaguchi et al., 2011; Kamioka et
al., 2012). With these mice in hand we are now able to see the
activities of signaling molecules in living animals.

In this study we performed live imaging of the activities of
signaling molecules in ENCCs by two-photon excitation micros-
copy. We found clear antagonistic actions of PKA activity and
Racl activity in a stage- and region-dependent manner. Further-
more, JNK and ERK activities did not show detectable correlation
with the velocity of ENCC migration, although a JNK inhibitor
did abrogate the migration of ENCCs.

Materials and Methods

Chemicals. PD184352 (2-(2-chloro-4-iodophenylamino)-N-cyclopropyl-
methoxy-3,4-difluorobenzamide), PI-103 (3-[4-(4-morpholinyl)pyrido[3',2":
4,5]furo(3,2-d]pyrimidin-2-yl]-phenol), and 554340 (1,3-dihydro-5,6-
dimethoxy-3-((4-hydroxyphenyl)methylene)-2 H-indol-2-one) were pur-
chased from Calbiochem. SP-8-Br-cAMPS (8-bromoadenosine-3',5"-cyclic
monophosphorothioate, Sp— isomer) was purchased from BioLog.
SP600125 (anthra[1-9-cd]pyrazol-6(2 H)-one) and BQ788 (2,6-dimethyl-
piperidinecarbonyl-y-Methyl-Leu-Nin-(Methoxycarbonyl)-p-Trp-p-Nle,
N-[N-[N-[(2,6-dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-leucyl]-1-
(methoxycarbonyl)-p-tryptophyl]-p-norleucine sodium salt) were pur-
chased from Sigma-Aldrich.

FRET biosensors and generation of transgenic mice. Transgenic mice
expressing a PKA biosensor AKAR3EV, a negative control FRET biosen-
sor AKAR3EV-NC, and an ERK biosensor EKAREV-NLS were reported
previously (Kamioka et al., 2012). FRET biosensors for Racl, Cdc42, and
JNK named RaichuEV-Racl, RaichuEV-Cdc42, and J]NKARIEV-NLS
were reported previously (Komatsu et al., 2011), and the methods for
producing transgenic mice expressing FRET biosensors for Racl, Cdc42,
and JNK were described previously (Sumiyama et al., 2010; Kamioka et
al., 2012). Founder animals were bred with Jcl:ICR mice to produce
stable lines. Newborn mice were illuminated with a blue flashlight
LEDGFP-3W (Optocode) and inspected for green fluorescence through
yellow-colored glasses. The animal protocols were reviewed and ap-
proved by the Animal Care and Use Committee of Kyoto University
Graduate School of Medicine (No. 10584).

Generation of Ret-mCherry mice. Transgenic mice expressing mCherry
under a Ret promoter, referred to as Ret-mCherry mice hereafter, were
produced by the same strategy as Ret-TGM mice (Enomoto et al., 2001):
a cDNA encoding GFP inserted into the first coding exon of Ret was
exchanged for cDNA encoding mCherry. Male mice heterozygous for the
Ret-mCherry mutation (Ret-mCherry/+ mice) were mated to wild-type
(C57BL6) females. The genotype of Ret-mCherry mice was determined
by PCR using the primers P1 (5'-CGAGACCCGCCTGCTCCTCAACCG
C-3"), P2 (5"-AGCGCTAACTTCACCCCGGCCCCTACCGTC-3"), and
P3 (5'-GTTATCCTCCTCGCCCTTGCTCAC-3") (35 cycles of 94°C for
30 s, 65°C for 30 s, and 72°C for 60 s).

Organ culture. FRET mice and Ret-mCherry/+ mice were mated and
pregnant mice were killed by cervical dislocation. Live imaging of em-
bryonic guts was performed essentially as described previously (Aoki and
Matsuda, 2009). Embryos were illuminated with a blue flashlight
LEDGFP-3W and inspected for green fluorescence through yellow-
colored glasses. Guts were dissected from each embryo and transferred
into PBS in 24-well plates (Nunc). Each gut was inspected for RFP fluo-
rescence by an epifluorescence microscope. Guts with RFP+ cells were
then placed on a piece of filter paper (Millipore Corporation). The prep-
aration was placed in tissue culture medium (DMEM/F12) containing
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10% Knockout Serum Replacement (KSR) (Invitrogen), and penicillin/
streptomycin sulfate solution in a 35 mm dish (Nunc).

In vitro explant assay. For the in vitro explant assay, E11.5 or E12.5 guts
in which ENCCs expressed both FRET biosensor and ret-mCherry were
prepared as described previously (Uesaka and Enomoto, 2010). Guts
were cut into short segments and transferred onto 35 mm glass-base
dishes (Asahi Techno Glass) coated with human fibronectin (Biomedical
Technologies), and cultured in DMEM/F12 supplemented with 10%
KSR and 50 ng/ml GDNF (R&D Systems) for a day before imaging with
an epifluorescence microscope.

Two-photon excitation microscopy and confocal laser scanning micros-
copy. The protocol for FRET imaging of ENCCs in explant assay with an
epifluorescence microscope has been described previously (Aoki and
Matsuda, 2009). The organ-cultured gut was maintained in an incuba-
tion chamber (Tokai Hit) and imaged using a 20X water-immersion
objective lens (XLUMPLFL20; Olympus) on a BX61WI/FV1000 upright
microscope, which was connected to a Mai Tai DeepSee HP Ti:Sapphire
Laser (Spectra Physics), 440 nm laser diode (Olympus), and 543 nm laser
diode (Melles Griot). For FRET imaging with a two photon excitation
microscope, the excitation wavelength for CFP was 840 nm. We used
an IR-cut filter, RDM650, a DM505 dichroic mirror, and a band-path
filter BA460-510 for CFP or BA510-560 for YFP (Olympus). For
FRET imaging and mCherry imaging with a confocal laser scanning
unit, we used a 440 nm laser diode for CFP excitation, a 543 nm laser
diode for mCherry excitation, and the following filter sets purchased
from Olympus: an excitation dichroic mirror, BS/20/80, a second
dichroic mirror, DM510, a third dichroic mirror, SDM560, and three
emission filters, BA465-495 for CFP, BA520-550 for FRET, and
BA560-660 for mCherry, respectively.

Immunostaining of phospho-CREB. Embryonic guts were dissected at
E12 and fixed overnight in 4% formaldehyde in PBS at 4°C. After wash-
ing with PBS, whole-mount preparations were processed for immuno-
histochemistry as described previously (Uesaka and Enomoto, 2010).
Phospho-CREB (Ser133) antibody (#9191, Cell Signaling Technology)
and Alexa Fluor 488 goat anti-rabbit IgG (Life Technologies) were used
as the primary and secondary antibodies, respectively.

Image processing. Acquired images were analyzed with MetaMorph
software (Universal Imaging). For calculation of the migration speed of
individual ENCCs expressing a FRET biosensor in the nucleus in a 3D
environment, the original confocal images were analyzed with Imaris
Software (Bitplane AG). For calculation of the migration speed of indi-
vidual ENCCs expressing a FRET biosensor in the cytosol, the total path
length that the cell moved was determined by measuring the change of
center position of the nucleus of each cell using MetaMorph software,
and divided by the time. For quantification of phospho-CREB, fluores-
cent intensity of >20 ENCCs was quantified at the rostral or caudal
regions of three E12 mouse embryos.

Expression of GDNF and endothelin 3. Expression of endothelin 3
(ET-3) was examined by in situ hybridization according to the manufac-
turer’s protocol (Roche Diagnostics Corp.). A cDNA fragment encom-
passing from nt 217 to 804 of ET-3 cDNA (Gene ID: 13616, 2963 bp) was
used as the probe. GDNF expression was examined in GDNF'**/* mice
as described previously (Moore et al., 1996; Uesaka et al., 2007).

Results

Activity maps of signaling molecules in ENS by means of ex
vivo imaging of transgenic mice expressing FRET biosensors
We have recently developed a method to efficiently generate trans-
genic mice expressing a FRET biosensor by the Tol2 transposase-
mediated gene transfer method (Sumiyama et al., 2010; Kamioka et
al., 2012). As a proof of concept, we reported transgenic mice ex-
pressing FRET biosensors for ERK and PKA. Here, to examine the
spatiotemporal dynamics of the activities of Rho-family GTPases
and JNK in ENCCs, we added transgenic mouse lines for Racl,
Cdc42, and JNK. The FRET biosensors in these mice, collectively
called FRET mice, are expressed ubiquitously under the CAG pro-
moter (Kamioka et al., 2012). To distinguish ENCCs from morpho-
logically indistinguishable mesenchymal cells, we used transgenic
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mice expressing the mCherry fluorescent protein under the Ret pro-
moter, which is active specifically in ENCCs. These Ret-mCherry
mice were crossed with the FRET mice (Fig. 1 A, B). The embryonic
mouse gut in organ culture was time lapse-imaged for CFP, FRET,
and mCherry by either two-photon excitation microscopy or con-

focal microscopy. ENCCs were identified on the mCherry images
(Fig. 1C), which were binarized to generate clipping masks. The
mCherry masks were used to identify ENCCs on the FRET/CFP
ratio images. Outlines of the gut wall were determined on the unpro-
cessed FRET/CFP ratio images. In this way, the intercellular activity
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Migration velocities of single ENCCs in the caudal chain or the ros
55(chain),n = 57 (network); INKARTEV-NLS, n = 59 (chain),n

tral network are plotted by dots. The numbers of analyzed cells are as follows: AKAR3EV, n = 60 (chain), n = 60 (network); AKAR3EV-NC,n =
= 56 network); EKAREV-NLS, n = 49 (chain), n = 50 (network). Red lines and asterisks represent mean velocities and the statistical significance

by ttest (p < 0.05). D, Whole embryonic guts at E12 were immunostained with an anti-phospho-CREB antibody and an secondary antibody conjugated with Alexa Fluor 488. Fluorescent intensity of ENCCs at
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variations of Racl, Cdc42, PKA, ERK, and JNK were visualized in
ENCCs. Notably, in the FRET mice stained for NADPH we did not
find any anomaly in myenteric plexuses, excluding potential inter-
ference on the development of ENCCs by the expression of FRET
biosensors.

Under higher magnifications the subcellular activity maps
of Racl and Cdc42 could also be drawn in a single ENCC (Fig.
1D). The ENCCs extended the lamellipodia in the direction of
their migration, wherein high activities of Racl and Cdc42
were observed as reported in 2D cultures (Kraynov et al., 2000;
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(Figure legend continued.) ~ mode and of FRET/CFP at the indicated time points after drug
treatment. Scale bars, 50 wm. Data points represent the FRET/CFP ratio of each ENCC at the
indicated time points. The mean FRET/CFP ratio at each time point is represented by a red line.
B, ENCCsin organ culture were treated with DMSO, 120 um SP-8-Br-cAMP, 30 wm PI-103 and 10
jum PD184352 for 30 min. The FRET/CFP ratios of >20 cells were measured for each organ
culture before and after drug treatment. Data obtained from three independent organ cultures
are shown. The asterisks indicate statistical significance by the paired  test analysis (p < 0.05).
Error bars show the SD. €, ENCCs in organ culture were treated with 30 tum SP600125 for 30 min.
The FRET/CFP ratios of >20 cells were measured for each organ culture before and after drug
treatment. Data obtained from three independent organ cultures are shown. The asterisks
indicate statistical significance by the paired  test analysis (p << 0.05). Error bars show the SD.

Regulation of ENCC motility by PKA, PI3K, and JNK, but not by ERK. A4, Transgenic mice expressing JNKARTEV-
NLS and Ret-mCherry were used for the tracking of ENCCs, because the nuclear localization of the biosensor allowed
automatic tracking by the software. During time-lapse imaging, the following reagents were added (in m): 120 SP-8-Br-
cAMP, 30 PI-103, 10 PD184352, and 30 SP600125. The nuclei of ENCCs were tracked for 30 min before drug treatment
(white) and for 30 min after drug treatment (red). Gray spheres represent the start position of the trajectories. Scale bars,
20 wm. B, Migration velocities before and 30 min after the drug treatment. Data points represent individual cells compiled
from three independent experiments. The red lines represent mean migration velocities of ENCCs. The asterisks indicate the
results of ¢ test analysis; *p << 0.05.

with anti-phospho-CREB antibody (Fig. 2D). As expected, the
phosphorylation of CREB was lower in the chain-migrating
ENCCs in the caudal region than those in the rostral region.

In the GFP-expressing transgenic mice used in the previous stud-
ies, individual ENCCs could not be easily distinguished from each
other due to the homogenous localization of GFP between the nu-
cleus and the cytoplasm, and also among ENCCs (Young et al.,
2004). In contrast, in the transgenic mice used in this study, the
FRET biosensors were expressed at the nuclei (ERK, JNK), cyto-
plasm (PKA, PKA-NC), or plasma membrane (Racl, Cdc42). Ex-
cept for cells expressing plasma membrane-localized FRET
biosensors, the nucleus could be readily distinguished, allowing us to
trace the migration of ENCCs during time-lapse imaging. We found
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Migration velocity positively correlated with Rac1 activity and negatively correlated with PKA activity in the early stages of ENCCs. A, A schematicillustration of migrating ENCCs at E10

and E11.25. B, Representative FRET images of ENCCs expressing the FRET biosensors for PKA and Rac1 at E10. Scale bars, 50 pum. €, Mean FRET/CFP ratios of ENCCs in the rostral or caudal region at
E10. FRET/CFP ratios of >15 cells were averaged for each organ culture and the results of three independent experiments are shown. Error bars show the SD. D, Representative FRET images of ENCCs
atE11.25. Scale bars, 50 um. E, Mean FRET/CFP ratios of ENCCs migrating as chains or forming a network at E11.25. FRET/CFP ratios of =20 cells were averaged for each organ culture and the results
of three independent experiments are shown. The asterisks indicate statistical significance by paired  test analysis ( p << 0.05). Error bars indicate SEM. F, Migration velocity of ENCCs expressing the
biosensor for PKA at E10, E11.25, and E12.5. Data points represent individual cells compiled from three independent experiments. The red line represents the mean migration velocities of ENCCs. The

asterisks indicate statistical significance by ¢ test analysis (p < 0.05).

that ENCCs at the wavefront migrated rapidly, whereas ENCCs in
the rostral region migrated slowly and stochastically into various
directions (Fig. 2C). To confirm the inverse correlation of PKA ac-
tivity with migration velocity, the FRET/CFP ratio of each ENCC
was plotted against the average velocity (Fig. 2E).

Regulation of Racl-dependent ENCC migration by PKA and
by PI3K

To untangle the signaling network regulating ENCC migration,
ENCCs at E12.5 were treated with a cAMP analog (SP-8-Br-
cAMPS), PI3K inhibitor (PI-103), MEK inhibitor (PD184352),

or JNK inhibitor (SP600125) (Fig. 3A, B). The cAMP analog ro-
bustly activated PKA as expected, but neither the PI3K inhibitor
nor the MEK inhibitor affected PKA activity to a detectable level
(Fig. 3A). Racl activity was decreased by the cAMP analog and
the PI3K inhibitor, but not by the MEK inhibitor (Fig. 3B). Thus,
Racl was regulated positively by PI3K and negatively by PKA in
ENCCs (Fig. 3B). ERK was inhibited both by the PI3K inhibitor
and the MEK inhibitor (Fig. 3B). Treatment of the cAMP analog
had no effect on ERK activity. Neither the cAMP analog, PI3K
inhibitor, nor the MEK inhibitor affected JNK activity. We also
examined the effect of PKA inhibitors such as H89, but none of



4908 - J. Neurosci., March 13,2013 - 33(11):4901- 4912

them changed the PKA activity. We spec- A
ulated that PKA inhibitors might not per-
meate through the serosa.

We next examined the effect of these
reagents on the migration of ENCCs. The
cAMP analog, the PI3K inhibitor, and the
JNK inhibitor perturbed the migration of
ENCCs, but not the MEK inhibitor (Fig.
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4 A, B). These results suggested that Racl-
dependent migration of ENCCs was regu- B
lated negatively by PKA and positively by
PI3K. Although we did not find any biased
spatial distribution of JNK activity, the

JNK inhibitor suppressed JNK activity

(Fig. 3C) and migration of ENCCs (Fig.
4A,B). In contrast, ERK did not perturb
migration of ENCCs.

PKA

Activities of Racl and PKA in ENCCs at

E10 and E11.5

It has been shown that the mode of ENCC
migration changes during development of
the intestine (Burns and Thapar, 2006).
Thus, we next examined the activities of
signaling molecules at earlier stages. As re-
ported previously, ENCCs colonized the
stomach and the proximal small intestine
at E10, and the cecum at E11.25 (Fig. 5A).
Notably, the migration of ENCCs at E10
was significantly slower than the migra-
tion of ENCCs at E12.5. At this time,
ENCCs at the wavefront and the trailing
regions exhibited similar levels of PKA
and Racl activities (Fig. 5B,C). At E11.25
ENCCs at the wavefront started migrating
fast as a chain and moving forward to the
cecum. At this time ENCCs in the cecum
showed lower PKA activity and higher
Racl activity than did ENCCs in the ros-
tral region (Fig. 5D, E). When the migra-
tion velocities of ENCCs were quantified,
ENCCs in the caudal region and ENCCs
in the rostral region migrated with similar
velocities at E10, but ENCCs in the cecum,
or caudal region, migrated faster than
ENCCsin therostral regionat E11.25, as
was observed at E12.5 (Fig. 5F). It was reported previously
that chains of cells were observed at E10.5, when ENCCs enter
the midgut (Druckenbrod and Epstein, 2005). Therefore, PKA
inactivation and the subsequent Racl activation presumably oc-
cur at E10.5 in the midgut, which drives ENCCs to migrate
quickly in the form of cellular chains.

Rac1
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Figure 6.

indicate SEM.

Activities of Racl and PKA in ENCCs at E13

Next, we observed Racl and PKA activity at E13, when the caudal
region of ENCCs approached the terminus of the colon (Fig. 6A).
In clear contrast to ENCCs at E12.5, ENCCs at the caudal region
(Fig. 6B, left region) showed higher PKA activity than the follow-
ing ENCCs (Fig. 6B, central region). Importantly, these ENCCs
with low PKA activity continued to ENCCs with high PKA at the
rostral region (Fig. 6B, right region). A mirror image of this PKA
activity map was obtained for Racl (Fig. 6B). As in the other
regions, the migration velocity correlated inversely with PKA ac-
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Increased PKA activity and decreased Rac1 activity in the ENCCs that reached the end of the colon at E13. A, A
schematic illustration of ENCCs at E13. B, Representative FRET images of ENCCs expressing the FRET biosensor for PKA or Rac1 at
E13. Scale bars, 50 pum. €, Migration velocity of ENCCs at the end, chain, or network region. Data points represent individual cells
compiled from three independent experiments (n = 58 for end, n = 45 for chain, n = 45 for network). The red line represents the
mean of average velocities of ENCCs. The asterisks indicate statistical significance by  test analysis (p << 0.05). D, Mean FRET/CFP
ratios of ENCCs that halted at the end of colon, were migrating as a chain, or were forming a network at E13. The FRET/CFP ratios of
>20 cells were averaged for each organ culture and the results of three independent experiments are shown. Error bars

tivity and positively with Rac1 activity (Fig. 6C,D). Thus, ENCCs
ceased migration when PKA activity increased and Racl activity
decreased at the terminus of the colon. This observation strongly
suggested that PKA controls the migration of ENCCs during the
development of the intestine via Racl.

Regulation of PKA and Racl by GDNF and ET-3

Finally we searched for extrinsic cues that could modulate the
activities of PKA and Racl. The candidate molecules are GDNF
and ET-3, which have been shown to be key players of ENCC
development (Burns and Thapar, 2006; Heanue and Pachnis,
2007). Bath application of GDNF and ET-3 to the organ culture
of the intestine did not work, probably due to inefficient perme-
ation across the serosa. Therefore, we examined the effect of
GDNF and ET-3 by the time-lapse FRET imaging of ENCC ex-
plants (Fig. 7A). GDNF activated Racl and inhibited PKA in
ENCCs but not in the surrounding mesenchymal cells (Fig.
7B,C,E). The GDNF-induced Racl activation and PKA inhibi-
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Figure7. Activities of PKA and Rac1 regulated by GDNF and ET-3. 4, A schematic illustration of the explant assay. Representative phase contrast, PKA activity (FRET/CFP), and ret-mCherry images of ENCCs
expressing the FRET biosensor for PKA. Scale bars, 50 um. The ret-mCherry image was used to mark ENCCs. B, ENCCs expressing the FRET biosensor for Rac1 or PKA were stimulated with 100 ng/ml GDNF or 100
nw ET-3 at time point zero. Images were acquired every 2 min for 40 min. Representative FRET/CFP images in the IMD mode and Ret-mCherry images at the indicated time points are shown. Scale bars, 10 rm.
C, FRET/CFP values of each cell were normalized to the average FRET/CFP value between — 10 and 0 min. Cells were mock-stimulated or stimulated with GDNF in the presence or absence of the Ret kinase inhibitor
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mock-stimulated or stimulated with 100 ng/ml GDNF in the presence or absence of the Ret kinase inhibitor 554340 (1 m). Bar graphs represent PKA and Rac1 activities 30 min after treatment. Expression of
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tion were cancelled by the addition of 554340, an inhibitor of Ret
(Fig. 7C,E). In contrast to GDNF, ET-3 activated PKA and inhib-
ited Racl in 30 min (Fig. 7 B,D,F). The ET-3-induced Racl inhi-
bition and PKA activation were abrogated by BQ788, a specific
agonist of EDNRB (Fig. 7D). Notably, ET-3 transiently activated
Racl within 5 min in a BQ788-independent manner, the signifi-
cance of which should be evaluated in a future study. Neither
GDNF nor ET-3 exhibited any effect on JNK activity in ENCCs
(Fig. 7G). These results strongly suggest that PKA serves as a
molecular switch of Racl-dependent migration that is controlled
negatively by GDNF and positively by ET-3.

To examine the role of GDNF and ET-3 in ENCC migration,
expression of GDNF and ET-3 was examined at E13. Both GDNF
and ET-3 were expressed most abundantly at cecum and de-
creased gradually toward the caudal end (Fig. 8A).

Discussion

The genetic and histochemical work by Barlow et al. (2003) has
shown that ENCCs are coordinately controlled by the ET-3-
EDNRB and GDNF-Ret pathways. This work elegantly demon-
strated that the two pathways function cooperatively for the
replication, but antagonistically for the chemotaxis of ENCCs.
However, due to a lack of methods to monitor the activities of
signaling molecules in situ, the mechanism of the spatiotemporal
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control of the signaling molecules remains elusive. For example,
based on reports that the activation of EDNRA or EDNRB recep-
tors inhibits PKA activity in certain cell types (James et al., 1994;
Ono et al., 1994), it has been proposed that PKA is a positive
regulator of ENCC migration. This observation would seem to
contradict our proposal that ET-3 activates PKA and thereby
inhibits the chain migration of ENCCs. EDNRB is primarily cou-
pled to G, and the effect of ET-3 on PKA can be either positive or
negative, depending on cell types (Sokolovsky, 1995): The activa-
tion of EDNRB receptors can activate PKA in neuronal cells (Jau-
reguiberry et al., 2004) and melanocytes (Sato-Jin et al., 2008).
Thus, measurement of the activity in situ is critical for determin-
ing the contribution of PKA or other signaling molecules, for
which our approach with FRET mice will be applicable in a ver-
satile way.

GDNF, which is expressed in regions that precede the wave-
front of ENCC migration (i.e., the stomach and cecum), drives
ENCC migration (Natarajan et al., 2002). Meanwhile, ET-3,
which is expressed at the cecum and colon, serves to halt migra-
tion of ENCCs (Barlow et al., 2003). We obtained similar results
at E13 and did not find higher expression of ET-3 at the terminus
of the colon than in the rostral regions. Therefore, the antagonis-
tic action of GDNF versus ET-3 alone could not explain the
mechanism underlying the stalling of ENCC migration at the
terminus of the colon.

We have found that the migration velocity of ENCCs corre-
lates inversely with PKA activity (Fig. 2) and that, in line with this
observation, PKA activation by a cAMP analog inhibits ENCC
migration (Fig. 4). The mechanism by which PKA inhibits migra-
tion has not been studied in ENCCs, but in other cell types two
mechanisms have been proposed to link PKA activity to cell mi-
gration. In endothelial cells PKA inhibits cell migration in an
Src-dependent manner (Jin et al., 2010). In a mouse lymphoid
cell line, PKA inhibits guanine nucleotide exchange of RhoA,
thereby perturbing integrin-mediated lymphocyte adhesion
(Laudanna et al., 1997). However, a link from PKA to Racl was
not established in either study.

We have shown that PKA activity is inversely correlated with
Racl activity (Fig. 2), which naturally leads to speculation that
PKA inhibits Racl and ENCC migration (Fig. 8B). Reflecting the
pleiotropic roles of PKA in signal transduction, PKA can either
inhibit or activate Racl in a cell context-dependent manner. PKA
phosphorylates Racl at Serine 71 and thereby downregulates
Racl upon bacterial infection of epithelial cells (Brandt et al.,
2009). PKA also downregulates Racl indirectly by means of phos-
phorylation of guanine nucleotide exchange factors of Racl. For
example, PKA binds to, phosphorylates, and inhibits P-Rex1, a
Racl GEF (guanine nucleotide exchange factor), which regulates
chemotaxis of leukocytes (Zhao et al., 2007). In contrast, PKA is
required for a GDNF-mediated increase in Racl GEF activity and
lamellipodia formation in SH-SY5Y neuroblastoma cells
(Fukuda et al., 2002). In PC12 rat pheochromocytoma cells, PKA
phosphorylates and activates STEF/Tiam2, another Racl GEEF,
and induces neurite extension (Goto et al., 2011). Meanwhile,
many Racl GEFs are regulated by PI3K. In agreement with this
observation, we found that the migration of ENCCs was inhibited
by a PI3K inhibitor (Fig. 4). Thus, we could postulate a signaling
cascade comprised of PKA, PI3K, Racl GEF, and Racl1 (Fig. 8B).
Further studies of potential PKA-regulated GEFs and/or GTPase-
activating proteins will be needed to untangle the signaling path-
way from PKA to Racl in ENCCs.

Asai et al. (2006) previously reported that PKA regulates Ret
and JNK and promotes the migration of ENCCs in the develop-
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ing gut. We also confirmed that JNK is required for ENCC mi-
gration by the use of a specific JNK inhibitor (Fig. 4). However, in
contradiction to the previous proposal that JNK is activated by
GDNF in dorsal root ganglion cells, we failed to observe JNK
activation in GDNF-stimulated ENCCs (Fig. 7G). Furthermore,
we also failed to observe any correlation between migration ve-
locity and JNK activity in ENCCs (Fig. 2). Because the FRET
biosensor for JNK monitors the activity balance between JNK and
phosphatases, we might have failed to detect JNK activation, if
both JNK and phosphatases had been activated by GDNF. But in
this case the signal from JNK is counteracted by the phosphatases
and not transmitted to the downstream molecules. Thus, JNK
activity does not play a regulatory role in ENCC migration, but
probably serves to maintain the ability for ENCCs to migrate as
reported previously in epithelial cells (Wang et al., 2010).

Natarajan et al. (2002) reported that ERK is phosphorylated
upon GDNF stimulation and required for the GDNF-induced
migratory response of ENCCs. In another study, however, the
MEKI1 inhibitor PD98059 (2-(2-amino-3-methoxyphenyl)-4 H-
1-benzopyran-4-one) did not affect ENCC migration in the co-
lon (Asai et al., 2006). Colonization of ENCCs is an integrated
process of migration, survival, proliferation, and differentiation.
A reduction in the number of ENCCs by cell death or another
mechanism leads to failure of complete colonization and results
in aganglionosis (Burns et al., 2000; Uesaka and Enomoto, 2010).
In the previous experimental protocols, it was difficult to distin-
guish in which processes of migration, survival, proliferation, or
differentiation ERK is required. In this study, we failed to observe
any correlation between ERK activity and migration velocity in
the timescale of minutes or between ERK activity and the location
of each ENCC (Fig. 2). It has been reported that proliferation
rates are equivalent in all regions of the ENS, regardless of the
position relative to the migratory wavefront (Young et al., 2005).
Thus, ERK may play a critical role in the regulation of ENCC
replication, which may affect the overall rate of ENCC migration,
but ERK may not directly control the velocity or direction of
ENCC migration.

In conclusion, we have shown the activity changes of small
GTPases and protein kinases in migrating ENCCs, and found
that PKA serves as a critical node of external cues and negatively
regulates Racl and, thereby, ENCC migration. Furthermore,
against previous predictions, JNK and ERK do not spatiotempo-
rally regulate ENCC migration, despite their essential roles in the
migration of ENCCs. These observations argue for the impor-
tance of the visualization of signaling molecule activities in living
animals.
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