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The Role of Delayed Suppression in Slow and Fast Contrast

Adaptation in V1 Simple Cells

Manuel Levy, Julien Fournier, and Yves Frégnac
Unité de Neuroscience Information et Complexité, Gif/Yvette 91198, France

The sensitivity and rate of neural coding along the early visual pathways adapt to changes in contrast of the retinal image caused by
external motion or self-generated eye movements. To identify the functional mechanisms of fast and slow contrast adaptation at the level
of the visual cortex, we randomly varied, over both short and long timescales, the contrast of optimal sinusoidal gratings flashed in the
receptive field of simple cells. We found that fast contrast-dependent suppression lagged excitation by ~11 ms and controlled the spike’s
temporal precision. During slow adaptation to low contrasts, the gain and latency of excitation increased whereas suppression became
less visible, resulting in more sensitive but slower and more variable responses. We conclude that delayed suppression controls the
response dynamics during both fast and slow contrast adaptation. More generally, we propose that sensory adaptation trades neuronal
sensitivity for processing speed by changing the balance between excitation and delayed inhibition.

Introduction

By adapting to the varying statistics of natural environments,
sensory neurons can make an efficient use of their limited dy-
namic range and coding capacities (Barlow and Foldiak, 1989). In
the mammalian primary visual cortex (V1), neurons match their
dynamic range to the range of contrasts presented in the receptive
field for the past few seconds (Ohzawa et al., 1982, 1985). In
addition to this slow contrast adaptation, V1 neurons also adapt
to the contrast of current stimuli by reducing their gain so that
spatial selectivity remains contrast invariant (Sclar and Freeman,
1982; see contrast gain control in Albrecht and Geisler, 1991; and
contrast normalization in Heeger, 1992). This fast contrast adap-
tation could also increase the coding rate at high contrasts by
accelerating the response’s temporal dynamics (Holub and
Morton-Gibson, 1981; Dean and Tolhurst, 1986; Reid et al.,
1992; Carandini and Heeger, 1994; Albrecht, 1995; Gawne et al.,
1996; Carandini et al., 1997; Mechler et al., 1998; Reich et al.,
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2001; Alitto and Usrey, 2004) and by lowering the response’s
variability (Finn et al., 2007; Mechler et al., 1998).

However, despite the central role of fast and slow contrast
adaptation in visual processing, their biological substrates remain
largely unknown. Slow adaptation likely relies on both intrinsic
and cortically based synaptic mechanisms (Maffei et al., 1973;
Ohzawa et al., 1985; Carandini and Ferster, 1997; Sanchez-vives
etal., 2000; Nowak et al., 2005). In the case of fast contrast adap-
tation, the relative roles of the spike threshold, subcortical
sources, and intracortical synaptic inhibition are still debated
(Geisler and Albrecht, 1992; Heeger, 1992; Borg-Graham et al,,
1998; Hirsch et al., 2003; Lauritzen and Miller, 2003; Finn et al.,
2007; Katzner et al., 2011). Part of the issue may be that “slow”
adaptation in V1 actually spans a diversity of timescales, from <1
s (Bonds, 1991; Miiller et al., 1999) to seconds (Ohzawa et al.,
1982, 1985) to minutes (Sharpee et al., 2006); moreover, the fine
dynamics of the fast (<100 ms; Albrecht et al., 2002) contrast
gain control are still unknown. As a consequence, the seconds-
long stimulus durations used in most previous studies of V1 con-
trast processing (shortest stimulus presentations: ~200 ms in
Gawne et al., 1996; Reich et al., 2001; Albrecht et al., 2002; Nowak
and Barone, 2009) may have activated both slow and fast
contrast-dependent nonlinearities and resulted in a mixture of
effects in the recorded responses (Nowak and Barone, 2009).

In the present study, we used white noise analysis to charac-
terize independently the functional mechanisms of slow and fast
contrast adaptation. Our stimulus design ensured that the con-
trast responses to ~13-ms-long individual frames (instantaneous
contrast) were affected only by fast contrast adaptation. We also
varied the ambient contrast of the stimulus on a slow timescale
(~1 min) to isolate the effects of slow contrast-dependent non-
linearities by comparing the receptive fields (RFs) reconstructed
in different adaptation conditions. Our results reveal that delayed
nonlinear suppression plays a crucial role in adapting the tempo-
ral dynamics of V1 responses to the contrast of visual stimuli.
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Figure 1.  First- and second-order analysis of contrast suppression at Hi CT (cell 1). 4, The
stimulus was a dynamic sequence of optimal gratings, the spatial phase and contrast of which
changed randomly at the screen refresh rate (76 Hz). The range of contrasts presented varied
across 52-s-long blocks: in the Hi CT condition, the contrast varied between 20% and 80%; in the
Lo (T condition, the contrast varied between 7.07% and 28.28%. B, Impulse responses to each
of the 36 combinations of contrast and phase presented in the Hi CT condition. Only the dynamic
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Materials and Methods

Recording procedures. Single units were recorded extracellularly in
area 17 of anesthetized (Pentothal, 1.0 mg/kg/h) and paralyzed
(Flaxedil, 10 mg/kg/h) adult male and female cats, in conformance
with the guidelines adopted by the Society for Neurosciences. The
orientation, direction, spatial frequency, and size tuning of each neu-
ron was determined quantitatively by presenting pseudorandom se-
quences of 4-s-long drifting sinusoidal gratings (Michelson contrast:
35%) on a CRT display (refresh rate: 76 Hz, mean luminance: 20
cd/m?, subtending 31° X 23° at 57 cm). The precise position and
spatial organization of the RF was also measured with sparse noise
stimuli. Cells were classified as “simple” based on clearly segregated
ON and OFF subregions (Hubel and Wiesel, 1962) and on the relative
amplitudes of the DC and first harmonic components of the spike
response to an optimal drifting grating (Skottun et al., 1991).

Visual stimulus. Simple cells were stimulated with ~52-s-long blocks
of flashed sinusoidal gratings. The orientation, spatial frequency, and size
of these gratings were optimal for the recorded cell, but their contrast and
spatial phase changed at the screen refresh rate (Fig. 1A). Each block
consisted in 10 repeats of a sequence of 400 frames, drawn pseudoran-
domly and with uniform probability from a set of 40 combinations of 10
contrasts and four phases. The four 90°-spaced spatial phases were se-
lected so that one of them was optimal for the cell based on the RF map
measured by reverse correlation and, when it was available, the phase
tuning of the cell. One of the 10 contrast values was set to zero to provide
for blank stimuli and the others spanned a two-octave interval in equal
logarithmic steps. The set of contrast values varied across blocks: in the
“high contrast range” condition (Hi CT), the contrast varied from 20%
to 80%, whereas in the “low contrast range” condition (Lo CT), the
contrast varied from 7.07% to 28.28%. In some cells we also presented a
“very low contrast range” condition, in which the contrast varied from
2.5% to 10%. The responses measured in this latter condition agreed with
the rest of our results, but were not included in the population analysis
because only four of the recorded cells displayed sufficient responses for
subsequent RF reconstruction. Blocks were separated by 5 s blank images
of uniform luminance. To allow for slow contrast adaptation, the initial
8 s of the responses after each block onset were discarded. Each cell was
stimulated with 27-60 different blocks.

Data preprocessing. Spike trains were binned at the stimulus duration
(~13.16 ms). Blocks were separated in two sets of approximately equal
size: in the fitting set, spike trains were averaged across multiple repeats of
the same stimulus sequence and the resulting mean responses were used
to fit the models, whereas in the validation set, single-trial responses were
used to measure the models’ predictive power (see Validation of the
models, below). We followed Rust et al. (2005) in including in our anal-
ysis only cells for which at least 50 spikes per spatiotemporal dimension
were collected in each adaptation condition. One cell was excluded be-
cause variations in the spatial profile of the RF during the course of the
recordings suggested incomplete suppression of eye movements. Our
study is based on the responses of 29 simple cells in the Hi CT condition
(mean 301 spikes per dimensions, 12,000 total spikes), of which 26 were

<«

section (first 100 ms) of the 250-ms-long impulse responses is shown. Each panel contains
all of the impulse responses reconstructed at a given spatial phase. The color (see figure
key) of the impulse responses indicates the contrast of the corresponding frame. The
baseline (K® = 10.7 spikes/s) is indicated by the dotted line. C, The stimulus sequence can
also be represented by two variables (T(0°,t) and (T(90°,t), corresponding to the contrasts
presented at spatial phases 0° and 90° (positive values) and 180° and 270° (negative
values). D, K" of cell 1 at Hi (T in the 2D stimulus space described in C. E, K2 of cell 1 at Hi
(T.The K2 is arranged in four quadrants corresponding to the four possible phase combi-
nations (clockwise from top left: 0°/90°, 90°/90°, 90°/0°, and 0°/0°, respectively). The
x-axis and y-axis specify the delays (from the gratings onsets) after which a particular
interaction is observed or, equivalently, the time at which each grating was flashed before
the response at time zero. The z-axis (color scale) measures the strength and polarity of
the interaction, in units of spikes per second per square unit contrast; note that a loga-
rithmic color scale was used to represent the large dynamic range of the K. The K2
diagonals are indicated by dotted lines.
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sufficiently responsive at Lo CT (mean 184 spikes per dimensions, 7345
total spikes) for comparison of the RFs across contrast ranges.

Fit of the bank of impulse responses. We first characterized the contrast
responses in the Hi CT condition with a bank of impulse responses. This
model assumes that each combination of contrast and phase is an inde-
pendent variable with its own impulse response; the sum of the impulse
responses evoked by each stimulus frame results in the predicted re-

sponse R(t):

R(t) = K + 2 IR(ct,@,7) X(ct,o,t — T) (1)

cLe,T

where K° is the baseline firing rate, X is the stimulus sequence
(X(ct,t) = 1 when the frame presented at time f has contrast ¢t and
phase ¢; X(ct,¢,t) = 0 otherwise), and IR represents the 36 independent
impulse responses corresponding to each combination of nine contrasts
and four phases. The impulse responses were estimated over 20 time
samples (~250 ms). Equation 1 was applied at each time ¢, resulting in a
system of >10,800 linear equations (400 times the number of Hi CT
blocks) for 721 coefficients. Because this system had many more equa-
tions than coefficients, it had one unique solution that minimized the
sum of the squares of the differences between the predicted and the
measured responses. The system was solved using the Cholesky factor-
ization implemented by the fast orthogonal algorithm of Korenberg
(1988).

Estimation of the second-order kernel. For nonlinear white noise analy-
sis, the stimulus sequence was represented by two independent variables,
CT(0°%¢) and CT(90°1), corresponding to the contrasts of the gratings
presented at the spatial phases 0° and 90°, respectively. CT(0°t) and
CT(90°1) also included negative contrasts, corresponding to gratings
presented at spatial phases 180° and 270°, respectively. The first three
terms of the Volterra expansion (Marmarelis, 2004) were fitted using
both the fitting and the validation datasets according to the following
equation:

R(t) = K + D K, CT(p,t — 7)

X

+ E Kz(‘P]»Tb‘Pz»Tz)CT(‘Pl)t - 71)CT((P2J - Tz) (2)

PLTLE2,T2

where K K!, and K? are the zero-, first-, and second-order Volterra
kernels, respectively. Equation 2 was applied at each time ¢ and the re-
sulting system of linear equations was solved for the kernels coefficients
(1 coefficient for the KY 40 for the K', and 800 for the diagonally sym-
metric K?). We used an orthogonal least-squares algorithm because it
produces more robust estimates of the K? coefficients than cross-
correlation methods in response to non-Gaussian white noise stimuli
(Korenberg, 1988). Note that our stimuli allowed the direct measure-
ment of the diagonals K*(¢,; ¢,7;) from the responses to gratings of
varying contrasts presented at a single spatial phase and a single delay.
Because we did not present 45° spatial phases, the K? coefficients corre-
sponding to interactions between 0° and 90° at identical delays 7; were
interpolated from neighboring coefficientsat r; _ ; and 7, , ;.

Fit of the linear-nonlinear model. The linear-nonlinear (LN) model
consisted of a linear stage in which CT(0°,t) and CT(90°,t) were con-
volved with their corresponding 1D filter, followed by a rectifying
nonlinearity. The LN model was fitted in three steps. First, the linear
part of the LN model was approximated by the K' obtained from
Equation 2. Second, a sigmoid nonlinearity was added after the linear
filter as follows:

, BLO(E)]
Re= et So@E)f + 1

where E| is the output of the first-order kernel obtained by convolving K*
with the stimulus and 6(x) is the threshold function, which returns x if
x > 0 and 0 otherwise. The parameters «, 3, v, and ¢ were estimated by
nonlinear least-squares minimization (Levenberg-Marquardt method).
Thirdly and finally, the response prediction was further improved by

(3)
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letting all of the 44 parameters of the LN model evolve together, starting
from the estimates of the linear filter and the nonlinearity obtained in
steps 1 and 2. Only the data from the fitting set were used during this last
stage, ensuring that the final fits depended on a dataset different from the
one used for validation.

Fit of the multi-LN model. Multi-LN models consisted of multiple
LN branches, the outputs of which were combined by a static output
nonlinearity. The multi-LN models were fitted in four steps: (1) the
K'and K? of the receptive field were computed, (2) the linear filters of
the multi-LN model were approximated by the significant eigenvec-
tors of the K2, (3) the parameters of the output nonlinearity were
estimated, and (4) the estimates of the model parameters were refined
by refitting the linear and nonlinear stages together. Both the fitting
and the validation sets were used for steps 1 and 2, whereas only the
fitting set was used for steps 3 and 4. Steps 2 and 3 have been described
in detail previously (Rust et al., 2005).

Step 1: The K' and K? were estimated using Equation 2 (see above).

Step 2: The K? was decomposed into a weighted sum of linear filters
dimensioned as the K' and affected by a quadratic nonlinearity. Equation
2 then becomes:

R(t) = K* + D K (¢,7)CT(@t — 7)

2

+ 2 M| 2 nlenCTler — 1| (4)
k o7
The filters v, are the eigenvectors determined by eigen decomposition of
the K2. Their contribution to the variance of the K* is measured by the
eigenvalues Ay, which can be positive or negative depending on the ex-
citatory or suppressive effect of the corresponding eigenvectors. Asarule,
most of the K* variance was explained by a single eigenvector propor-
tional to the K, as expected from the LN model of simple cells. To
determine which eigenvectors contributed significantly to the response,
we used a bootstrapping procedure (Rust et al., 2005; Schwartz et al.,
2006). More precisely, we tested the null hypothesis that the eigenvalues
of the measured K?* were not significantly different from those expected
by chance. First, the K prediction, which corresponds to the first term of
Equation 4, was obtained by convolving the K' with the stimulus se-
quence and was subtracted from the mean spike train. Then the K-
subtracted response was randomly time shifted relative to the stimulus
sequence, the K? was estimated, and its eigenvalues were determined. By
repeating this calculation 300 times, we obtained the 95% confidence
intervals of the K? eigenvalues expected when the stimulus and the re-
sponse were not correlated. If the largest (or smallest) eigenvalue of the
measured K was not in the confidence interval estimated by bootstrap-
ping, we concluded that the corresponding eigenvector contributed sig-
nificantly to the K'-subtracted response. We computed its contribution
as the square of the convolution of the stimulus sequence with the eigen-
vector, scaled by the corresponding eigenvalue. This eigenvector contri-
bution, which corresponds to the third term of Equation 4, was
subtracted from the K'-subtracted response, and we proceeded to deter-
mine whether the next largest (or smallest) eigenvalue contributed sig-
nificantly to the rest of the response. This process was repeated until all of
the significant eigenvalues were determined. We never found more than
two excitatory and/or two suppressive significant eigenvectors per cell.
Step 3: The output nonlinearity was fitted according to a modified
Naka-Rushton equation (Rust et al., 2005):

é _ n B[O(El)z + WeEg]g - S[Sf + Vvssg]g
C T MOE) + wEL + oS + wSl + 1

(5)

where E,, S;, and S, are the outputs of the excitatory filter e, and the
suppressive filters s, and s, determined during step 2. The weights w,, w,,
6, and & were set to 0 when the corresponding filters did not significantly
affect the response. 8 and € were clamped to 0 in the case of the multi-LN
models without suppression (Fig. 7, Fig. 11).
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Step 4: We refined the multi-LN models by letting all of the parameters
evolve together, starting from the estimates of the linear filters and of the
nonlinearity obtained during steps 2 and 3 (maximum number of pa-
rameters: 168 for a multi-LN model comprising two excitatory and two
suppressive filters). There are two reasons for this supplementary step:
first, the eigenvectors were estimated assuming a square output nonlin-
earity and not a Naka-Rushton equation. Second, the eigen decomposi-
tion imposes that the recovered filters are orthogonal, whereas their
potential biological substrates, in particular synaptic inhibition and ex-
citation, may actually be coactivated (Lauritzen and Miller, 2003). This
fourth step significantly improved the quality of the fits, prevented spu-
rious orthogonal relationships between the estimated filters, and ensured
that the final fits depended on a dataset different from the one used for
validation. All fits were done in Elphy (open-source software developed
at UNIC by Gérard Sadoc) and relied on Intel mathematical libraries for
nonlinear least-squares optimization.

Direction selectivity index. The direction selectivity index (DSI) was
measured from the responses to two gratings drifting in opposite direc-
tions for 4 s. Orientation and spatial frequency were optimal for the
recorded cell, temporal frequency was set to 2 Hz, Michelson contrast
was set to 35%, and the presentation of each grating was repeated at least
5 times. The DSI was defined as follows (DeAngelis et al., 1993):

pS[ = LM (6)

where R, and Ryp are the first harmonics of the trial-averaged responses
to the preferred and nonpreferred directions, respectively.

Excitatory and suppressive K*. According to Equation 5, the total ex-
citatory signal e, in our models consisted of a weighted sum of the
(half-)squared outputs of the excitatory filters: e,,, = 0(E,)* + w.E,>.

Conversely, the total suppressive signal, s, consisted of the weighted
sum of the squared outputs of the suppressive filters: s,,, = S, > + w.S,>

We reconstructed the second-order kernels for excitation and sup-
pression by replacing the predicted firing rate in Equation 2 with e, and
S.op Tespectively.

Spatiotemporal tuning of the excitatory and suppressive K*. For a given
K? (whether measured, predicted, excitatory or suppressive), second-
order interactions selective to motion can be separated from those insen-
sitive to motion by computing the motion K> and the position K2,
respectively. By definition, pure motion interactions depend on the tem-
poral order in which the two gratings are presented: their sign changes
when the gratings spatiotemporal positions are permuted. Conversely,
second-order interactions insensitive to motion are not affected by such
permutations. Therefore, the motion K2 can be computed by subtracting
a “flipped” K? (where the temporal axes of each quadrant have been
permuted) from the original K, whereas the position K? is obtained by
adding the flipped and the original K*:

1
Kixrotiun(‘PbTb‘Pz»Tz) = E[Kz(‘Pl»TD‘Pz»Tz) — K(@1,7027)]

(7)

1
K%’nsitilm((Pl’Tl’(prZ) = E[Kz((PhTI’(PZ)TZ) + KZ((PI’TZ)(PZ’TI)]

(8)

To compare the direction preferences of the excitatory and suppressive
subunits, we first computed the motion K* of the excitatory and suppres-
sive K2, and then computed their Pearson’s correlation coefficient. High
correlation coefficients indicate similar direction tunings for suppression
and excitation, whereas correlation coefficients close to —1 correspond
to opposite direction preferences. Similarly, we compared the preference
for stationary stimuli of the excitatory and suppressive K* by computing
the correlation coefficient between the position K? of excitation and
suppression.

Dynamics of the linear filters. To analyze the time course of the excit-
atory and suppressive subunits, we picked the largest 1D linear filter of
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each subunit and computed its envelope as the vector sum of the 1D filter
and of its Hilbert transform (DeAngelis et al., 1993). We then interpo-
lated the envelope at 1 ms with a cubic spline and measured the latency of
its peak.

Validation of the models: expected and predicted coherences. The coher-
ence measures in the Fourier space the degree of linear relationship be-
tween two signals, w,(¢) and w,(t), and is defined by:

B | < W (f) - W5(f) > t|2
Cohwiwaof) = <IW(HIF>, <IW(HIP>,

9)

where W, ( f) and W,( f) are the Fourier transforms of w, (t) and w,(t)
and angular brackets symbolize window averaging (across 1-s-long Hann
windows shifted by 0.5 s steps in the present study). The coherence = 1
for linearly related signals, and decreases to <1 when the signals are
nonlinearly related and/or corrupted by noise. In particular, the coher-
ence between the recorded response and its prediction by any given
model, the predicted coherence, can be used as a measure of the model
predictive power across temporal frequencies provided that it is com-
pared with the theoretical maximum given the response noise, the ex-
pected coherence (van Hateren and Snippe, 2001). We computed the
predicted coherence as the average of the coherences between each trial
response R;(f) and the model prediction, whereas the expected coherence
is the average of the coherences computed between each trial response
R;(#) and the mean of the responses to the other trials, R; . ;(£). Note that
these estimates are biased because of the limited number of repetitions
and the fact that coherence can only assume positive values. We corrected
for this bias by subtracting shuffled coherences, which were computed as
the expected and the predicted coherences except that the trial responses
were randomly shifted in time. Finally, the coherence rate, RCoh, quan-
tifies how close the coherence function is to 1 over the entire frequency
range:

RCoh = Y log, (1 — Coh(f))Af (10)

No

The ratio of the predicted over the expected coherence rate measures the
proportion of the response signal explained by the corresponding model.

Results

We recorded extracellularly from 29 simple cells in the area 17 of
anesthetized adult cats. Each neuron was stimulated by a dynamic
sequence of sinusoidal luminance gratings flashed at the orienta-
tion, spatial frequency, and size optimal for the cell under study.
The contrast and spatial phase of the gratings changed pseudo-
randomly at the screen refresh rate (76 Hz; Fig. 1A). The range of
contrast presented was also varied, in 52-s-long blocks: the con-
trast of the grating frames was between 20% and 80% during Hi
CT conditions and between 7.07% and 28.28% during Lo CT
conditions (1.5 octaves below the Hi CT condition). This
stimulus design, in which contrast varied over both fast and
slow timescales, allowed the independent analysis of fast and
slow contrast-dependent nonlinearities: the former were char-
acterized by nonlinear analysis of contrast responses within Hi
CT blocks, and the latter were analyzed by comparing recep-
tive fields across adaptation blocks.

Dynamics of fast contrast-dependent suppression in V1
simple cells

The impact of the fast contrast-dependent nonlinearity on simple
cell dynamics can be observed directly by comparing the re-
sponses to the contrasts and phases presented in the Hi CT con-
dition (Fig. 1B, cell 1). More precisely, the cell response was
modeled as the summed output of a bank of 36 impulse re-
sponses, each corresponding to a different combination of con-
trast and phase (9 contrasts X 4 spatial phases, see Materials and
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Methods). This is equivalent to measuring the spike-triggered
average stimulus with the different combinations of contrast and
phase considered as independent variables. At the optimal spatial
phase (270°), the peak latency of the impulse responses decreased
with contrast, which is consistent with previous results (Gawne et
al., 1996; Albrecht et al., 2002). Surprisingly, however, the time
course of the impulse responses at the anti-optimal spatial phase
(90°) changed in the opposite direction: the trough latency in-
creased with contrast. The time courses of the impulse responses
to the 0° and 180° spatial phases were also affected in opposite
directions by increasing contrast.

This simple linear analysis is sufficient to reveal the contrast de-
pendence of response dynamics, but not its underlying functional
mechanisms, because the visual system does not process different
contrasts in independent channels. Alternatively, the visual input
sequence can be described by two signed variables, CT(0°,t), repre-
senting the contrasts over time at spatial phases 0° and 180° with
positive and negative values, respectively, and CT(90°), represent-
ing the contrasts at 90° and 270° (Fig. 1C). Due to its simplicity, this
stimulus space is well suited to nonlinear system identification of
contrast and phase processing (Marmarelis, 2004). The first step of
this analysis consists of using the Volterra expansion to describe the
receptive field by a second-order polynomial as Equation 2 of the
Materials and Methods. The coefficients, or kernels, of this polyno-
mial will then serve as a basis for fitting LN and multi-LN models to
the receptive field (Rust et al., 2005).

K' (Fig. 1D), or the linear receptive field, quantifies the linear
response of the cell to individual gratings. It consists of two 1D
filters for convolving the inputs CT(0°,¢) and CT(90°¢). K 2 (Fig.
1E) quantifies the nonlinear response due to second-order inter-
actions between gratings. The K is nearly identical to the spike-
triggered covariance matrix described in other studies (Touryan
etal.,2002; Rust etal., 2005), except that it was estimated using an
orthogonal least-squares algorithm instead of cross-correlation
techniques. The K* coefficients indicate whether a given pair of
gratings, CT(¢,,7;) and CT(¢,,T,), facilitates or suppresses the
linearly predicted response; the amount of facilitation or sup-
pression equals the coefficient K*(¢,,T,,¢,,7,) multiplied by the
contrast of the gratings. For example, the green region in the
upper left quadrant of Figure 1E shows that the response at time
01is facilitated by the presentation of 0° spatial phase at time —100
ms followed by 90° spatial phase at time —40 ms.

The diagonals of the K* (Fig. 1E, dotted lines) are particularly
important for the present study, because they show whether the
response to a single grating scales linearly with contrast. These
diagonal interactions are facilitatory early in the response (green
regions at ~40 ms) but then become suppressive (red regions at
~60 ms), suggesting that contrast-dependent suppression is de-
layed relative to the peak response. Furthermore, the second-
order nature of this suppression indicates that it is evoked by both
positive and negative contrasts (i.e., it is complex-like). This may
explain why, as the contrast increases, the impulse responses to
optimal phases are cut short, whereas the suppression caused by
anti-optimal phases is prolonged.

LN model prediction of simple cell responses at Hi CT

A popular model of simple cell receptive fields, the LN model, can
explain part but not all of the K? structure. Theoretical studies
have shown that the K* diagonal of a LN cascade should include
only positive coefficients, because the K diagonal is proportional
to the square of the K' (Marmarelis, 2004). Therefore, the LN
model cannot account for the suppressive interactions we ob-
served along the diagonals of the measured K>. To illustrate this,
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Figure2. First- and second-order analysis of the response predicted by the LN model of cell

1.4, LN-model of cell 1in the Hi CT condition. The LN-model consists of two 1D filters receiving
the contrastinputs (7(0°,t) and (T(90°,¢) (vertical scale bar: 2 spikes/s/uCT; horizontal scale bar:
50 ms), followed by a sigmoid static nonlinearity (vertical scale bar: 100 spikes/s; horizontal
scale bar: 1 spikes/s). This nonlinearity corresponds to Equation 3 with parameters o = 0.43,
B =122,y =0.26, and { = 0.73. B, Impulse responses predicted by the LN model. The
impulse responses were computed by solving Equation 1 using the response predicted by the LN
model. C, K predicted by the LN model.

we used part of the recorded responses (the fitting set, see Mate-
rials and Methods) to fit a LN model consisting of two impulse
responses (based on the K') followed by a sigmoid nonlinearity
(Fig. 2A). We then predicted the response of the LN model during
the rest of the stimulus presentation (the validation set). Finally,
the LN prediction was submitted to the same analyses as the
observed responses (i.e., we reconstructed the impulse responses
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Multi-LN models of simple cell RFs at
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The properties of nonlinear suppression
suggested that simple cells receive delayed
suppressive inputs from complex-like sub-
units. To evaluate this functional mecha-
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nism, we fitted the RFs in our population
with models consisting of multiple parallel
LN branches; the outputs of these branches
were combined nonlinearly (multi-LN
model, Rust et al., 2005, see Materials and

Spk/s/uCT?

Methods). We proceeded in four steps: after
determining the K' and K* of the RF (step
1), a set of linear filters was obtained directly

by eigen decomposition of the K (step 2).
Each filter consisted of, as for the K', a pair
of 1D filter corresponding to the inputs
CT(0°¢) and CT(90°,t). The contribution of

the squared output of each filter to the total
K? output was measured by its eigenvalue,
which could be positive or negative, as
shown in Equation 4 in Materials and Meth-
ods. As a result, the signal-dependent vari-

ance of the K* was accounted for by a
reduced set of filters (never more than two
excitatory and/or two suppressive filters in

our cell population), the properties and
function of which could be analyzed sepa-
rately. Then (step 3), we fitted the output
nonlinearity with a modified Naka-Rushton

equation, Equation 5 in Materials and
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Methods (Rust et al., 2005). Finally (step 4),
we refined our estimates of the models by
letting all of the parameters (the linear filters
as well as the nonlinearity) evolve freely to-

Time (ms)
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Figure3. The multi-LN model and its predicted K at Hi CT (cell 1). A, Graph of the eigenvalues obtained after eigen decompo-
sition of the K shown in Figure 1F. Three eigenvalues (two negative and one positive) differed significantly from the eigenvalues
obtained after randomly time shifting the spike responses relative to the stimulus. B, Schematicillustration of the multi-LN model
of cell 1. The linearfilters s, s,, and e, each consist of two 1D filters. Their envelopes are shown (dotted lines) and the peak latency
of each envelope is indicated in inset. The output of e, is passed to a half-squaring function, whereas the outputs of s, and s, are
squared. The resulting excitatory and suppressive inputs are combined by a sigmoid nonlinearity (see Materials and Methods),
which produces the response prediction. €, K2 reconstructed from the response predicted by the multi-LN model in B. D, k?
reconstructed from the predicted excitation (i.e., the output of the branch consisting of e, followed by the half-squaring nonlin-
earity). E, K reconstructed from the predicted suppression, the sum of the squared outputs of s, ands,. This signal then contributes
to the subtractive and divisive terms of the output nonlinearity of the multi-LN model. Note that because this suppressive k2 is
computed before the intervention of the output nonlinearity, green regions in E correspond to interactions that suppress the final
predicted firing rate, and red regions facilitate the predicted response. Note also that the diagonal interactions peak at slightly later

timein Ethanin D.

and the K? of the LN prediction; Fig. 2 B, C). Unlike the bank of
impulse responses obtained directly from the observed firing rate
(Fig. 1B), the bank of impulse responses predicted by the LN
model exhibited no contrast-dependent change in peak or trough
latency (Fig. 2B). Moreover, the structure of the measured and
the LN-predicted K> were almost identical, except that the latter
did not show any evidence of diagonal suppression: instead, di-
agonal excitation lasted longer in the predicted than in the ob-
served K* (compare Fig. 2C, Fig. 1E). Therefore, as expected, the
static nonlinearity of the LN model could not reproduce the
phase independence or dynamics of the contrast-dependent
nonlinearity.

gether. We used only part of the response
(the fitting set) during this last step; the re-
maining responses were used for validating
the model predictions.

The eigen decomposition of the K* of
cell 1 showed that three eigenvalues (one
positive and two negative, Fig. 3A) differed
significantly from those expected if the stim-
ulus and the spike responses had been un-
correlated (see Materials and Methods). As
a result, the multi-LN model (Fig. 3B) com-
prised one excitatory branch similar to the
LN model (Fig. 2A) and two complex-like
suppressive branches (i.e., two linear filters,
s, and s, followed by quadratic nonlineari-
ties). s, and s, had different spatial phase
preferences (s, was strongest at 90°, whereas s, preferred 0°) and,
importantly, they were slightly delayed (by ~10 ms) relative to the
excitatory filter, as indicated by the peak latencies of the filter enve-
lopes (Fig. 3B).

The K? predicted by the multi-LN model (Fig. 3C) improved on
the K* predicted by the LN model by displaying diagonal suppres-
sion at the 0° spatial phase and by cutting short diagonal excitation at
~60 ms in the 90°/90° quadrant. This diagonal suppression came
from the suppressive filters, as can be seen by reconstructing the K*
of the excitatory branch output (Fig. 3D) and comparing it with the
K? reconstructed from the pooled output of the suppressive

Time 90° (ms)
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branches (Fig. 3E). The power of the sup-
pressive K* was concentrated in two regions

>
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9]

along the diagonal, which counteracted the
corresponding regions in the excitatory K2,
but with a slight delay.

Cell 1 was poorly selective to the direc-

Time 90° (ms)

K2 measured

K? predicted by multi-LN model

tion of motion: its DSI (see Materials and

Methods) based on the responses to opti-
mal gratings drifting in opposite direc-
tions was 0.42. Accordingly, the excitatory
and suppressive filters were not selective

Time 0° (ms)

to direction either, and suppression in
particular depended almost only on the
contrast of the presented gratings. The re-
sults were slightly different in the case of
direction-selective neurons (Fig. 4, cell 2, B
DSI = 0.99). Contrary to what would be
expected from a direction-selective LN
model (Marmarelis, 2004), the response
was facilitated when the 0° spatial phase
was presented after the 90° spatial phase
and suppressed when it was presented be-
fore, regardless of the delay between the
gratings presentations and the spike re-
sponse (Fig. 4A, top left and bottom

right). A similar nonlinear spatiotemporal P amseer]
summation has been reported previously
in some direction-selective simple cells
(Movshon et al., 1978; Emerson, 1997;
Rust et al., 2005). This second cell had a
lower F1/F0 ratio in response to drifting
gratings than the first one (1.16 vs 1.80,
respectively), although both cells were
clearly simple.

The multi-LN model of cell 2 (Fig. 4B)
showed that both excitatory and suppres- i
sive nonlinearities were responsible for 4,
the K? structure. In addition to the excit-
atory filter e,, which was identical to the
K', it also comprised a second excitatory

Time 0° (ms)

et

e2

s1

0 250

filter, e,, and two suppressive filters, s, and Time (ms)
s,. The two excitatory filters were tuned to
the same direction but were 90° out of  Figure 4.

phase (i.e., they formed a quadrature
pair). As a result, the total excitation
was strongly direction selective and
“complex-like” (i.e., it did not show the
biphasic temporal modulation charac-
teristic of the LN model; Fig. 4D). The suppressive and excit-
atory filters were tuned to the opposite direction of motion, as
can be seen from the opposite polarity of the cross-phase (0°/
90°) quadrants in the excitatory and suppressive K> (Fig.
4D,E). Motion-opponent suppression has been described
previously in a similar analysis of macaque simple cell RFs
(Rust et al., 2005). However, although this cell was the most
direction selective of our sample, the suppressive K? still had
most of its power concentrated along the diagonal, indicating
that suppression reinforced the cell preference for moving
versus static stimuli mainly by suppressing the responses to
high contrast stationary stimuli. Finally, the peak latencies of
the filter envelopes showed that suppression was delayed rel-
ative to excitation by ~15 ms.
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Receptive field and multi-LN model at Hi CT (cell 2). Same conventions as in Figure 3. A, Measured k2. B, Multi-LN
model of the receptive field of cell 2. €, K2 reconstructed from the predicted responses. D, K2 reconstructed from the predicted
excitation. E, K2 reconstructed from the predicted suppression. Note that the suppressive and excitatory filters prefer opposite
directions of motion, as indicated by the opposite polarity of the cross-phase interactions in D and E. The delay between excitation
and suppression is more pronounced in this cell than in the previous one (Fig. 3).

Over our population of simple cells, none of the RFs corre-
sponded to a pure LN model (i.e., a single excitatory filter and no
suppressive filters): at high ambient contrast, 79% (23/29) of the
recorded cells showed significant suppression, 64% displayed
two significant suppressive filters, and 72% two significant excit-
atory filters (Fig. 5A). On average, suppression was motion op-
ponent (Fig. 5B, horizontal axis, mean * ci: —0.20 £ 0.17, p <
0.05, t test), but this was more often true in direction-selective
than in non-direction-selective neurons (Fig. 5B, solid and open
squares, respectively). However, when suppression was present,
it always had a non-motion-sensitive component that counter-
acted excitation along the K* diagonal, thereby decreasing the
sensitivity of the cell to the contrast of stationary stimuli (Fig. 5B,
vertical axis, mean = ci: 0.38 = 0.09, p < 10e-08, t test). Note that
suppression was systematically motion opponent in the filters
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Figure 6.  Dynamics of the significant excitatory and suppressive filters at Hi CT. A, Average

temporal envelopes of the excitatory (red) and suppressive (blue) filters at Hi CT (shaded areas
indicate = 1 SEM). B, Histogram of the peak latencies of the excitatory (white bars) and sup-
pressive (black bars) filter envelopes at Hi CT. Arrows indicate the means of the two distributions
(white: excitatory filters, black: suppressive filters).

obtained directly after eigen decomposition, likely because the
resulting eigenvectors are by definition orthogonal (Fig. 5C). The
fourth step of our fitting procedure (joint refitting of the linear
and nonlinear parameters of the multi-LN model) alleviated this
constraint and revealed balanced excitation and suppression in
some non-direction-selective cells (5/11; Fig. 5B).

Delayed complex-like suppression and response temporal
precision at high ambient contrast

The examples shown in Figure 3 and Figure 4 suggested that
suppression is delayed with respect to excitation in the Hi CT
condition. This result was confirmed at the population level by
comparing the envelopes of the excitatory and suppressive sub-
units (Fig. 6A; see Materials and Methods). Suppression was
slower and peaked on average 11.4 ms later than excitation (Fig.
6B, peak latency of excitation: 44.2 ms = 8.8 ms, white arrow;
peak latency of suppression: 55.6 ms * 12.3 ms, black arrow; p <
10e-05, unpaired ¢ test). We did not observe any significant dif-
ference between the peak latencies of the K envelopes and those
of the other excitatory filters.

This delayed suppression may change the temporal precision
of the spike output by controlling the duration of the spiking
opportunity window (Pouille and Scanziani, 2001; Kremkow et
al., 2010). To test this hypothesis, we studied how the predicted

Direction preference of
suppression re. excitation

Spatiotemporal tuning of the significant excitatory and suppressive filters at Hi CT. 4, Histogram of the number of
excitatory (white bars) and suppressive (black bars) significant filters per cell at Hi CT. B, Direction and position preference of
suppression relative to excitation. Vertical axis: Correlation coefficient (Pearson’s r) between the position-specific terms of the
excitatory and suppressive K2 (position K2, see Materials and Methods). Horizontal axis: Correlation coefficient between the
motion-specific terms of the excitatory and suppressive K (motion K %). Open squares indicate non-direction-selective cells having
a DSI <<0.6; solid squares, direction-selective cells having a DSI >0.6. €, Same as B, except that the fourth step of the multi-LN
model fitting (joint refitting of the linear and nonlinear parameters) was omitted. The motion K of excitation and suppression are

eters (fitting set, see Materials and Meth-
ods). Both models predicted quite well the
occurrence of spike events, but without
suppression, the peaks of the predicted
PSTH tended to be too small in amplitude
and too longin duration. Adding suppres-
sion to the model resulted in more tran-
sient and more accurate predictions of the
firing rate waveforms by suppressing the
late phase of the responses.

The performances of the two models
were compared using the coefficient of
determination, or R? (computed as 1 — the ratio of the residual
sum of squares to the total sum of squares). In the neuron illus-
trated in Figure 7A, the R? increased from 0.30 to 0.37 when
suppression was included into the model. This difference was
significant at the population level: the R* was 0.38 = 0.19 for the
full model compared with 0.33 = 0.16 for the model without
suppression (mean = SD, p < 0.05, paired ¢ test). The R for the
LN model (0.32 = 0.15) was not significantly different from the
R? for the model without suppression (p = 0.75).

One drawback of the R” is its dependence on the temporal
resolution at which the observed and modeled responses are
compared. When the bin size is reduced beyond the intrinsic
temporal precision of the spike response, the noise component
becomes dominant and the resulting variance cannot be repro-
duced by the models. This issue is especially important for the
present study, given the limited number of stimulus sequence
repetitions and the potential role of suppression in improving the
spike response precision. Therefore, we measured the models’
performance at different temporal frequencies as the coherence
between the predicted and the observed responses (van Hateren
and Snippe, 2001; see Materials and Methods). Moreover, we
measured how well the models’ predictions fared compared with
the theoretical maximum given the response noise by computing
the expected coherence (i.e., the coherence between trial re-
sponses to the same stimulus sequence). The predicted and ex-
pected coherences of cell 1 at Hi CT are shown in Figure 7B. The
coherence predicted by the full model (red trace) approached the
expected coherence (black trace) even at high temporal frequen-
cies, indicating that the multi-LN model predicted well the tran-
sient events of the response. Without suppression, the predicted
coherence shifted downward (green trace). The same behavior
was observed in the other example cell of this study (Fig. 7C). To
quantify this effect in our population, we compared the increase
in predicted coherence when suppression was included in the
model (i.e., the area between the red and green curves in Fig.
7B,C) to the expected coherence. Among the 23/29 cells that
displayed significant suppressive subunits, suppression ac-
counted on average for ~10% of the expected coherence <10 Hz
and ~20% of the expected coherence at 10—40 Hz (Fig. 7D).
Therefore, suppression improves the response prediction over
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the whole frequency spectrum, but espe-
cially at high temporal frequencies.

Effect of slow contrast adaptation on

RF sensitivity

The above results showed the involve-
ment of a complex-like, delayed suppres-
sion in the fast adaptation of simple cell
responses dynamics to high contrast stim-
uli. We next examined the functional
mechanisms of slow contrast adaptation
by comparing the RFs measured across
different contrast ranges. Figure 8 shows
the K' and the K? of a third simple cell
(F1/F0 = 1.75, DSI = 0.26) measured at
Hi CT, Lo CT, and also at “very low” con-
trasts (contrasts ranging from 2.5% to
10%). As expected (Ohzawa et al., 1982,
1985), neuronal sensitivity adapted to the
overall contrast of the stimulus block:
when the ambient contrast was lowered,
the amplitude of K' (Fig. 8A4) and K (Fig.
8B, C,D, note the change in the minimum
and maximum of the color scale) in-
creased. However, the effect of slow con-
trast adaptation was not restricted to the
static output nonlinearity of the cell: the
response kinetics also slowed down mark-
edly at low ambient contrasts. This decel-
eration was evident in the K, as well as in
the expansion of the K* toward the top right
corner of each quadrant. Finally, the signa-
ture of the fast contrast-dependent suppres-
sion (i.e., the delayed suppression along
the K diagonal) was less prominent at Lo
CT than at Hi CT and was totally absent at
the lowest contrasts tested (Fig. 8D). This
example suggests that slow contrast adap-
tation affects excitation and suppression
differentially.

As we did with the receptive fields
measured at Hi CT, we fitted multi-LN
models to the RFs measured at Lo CT. We
found that the distribution of the signifi-
cant excitatory filters did not depend on
ambient contrast (compare Fig. 9A, Fig.
5A; Wilcoxon rank sum test, p = 0.71).
Despite the reduced stimulus power, most
neurons (77%) still displayed two signifi-
cant excitatory filters, because the neuro-
nal sensitivity adapted to the average
contrast of the stimulus. Over the popula-
tion, the gain of excitation, 8 in Equation
5, increased by 48% from Hi CT to Lo CT.
This is half of the change required to
maintain the excitation invariant across
contrast ranges (Fig. 9B).

Contrary to excitation, however, the
distribution of the number of suppressive
filters per cell was strongly affected by am-
bient contrast (Wilcoxon rank sum test,
p < 0.001). The proportion of neurons
displaying significant suppression fell
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Delayed suppression and temporal spiking precision at Hi CT. A, Two-second-long segment of the trial responses

(raster plot), PSTH (dark gray), and predicted responses (red line: full multi-LN model, green line: multi-LN model without sup-
pression) of cell 1 at Hi CT. Horizontal and vertical scale bars indicate 100 ms and 125 Hz, respectively; PSTH bin size, 8 ms. B,
Expected (black line) and predicted (red line: full multi-LN model, green line: multi-LN model without suppression) coherences for
the neuron shown in A. €, Expected and predicted coherences for cell 2. Same conventions as in B. D, Average improvement of the
model prediction with suppression as a function of temporal frequency across the simple cell population, computed as the difference
between the predicted coherences with and without suppression, normalized by the expected coherences. Gray area indicates = 1 SEM.
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Figure8. K" and K2 measured in three adaptation conditions (cell 3). 4, K" measured at Hi CT (contrasts ranging from 20% to
80%, dotted line), Lo CT (contrasts ranging from 7% to 28%, dashed line), and very low contrasts (contrasts ranging from 2.5% to
10%, solid line). B~D, K* measured at high, low, and very low contrasts, respectively. The maximum/minimums of the color scale
are 30, 120, and =480 spikes/s/uCT 2in B, €, and D, respectively.
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spikes recorded at Lo CT.

from 79% to 35% between Hi CT and Lo CT; only 15% (4/26) of
the recorded cells still displayed two significant suppressive filters
at Lo CT (Fig. 9A). In the minority of cells in which suppression
remained significant (9/26), the suppressive filters contributed
less to the total variance of the K* at Lo CT than at Hi CT condi-
tions (6.3% at Lo CT vs 10.7% at Hi CT, p < 0.005, paired ¢ test).
Therefore, even when suppression remained visible at Lo CT, its
strength relative to excitation decreased. The reduction of sup-
pression was not the result of the ~40% reduction in firing rate
between the Lo CT and the Hi CT condition. First, we analyzed
only the 26 cells for which we collected at least 50 spikes per
spatiotemporal dimensions in both the Hi CT and the Lo CT
conditions (Rust et al., 2005). Second, the decrease in firing rate
should affect the significance of the excitatory and suppressive
filters in the same fashion (Rust et al., 2005) and not differentially
as we observed. Finally, as an additional control, we randomly
deleted spikes from the Hi CT responses and repeated our anal-
ysis (from kernel reconstruction to the determination of the sig-
nificant filters) on a restricted response set containing as many
spikes as in the Lo CT condition. We found that the distributions
of both the significant excitatory and suppressive filters were
largely unaffected, demonstrating that the number of spikes re-
corded in the Lo CT condition was not a limiting factor in our
analysis (Fig. 9C). We conclude that the adaptation of neuronal
sensitivity to slow changes in contrast (Ohzawa et al., 1982, 1985)
relies on a shift of the excitation/inhibition balance toward inhi-
bition at Hi CT and toward excitation at Lo CT. One possible
explanation for our results could be that inhibitory neurons
adapt less to ambient contrast than excitatory neurons.

Effect of slow contrast adaptation on the temporal properties
of the response

Our population analysis also confirmed that the ambient contrast
of the stimulus block changed the temporal dynamics of the re-
sponse. Compared with the Hi CT condition, the excitatory fil-
ters slowed down in the Lo CT condition, whereas the
suppressive filters appeared to be less affected (Fig. 10A). The
average peak latency of the excitatory envelopes in the Lo CT
condition (55.6 ms * 27.7 ms, Fig. 10B, white arrow) increased
significantly relative to the Hi CT condition (p < 0.01, unpaired
t test), whereas the average peak latency of the suppressive enve-

# of significant filters per cell
Hi CT (Spikes deleted)

Change in the excitation/inhibition balance across adaptation conditions. A, Histogram of the number of excitatory
(white bars) and suppressive (black bars) significant filters per cell at Lo CT. B, Graph of the log, excitatory gain at Hi CT versus log,
excitatory gain at Lo CT. The solid line is the best-fitting straight line (slope: 0.956, y-intercept: 1.50). The dashed line corresponds
tono change in gain (null adaptation). The dotted line corresponds to an 8 X increase in gain between Hi (T and Lo CT: this is the
gain change that would be expected in the case of perfect adaptation given the 1.5 octave difference in contrast between the two
conditions and the squaring nonlinearities of the multi-LN model, as shown in Equation 5. €, Histogram of the number of excitatory
(white bars) and suppressive (black bars) significant filters per cell at Hi (T after randomly deleting spikes to match the number of
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lopes at Lo CT (60.7 ms = 21.4 ms, black
arrow) was not significantly different
from the one measured at Hi CT (p =
0.30). As a result, the difference in latency
between excitation and suppression was
not significant at Lo CT (p = 0.54).

If delayed suppression controls the
temporal precision of simple cell re-
sponses (Fig. 7), then contrast adapta-
tion, by changing the balance between
excitation and delayed suppression,
could also affect the response temporal
precision. We quantified the precision
of the spike responses by computing the
expected coherence of each cell in each
adaptation condition. We found that
when the average contrast of the stimu-
lus decreased, the peak and high cutoff
frequency of the coherence function
tended to shift downward and leftward
(Fig. 11A). This indicates that the spike
response, and particularly its high tem-
poral frequency components, became less reliable at low am-
bient contrasts.

To quantify response reliability across contrast ranges with
a single statistic, we computed the expected coherence rates
(van Hateren and Snippe, 2001) by integrating the expected
coherence over the frequency spectrum (see Materials and
Methods). Expected coherence rates were highly variable from
one cell to the other, but decreased significantly over the pop-
ulation of 26 neurons that could be analyzed at both Hi CT and
Lo CT conditions: from 12.1 = 10.2 bits/sat HiCT to 5.4 = 5.0
bits/s at Lo CT (mean * SD, p < 10e-05, paired ¢ test). Figure
11B shows that the expected coherence rate (in bits/s) de-
creased in all of the cells we recorded when the average con-
trast of the stimulus was switched from high to low. This was
not surprising, because the mean firing rate decreased by
~40% when the stimulus was switched from Hi CT to Lo CT.
However, in most cells, the decrease in expected coherence
rate held even when the mean firing rate was taken into ac-
count (Fig. 11C). The mean of the expected coherence rate, ex-
pressed in bits/spike, was significantly different between the two
contrast conditions (Hi CT: 1.57 = 1.13 bits/spike; Lo CT: 1.26 *
1.12 bits/spike; mean * SD, p < 0.01, paired ¢ test). Therefore,
our data suggest that neurons convey information about the
stimulus at a much slower rate (in bits/s) when the average con-
trast decreases, largely because they fire less. However, the infor-
mation per spike also decreases, most likely because delayed
suppression no longer constrains the spike temporal precision.
The loss in spike timing precision is consistent with the switch of
the neuronal temporal sensitivity toward slower stimuli, as indi-
cated by the slowdown of the excitatory filters or, equivalently, by
the shift of the temporal frequency tunings toward lower fre-
quencies (Holub and Morton-Gibson, 1981; Albrecht, 1995). In
summary, when the visibility of the stimulus decreases, the spikes
are less numerous and less precise and encode information about
slower stimulus components.

Finally, we compared the predictive power of the multi LN
models at different adaptation levels by computing the ratio be-
tween the predicted and the expected coherence rates (Fig. 11D).
The multi-LN models explained a greater proportion of the re-
sponse signal at Lo CT than at Hi CT, because the responses
became more linear when the average contrast decreased. With-

0 1 2



6398 - J. Neurosci., April 10, 2013 - 33(15):6388 — 6400

A B
# of filters
1 T T T T 20 u
3 — Excitatory 4
— Suppressive |

0 . . . : 0+
0 250 0 40 80 >120
Time (ms) Peak Latency (ms)
Figure10.  Dynamics of the significant excitatory and suppressive filters at Lo (T. 4, Average

temporal envelopes of the excitatory (red) and suppressive (blue) filters at Lo (T (shaded areas
indicate = 1 SEM). B, Histogram of the peak latencies of the excitatory (white bars) and sup-
pressive (black bars) filter envelopes at Lo CT. Arrows indicate the means of the two distribu-
tions (white: excitatory filters, black: suppressive filters).

1.0 — T o 40
8 — Hi CT (n=29) @
o 08F .. ocT(n=26) g_ 30l
@ c L
S 06} . 2
S £8 201 °
% 04+t E o 5 e ®
$ 39 |
% 0.2 =____~‘\ B ~§_j 10 /E;bo o °°o o
0 - 2 oL
0 | L1 I m 0 L L L
1 10 100 0 10 20 30 40
Expected coherence rate

Temporal frequency (Hz) Hi CT (bits/s)
C D
° 6 _ 100+
® ° X
;Q 5 @ %’ 80 -
o ®©
c 2 4t i ]
gé 3 gg 1
58 r (o ° [ E 40 A
o5 2L oo g3
30 0 % ok
59 1L ° o5 20 A
D g o b
Z o g s

01 2 3 4 5 6 E E+S E E+S

Expected coherence rate
Hi CT (bits/spk)

Hi CT LoCT

Figure11.  Response precision in different adaptation conditions. 4, Expected coherences at
Hi (T (solid line) and Lo CT (dashed line). Shaded areas indicate == 1 SEM. B, Expected coherence
rates in bits/s measured in each cell at Hi CT (horizontal axis) and at Lo (T (vertical axis). C, The
expected coherence rates in B were normalized by the mean firing rate to obtain expected
coherence ratesin bits per spike. D, Predictive power of the multi-LN model with (red bars) and
without suppression (green bars) at Hi (T and Lo (T, computed as the ratio of the predicted over
the expected coherence rates.

out suppression, the predictive power of the models decreased
from 69% to 50% at Hi CT and from 78% to 70% at Lo CT,
confirming that the functional role of suppression was greater at
Hi CT than at Lo CT.

Discussion

The goal of this study was to characterize the functional mechanisms
responsible for fast and slow contrast adaptation in V1 simple cells.
We presented a novel type of noise in which the contrast of optimal
gratings is modulated over different timescales (~10 ms vs ~1 min)
and showed that nonlinear delayed suppression is involved in both
processes. On a fast timescale, delayed suppression improves the
temporal precision of the responses to high contrast gratings. On a
slower timescale, the balance between excitation and delayed sup-
pression changes so that neuronal sensitivity increases at low con-
trasts at the cost of slower and noisier responses. Our results thus
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provide a general mechanism by which adaptation can trade neuro-
nal sensitivity against processing speed depending on how easily a
sensory stimulus can be detected.

Relationship to previous studies

The nonlinearities of simple cell spatiotemporal processing have
been studied with white noise analysis previously, both in the cat
(Jacobson et al., 1993; Emerson, 1997; Baker, 2001; Fournier et
al., 2011) and in the macaque (Rust et al., 2005). Our results
confirm that two excitatory subunits are generally required in
direction-selective simple cells (Jacobson et al., 1993; Emerson,
1997; Baker, 2001; Rust et al., 2005). The output of the secondary
excitatory subunits is fully rectified and makes simple cell re-
sponses more complex, (i.e., less dependent of the absolute spa-
tiotemporal phase of the stimulus; Movshon et al., 1978).

The existence of suppressive subunits in V1 receptive fields is
more debated. Suppressive subunits have been reported in the
macaque (Rust et al., 2005; Chen et al., 2007), but not in the cat
(Mancini et al., 1990; Touryan et al., 2002). Because the retrieval of
subunits depends on the number of spikes recorded per stimulus
dimension (Rust et al., 2005), we restricted our exploration to only
two spatial phases. As a result, 79% of our simple cells showed sig-
nificant suppression. This suppression was motion opponent in
direction-selective cells, as in the macaque (Rust et al., 2005), but not
in other neurons when the constraint of orthogonality imposed on
the eigenvectors was relaxed. Suppression was always strongest along
the K* diagonals, indicating that its main function was to counteract
the excitation evoked by high contrast stimuli. The fact that binary
stimuli do not allow the reconstruction of the K* diagonals may
explain why previous studies did not report delayed suppression
(but see Fig. 3 in Rust et al., 2005).

The contrast dependence of V1 responses dynamics is classically
attributed to a fast, nearly instantaneous contrast gain control
(Carandini et al., 1997; Kayser et al., 2001, Albrecht et al., 2002, but
see Reid etal., 1992). However previous studies did not measure the
dynamics of contrast responses at the fine temporal scale shown
here. Our stimulus design allowed us to characterize the temporal
dynamics of fast contrast adaptation precisely and independently
from the effects of slow contrast adaptation, which also affected the
dynamics of V1 responses. In addition, in our framework, the “slow”
contrast adaptation may lump together a collection of nonlinearities
having different time constants, from a few hundreds of milliseconds
(Gawne et al., 1996; Miiller et al., 1999; Reich et al., 2001; Albrecht et
al.,, 2002) to ~1 mn or more (Sharpee et al., 2006). Other properties
of the fast contrast gain control, such as the contrast invariance of
orientation tuning, may actually rely in part on slower contrast-
dependent nonlinearities (Nowak and Barone, 2009).

The slow contrast adaptation acts largely by modulating the
strength of the fast contrast adaptation—that is, by changing the
balance between excitation and delayed suppression. Its effects on
the dynamics of excitation could be secondary: the breakdown of
delayed suppression at low average contrast could result in stronger
and slower excitation, especially after amplification by the cortical
feedback loop (Somers et al., 1995). Such a nested cascade of adap-
tive processes could display power law dynamics (Drew and Abbott,
2006) and a similar arrangement could contribute to the timescale
invariance found elsewhere in the visual and other sensory systems
(Fairhall et al., 2001; Nagel and Doupe, 2006).

Putative biological mechanisms

As functional descriptions, multi-LN models cannot settle whether
delayed suppression originates from cortical (Heeger, 1992; Somers
et al., 1995; Lauritzen and Miller, 2003), subcortical (Shapley and
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Victor, 1978), synaptic (Chance et al., 1998), or even intrinsic neu-
ronal sources (Sanchez-Vives et al., 2000; Azouz and Gray, 2003). In
particular, their serial structure does not reflect the recurrence of the
cortical microcircuit or the diverse intrinsic properties of biological
neurons. Nonetheless, our results support some biological mecha-
nisms more than others. We found that the nonlinear suppression,
particularly in non-direction-selective neurons, was genuinely con-
trast dependent (Sclar and Freeman, 1982; Geisler and Albrecht,
1992): it was visible at all spatial phases, whether optimal, null, or
even anti-optimal (Fig. 1), contrary to the suppression that would be
expected from intrinsic neuronal mechanisms, which should be
maximal at high firing rates.

A recent study showed that delayed suppression participates in
the precision of LGN spike responses to spatially uniform noise
(Butts et al., 2011). Contrast gain controls have been described in
both the retina and the LGN (Shapley and Victor, 1978; Baccus and
Meister, 2002), and they could participate in the effect we see in V1
(Finn et al., 2007). However, the fast contrast-dependent nonlinear-
ity is weaker at subcortical stages than in the cortex (Ohzawa et al.,
1985; Dean and Tolhurst, 1986; Albrecht, 1995; Kayser et al., 2001;
Alitto and Usrey, 2004). Moreover, it is unclear how subcortical
suppression could account for differences in dynamics between ex-
citation and suppression at the cortical level. In particular, if all of the
contrast-dependent changes in V1 dynamics originated from the
excitatory thalamocortical pathway, then the responses to both
the optimal and anti-optimal phases should accelerate when con-
trast increases, which is contrary to what we observed.

Intracellular studies have shown that in addition to the push-pull,
phase-dependent inhibition that contributes the linear RF of V1
simple cells, these neurons also receive phase-independent synaptic
inhibitory inputs (Borg-Graham et al., 1998; see also the DC com-
ponent in response to drifting gratings in Anderson et al., 2000;
Priebe and Ferster, 2005; Liu et al., 2010). This suppression could
come from layer 4 complex cells (Hirsch et al., 2003; Lauritzen and
Miller, 2003) and participate in the emergence of simple cell prop-
erties (Liu et al., 2010; Fournier et al., 2011). Inhibitory inputs from
direction-selective interneurons are also the simplest explanation for
the motion opponent suppression reported here and in previous
studies (Monier et al., 2003; Rust et al., 2005). These results suggest
that intracortical inhibition, whether feedforward or recurrent, is the
likely source of nonlinear delayed suppression in V1 simple cells.
Recent advances in optogenetics may help to specify the cortical
circuits involved (Atallah et al., 2012).

The relative increase of nonlinear suppression at high ambient
contrast is consistent with a hyperpolarization of the membrane
potential relying on both intrinsic and synaptic mechanisms (Caran-
dini and Ferster, 1997; Nowak et al., 2005). The fact that V1 fast-
spiking neurons fire more at high contrast than regular-spiking
neurons may participate in the contrast dependence of the excita-
tion/inhibition balance (Contreras and Palmer, 2003). Alternatively,
inhibitory neurons might not adapt to ambient contrast as much as
excitatory neurons or their contrast thresholds could be higher
(Somers et al., 1995; Carvalho and Buonomano, 2009). Finally, the
greater weight of inhibition at high ambient contrast could also orig-
inate from differences in short-term synaptic plasticity between ex-
citatory and inhibitory cortical neurons (Chance et al., 1998; Varela
et al., 1999; Beierlein et al., 2003; Kapfer et al., 2007).

Functional significance

Evidence in favor of delayed inhibition has been found in both
intracellular and extracellular recordings of V1 neurons (Volgu-
shevetal., 1995; Gillespie et al., 2001; Ringach et al., 2003; Cardin
et al., 2010). It has been proposed that delayed suppression re-

J. Neurosci., April 10, 2013 - 33(15):6388 — 6400 * 6399

fines the neuronal orientation tuning over time by suppressing
the unselective component of the response (Celebrini et al., 1993;
Ringach et al., 2003) and participates in the increase in spike
precision in response to coincident inputs (Cardin et al., 2010).
Consistent with these studies, delayed suppression could imple-
ment a coarse-to-fine processing of direction over the time
course of a single fixation (~300 ms).

More generally, our results indicate that the contrast depen-
dence of the balance between excitation and delayed inhibition
serves a dual purpose: it adapts the neuronal gain to the average
contrast of the stimulus (Ohzawa et al., 1982) and it also adjusts
the coding rate (Gawne et al., 1996; Mechler et al., 1998; Reich et
al., 2001) by controlling the dynamics of the neuronal integration
window (Pouille and Scanziani, 2001). As a result, V1 simple cells
favor high sensitivity in low contrast conditions and processing
speed when the visual signal is strong. It remains to be seen
whether delayed inhibition plays a similar role in the adaptation
to other types of sensory stimuli (Wehr and Zador, 2003; Tan et
al., 2004; Higley and Contreras, 2006; Heiss et al., 2008).
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