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In competitive social environments, people often deviate from what rational choice theory prescribes, resulting in losses or suboptimal
monetary gains. We investigate how competition affects learning and decision-making in a common value auction task. During the
experiment, groups of five human participants were simultaneously scanned using MRI while playing the auction task. We first demon-
strate that bidding is well characterized by reinforcement learning with biased reward representations dependent on social preferences.
Indicative of reinforcement learning, we found that estimated trial-by-trial prediction errors correlated with activity in the striatum and
ventromedial prefrontal cortex. Additionally, we found that individual differences in social preferences were related to activity in the
temporal-parietal junction and anterior insula. Connectivity analyses suggest that monetary and social value signals are integrated in the
ventromedial prefrontal cortex and striatum. Based on these results, we argue for a novel mechanistic account for the integration of
reinforcement history and social preferences in competitive decision-making.

Introduction
Recent work in decision neuroscience has investigated coopera-
tive and strategic behaviors in multiplayer economic games (for
review see Rilling and Sanfey, 2011). The bulk of these paradigms
have posed the dilemma to cooperate (e.g., trust, reciprocate) or
compete (e.g., not trust, defect). In contrast, purely competitive
behavior, defined as the pursuit of assets perceived to be scarce
and contested, has received far less attention. Competitive moti-
vations are fundamental to social interactions but can have neg-
ative consequences not only for one’s competitors, but for oneself
(Malhotra, 2010). For example, the desire to beat rival bidders
can lead auction participants to pay more than an item is worth,
leading to monetary losses and opportunity costs (Ku et al., 2005).
We hypothesize that in competitive decisions, social preferences in-
teract with monetary outcomes to guide strategy learning.

We used a five-player auction task (Fig. 1) in conjunction with
fMRI. In this task, the market value of the goods is the same to
everyone, but participants have only approximate estimates of this
true market value. Experiments using similar tasks have shown that,
although the losses of naive bidders decline over time, even very
experienced and professional auction participants persist in overbid-
ding (Dyer et al., 1989; Garvin and Kagel, 1994), even if they know
the optimal bidding strategy (van den Bos et al., 2008).

Inspired by learning models from psychology (Rescorla and
Wagner, 1972), neuroscience (Montague et al., 1996), and economic

exchange games (Camerer and Ho, 1998; Zhu et al., 2012), we inves-
tigated behavior in this task using a reinforcement learning (RL)
model (Sutton and Barto, 1998; McClure and van den Bos, 2011)
that captures the dynamics of bidding strategies over time. The basic
assumption underlying the model is that participants select bids
based on the outcome expected by following a specific strategy.

Recent developments in behavioral game theory (Fehr and
Schmidt, 1999; Camerer, 2003) and decision neuroscience
(Rilling and Sanfey, 2011) have shown that behavior and neural
activity are not only driven by preferences over monetary out-
comes but also by social preferences. Consistent with social pref-
erence models, we argue that people derive utility from winning
and disutility from losing an auction, independent of monetary
outcome. Importantly, this hypothesis is supported by recent
auction experiments indicating that the joy of winning or the
pain of losing increases when the social aspects of the auction
environment are emphasized (Delgado et al., 2008), and that
overbidding virtually disappears when participants play with
computer opponents instead of people (van den Bos et al., 2008).
Our RL model incorporates this thesis into an extended value
function used in learning bidding strategies.

First, we show that RL accounts for several aspects of behavior
and that reward prediction errors estimated from our model cor-
relate with activity in the striatum (Str) and ventromedial pre-
frontal cortex (VMPFC). Second, we find that behavioral biases
associated with winning or losing auctions are predicted by activ-
ity in the temporoparietal junction (TPJ) and anterior insula
(AI). Together, these findings support a novel brain-based ac-
count of behavioral biases in competitive environments.

Materials and Methods
Participants
The studies were conducted at Baylor College of Medicine in Houston,
Texas, where 25 volunteers participated in the experiments. The average
age of the group was 28.56 years (SD, 7.28 years), and consisted of 13
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male and 12 female participants. In accordance with the Institutional
Review Boards of Baylor College of Medicine and Stanford University,
written informed consent was obtained and it was emphasized that par-
ticipants could withdraw from the study at any time. For three partici-
pants, the scanner failed to start in sync with the other participants in the
auction; therefore, only 22 of the 25 fMRI datasets were usable for imag-
ing analyses (11 male, 11 female). All 25 subjects were included in behav-
ioral analyses. We tested for possible gender differences in all analyses,
but none was significant for behavioral measures or brain activity. There
also were no consistent general trends across gender analyses.

Experimental procedures
At the start of the experiment, each group of five participants received a
15 min long instruction session on the common value sealed bid auction
task procedures using a standardized PowerPoint presentation (van den
Bos et al., 2008). During the introductory presentation, the following
points were explained: the structure of a first price sealed bid common
value auction, how to operate the computer to place bids, and the ex-
change rate between monetary units (MUs) in the game and pay-off in
real dollars at the end of the experiment. All participants received $50
dollars for participating in the MRI experiment and received an addi-
tional 30 MU endowment to use for bidding in the task. For every 2 MUs
won or lost, $1 was added or subtracted from the base pay, respectively.
To ensure comprehension of the task, all participants completed the
questionnaire (reproduced below in Single-player auction experiment)
before continuing on to the experiment.

At the beginning of the experiment, all participants were endowed
with 30 MUs, with which they could bid in the auctions. In each auction
round, participants were given independent estimates of the value of the
item under auction (xi) and were provided with the error term (�) for
that round. They were instructed that estimates were drawn from a uni-
form distribution with maximum error � around the true, but unknown,
common value x0. During the instructions, we carefully explained that,
given the nature of the uniform distribution, value estimates were equally
likely to be underestimates or overestimates of the true value. The error
term � was the same for all participants in each round, but changed
between rounds (� �{4,5,6,8}). Before the start of the experiment, par-
ticipants were additionally instructed that x0 was randomly drawn from
uniform distribution with lower and upper bounds of xL � 10 MUs and
xU � 55 MUs.

After all players submitted their bid, the largest bid was determined
and the winning participant’s picture was shown to all players (for a
detailed timeline and example stimuli, see Fig. 1). Only the winner gained
information about the true value of the object and the revenue made in
that round (revenue was determined by x0 � bi and was negative when
the winning bid was larger than true value x0). The experiment consisted
of 40 consecutive sealed bid auctions and took, on average, �30 min to
complete. In each round there was a new object for auction, represented
by a novel picture of a flower, to discourage participants from using

previous trials to estimate true values x0. The number of rounds was
unknown to the participants to prevent end-game effects.

The participant with the highest (stochastic) estimate of value is likely
to be the highest bidder in the auction. Furthermore, since estimates were
uniformly distributed around the true value, this highest estimate is also
likely to be an overestimate of the true market value. Therefore, if partic-
ipants do not bid sufficiently less than their estimated value, they are
likely to win the auction but lose money in the transaction. Such over-
payments are known as the winner’s curse (Kagel et al., 1989; Thaler,
1994).

The winners’ curse was first identified in auctions for oil drilling rights
in the Gulf of Mexico (Capen et al., 1971), and has since been reported in
baseball free agency (Blecherman and Camerer, 1998), book publishing
(Dessauer, 1981), construction (Dyer and Kagel, 1996), corporate take-
overs (Roll, 1986), and 3G spectrum auctions (Binmore and Klemperer,
2002). Laboratory studies have shown that, although the losses of naive
bidders decline over time, the winner’s curse nonetheless persists even
for very experienced or professional auction participants (Dyer et al.,
1989; Garvin and Kagel, 1994). Given the persistent and stable biases
evident in these experiments, common value auction tasks provide an
ideal setting to study biases evident in decision-making in a competitive
environment.

Behavioral analyses
We analyzed behavior in terms of “bid factor,” �, given by the following:

�i �
bi � � xi � ��

�
. (1)

A bid factor of 1 implies that participants bid their signal (bi � xi; i.e., they
do not shade their bid). As described above, such bids are likely to pro-
duce losses when the auction is won. A bid factor of 0 is optimal (Kagel
and Levin, 2002). In particular, based on the signal (xi) and the error (�),
the (optimal) risk-neutral Nash equilibrium (RNNE) bidding strategy
can be determined for each round and each participant. The solution is
given by the following:

bi � xi � � � Yi, (2)

where

Yi �
2�

n � 1
exp� 2

2�
�xi � �xL � ����, (3)

n is the number of bidders, and i indexes participants (Kagel and Levin,
2002). Following the methods of our previous study (van den Bos et al.,
2008), the participants only received signals from a range where the term
Y from Equation 2 is almost zero (Y � 0.001 MU) and can thus be
ignored (Lind and Plott, 1991). As a result, the optimal bidding strategy
is given by

Figure 1. Common value auction experiment design. On each round, a new object (flower) was presented with a personal estimation of the value and error term indicating how much estimates
may differ from the true value. Participants placed bids by adjusting digits beginning from a random initial value. After all bids were submitted, the outcome was shown at a variable delay of 4 to
12 s. Finally, a 6 s display showed either the winner of the auction or the amount of revenue gained or lost if the participant was the winner. The next round started after an intertrial interval (ITI) of
12 s. The revenue on the right side of the screen represents the total sum of money the participant had earned at that point in the task. MUs we displayed as dollar amounts.
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RNNEi � xi � �. (4)

Thus, as indicated above, in terms of bid factor (�), the optimal strategy
is to bid with � � 0. As has shown previously, participants learn to bid less
than their value estimate (i.e., � � 1) but generally overbid relative to the
optimum (i.e., � 	 0) (van den Bos et al., 2008).

Reinforcement learning model
In developing a learning algorithm, we made several adjustments specif-
ically tailored to the auction environment (McClure and van den Bos,
2011) that are listed below.

Assumption 1: intrinsic utility of winning and losing. First, we hypothe-
sized that social factors create value for winning and losing that is inde-
pendent of the monetary outcomes of the task. As a result, winning
becomes more valuable by some factor, which we call �win, and not
winning the auction becomes aversive by some value �loss:

Ui � �x0 � bi � �win if the i-th subject is the winner
� �loss otherwise,

(5)

where x0 � bi is the amount won (or lost) by the winning bidder.
Next, following the logic of classic reinforcement learning model, we

expect that, at the end of every round, participants compute a prediction
error based on the difference between the actual outcome ( U) and the
expected outcome ( V) related to their bid factor:

���� � U��� � V���. (6)

Note that, for simplicity, we have omitted the index i from Ui, Vi, �i, and
�i in Equation 6. We continue to do so for these and other subject-specific
quantities in the equations below when no confusion is expected.

Because � is a finely discretized variable, the number of states over
which it is necessary to learn state-action values is very large (for model-
ing purposes, we restrict predicted behavior to the approximate range of
bid factors submitted by participants in the experiment: �1 to 2, dis-
cretized in steps of 0.01). To converge to a stable strategy in 40 trials, as is
observed behaviorally, learning must generalize across unsampled bid
factors. This leads to two additional assumptions.

Assumption 2: when losing an auction, participants assume that all bids
less than what they submitted would have also lost. The monetary outcome
when losing an auction is zero. If V(�) is the predicted value of
bidding �, then a reward prediction error signal for all states is pro-
duced according to

���
� � �U��
� � V��
� for �
 � �
0 for �
 	 � , (7)

following a loss. � denotes the actual bid factor submitted in a single
round of the experiment, and �
 is used to indicate a range of bid factors.
Thus, �
 � � indicates all bid factors smaller than that submitted are
assigned a nonzero prediction error.

Assumption 3: when winning an auction, participants assume that larger
bids would have also won the auction. Since auction winners are informed
of the true value (x0) of the item, then the outcome that would have been
obtained for larger bids is also known. Thus, the potential outcomes for
higher bids can be known and compared with expectation, giving reward
prediction errors according to:

���
� � � 0, for �
 � �
U��
� � V��
�, for �
 	 � . (8)

Learning based on reward prediction errors is modeled as in most RL
methods, with a learning rate 
 determining the influence of � on new
values of V(�
):

V��
�4 V��
� � 
�
���
�. (9)

In the current model, we scaled learning rate so that updating only occurs
within a limited range of the bid factor used on any trial to account for the
fact that the probability of winning with a given bid factor changes over

time. This was implemented by creating an effective learning rate that
decreases inversely with distance from �:

a�
 �



1 � �
 � �
. (10)

Decisions were then generated by the model using a soft-max decision
function, with a parameter m that modifies the likelihood of selecting
suboptimal bids:

P��� �
exp�mV����

��
 exp(mV��
�)
. (11)

The value function, V, was initialized to zero for all values of �. The
denominator sums over all possible values of � (indexed by �
 � [�1,2],
as discussed in Assumption 1, above). We also experimented with ran-
domized initial values of V(�), which is commonly used in RL algorithms
to encourage initial exploration of strategies. Randomizing initial values
did not affect the performance of the model in any notable way. All
model-related results are reported for fits conducted with V initialized to
zero.

We estimated the parameters (�win, �loss, 
, and m) of the RL model
using a simplex optimization algorithm in Matlab. The model simulated
the performance of five bidders with average bid factors calculated for
each round of 40 consecutive auctions in 10,000 runs of the model. A
similar round-by-round average bid factor was also calculated for the
bids submitted by the 25 participants in the study. Best-fitting model
parameters were determined at the group level so as to minimize the
sum-squared error between average model performance and the average
subject performance. The best fitting model parameters were �win � 2.40,
�loss � 0.49, 
 � 0.138, and m � 10. Group-based estimates of 
 and m
were subsequently used in a second model fitting procedure that was
aimed at estimating the individual differences in �win and �loss for the 22
subjects that had usable data in the imaging experiment.

Finally, we compared the performance of the current model with sev-
eral alternative models using Bayesian model comparisons. To test the
null hypothesis that there are no social preferences, we compared the full
model to one in which the �win and �loss parameters were both removed.
To further explore the role of �win and �loss, we also included the RL
models with either �win or �loss removed from the model. These model
comparisons indicate that the full model provides the best fit to the data
(Fig. 1; Table 1).

Sequential analyses and social utility
For behavioral analyses, we defined two dependent variables to investi-
gate the relation between model parameters and choice behavior: [�� �
win] and [�� � not win]. These two measures of sequential changes in bid
factor (�) were computed by calculating the average change in � (�t�1 �
�t) following either winning or not winning a round in the auction. To
test whether the individually estimated parameters for �win and �loss

predict different aspects of participants’ behavior, both estimates were
simultaneously regressed against [�� � win] and [�� � not win] using
multiple regression.

Single-player auction experiment
We hypothesized that the �win and �loss parameters reflect individual
social preferences. To further support this hypothesis, we performed an
additional behavioral experiment on an independent subject group in
which we separately measured model parameters and participants’ social
and monetary motivations in the task. In this task, participants played an
online five-player common value auction. Unbeknownst to participants,

Table 1. Bayesian model comparisons

Model AIC BIC

Full model 5181.0 5185.4
No �win 5531.1 5534.5
No �loss 7560.9 7564.1
No �win or �loss 7917.9 7920.0

AIC, Akaike information criterion; BIC, Bayesian information criterion.
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the other players were simulated (van den Bos et al., 2008). In particular,
competing bids were based on the bid factors, �, generated by the rein-
forcement model detailed above, with model parameters that produced
the best fit to the behavioral data in the imaging study (�win � 2.40, �loss

� 0.49, 
 � 0.138, and m � 10).
Before participating in the study, subjects were sent an e-mail empha-

sizing the importance of arriving on time due to the multiplayer nature of
the experiment. Upon arrival, subjects were told the other participants of
the online auction were seated in different parts of the building. After
obtaining written consent, participants were given the explanation of
experimental procedures described above and were given a short ques-
tionnaire to ensure comprehension. All participants passed this test with-
out error. Participants were instructed that their payoff would be
generated according to their revenue. Participants were endowed with 75
MUs and $1 in payoff was added/subtracted from an endowment of $20
for every 5 MU profit/loss in game money. The experiment ended after 70
rounds of auctions and the participants were debriefed.

The study was conducted at Stanford University, where 47 volunteers
participated in the experiment. The average age of the group was 23.4
years (SD, 7.28 years) and consisted of only male participants. Seven
participants were excluded from the data analysis because during the
debriefing they indicated that they did not believe they were playing
against real peoples.

At the end of the auction, participants were given a 10-item question-
naire to assess feelings associated with participating in the experiment.
For all items, responses were given on a 5-point Likert scale with 1 labeled
“very positive” and 5 labeled “very negative.”

1. Being the winner of an auction made me feel. . .
2. Not winning the auction made me feel. . .
3. Losing money in the auction made me feel. . .
4. Winning money made me feel. . .
5. Realizing that another player wins a lot of auctions made me

feel. . .
6. Realizing that other players win more auctions than I do made me

feel. . .
7. Not winning an auction over a long period of time made me

feel. . .
8. Winning an auction without making a profit or a loss made me

feel. . .
9. The possibility that other players could make more money than I

do made me feel. . .
10. The possibility that other players could make less money than I do

made me feel. . .

All significantly correlated items were combined, yielding two factors.
The first factor concerned monetary outcomes and consisted of ques-
tions 3 and 4 (reversed). The second factor concerned the other players
winning auctions and money and included questions 5, 6, 7, 9, and 10
(reversed). The nonweighted mean scores of the monetary and social
factor were used as predictors for individual differences in �win and �loss.
Responses related to monetary and social motivations were correlated
within category across subjects (Cronbach’s 
 � 0.66 and 0.79, respec-
tively). Summary monetary and social motivations were uncorrelated
across subjects (Spearman’s � � �0.08, p � 0.65).

fMRI data acquisition and analyses
Imaging was performed on 3.0 tesla Siemens scanners. High-resolution
T1-weighted scans were acquired using an MP-RAGE sequence. Func-
tional run details were as follows: echo-planar imaging, gradient recalled
echo; TR � 2000 ms; TE � 40 ms; flip angle � 90°; 64 
 64 matrix; 26 4
mm axial slices; yielding voxels with dimension 3.3 
 3.3 
 4.0 mm.
Functional data were analyzed using SPM5 (Wellcome Department of
Cognitive Neurology, London, UK). First, slice-timing correction was
applied to all images. Next, motion correction to the first functional scan
was performed using a six-parameter rigid-body transformation. The
motion-corrected images was coregistered to each individual’s structural
MRI using a 12-parameter affine transformation. Images were then re-
sampled into 3 
 3 
 3 mm voxels and spatially normalized to the MNI
template by applying a 12-parameter affine transformation. Images

were then smoothed with an 8 mm isotropic Gaussian kernel and
adjusted for global signal variation using a voxel-level linear model of
the global signal. For each experiment, all five participants were
scanned simultaneously and stimulus presentation and the timing of
all stimuli and response events were acquired using NEMO software
(http://www.hnl.bcm.tmc.edu/nemo/index.html), which is specifically
designed for multisubject experiments and network-initiated scanning.
Head motion was restricted with a pillow and foam inserts that sur-
rounded the head.

Statistical analyses were performed on individual participants’ data
using the general linear model in SPM5. The fMRI time series data were
modeled by a series of events convolved with a canonical hemodynamic
response function (HRF). To investigate the neural correlates of different
aspects of the outcome phase of the auction, we set up a general linear
model (GLM) with regressors for the individual trail-by-trial estimated
prediction errors (scaled and signed), win/non-win trials, and revenue
change. As is necessarily true, prediction error and revenue change were
partially correlated, with an average r 2 of 0.04 across our subjects. Simi-
larly, the revenue change and win/non-win trial regressors were also
partially correlated with an average r 2 of 0.04. However, neither correla-
tions reached significance nor influenced the estimability of the design
matrices. Additionally, we used a single regressor for the decision phase
because the procedures during this phase—which involved viewing pri-
vate estimates and error information and deciding on and submitting
bids— occurred in rapid succession, too fast to be distinguished tempo-
rally. In contrast to the default procedure in SPM, we entered all regres-
sors independently (without serial orthogonalization) into the design
matrix. The regressors of interest were those of the outcome phase: the
prediction error regressor and the regressors for winning and not win-
ning the auction. Both the decision and the outcome phase regressors
were modeled as events of 0 s duration. Additional analyses where the
decision phase was modeled by reaction time did not yield qualitatively
different results; the results in this paper are based on the null duration
model. All regressors were convolved with the canonical HRF and re-
gressed against the BOLD signal. Thresholds were set to p � 0.05 FWE
with an extent threshold of 10 continuous voxels for the whole-group
analyses.

Functional connectivity analyses. To explore the interplay between the
VMPFC, striatum, and other regions associated with winning and not
winning auctions, we assessed functional connectivity using psychophys-
iological interaction (PPI) analysis (Friston, 1994). The VMPFC and
striatum regions were taken from a whole-brain analysis in which BOLD
activity was regressed against reward prediction errors for the whole
group. Significant voxels within the VMPFC and striatum were used as
volumes of interest (VOI). The method used here relies on correlations in
the observed BOLD time series data and makes no assumptions about the
nature of the neural events that contributed to the BOLD signal. For each
participant, the entire time series over the experiment was extracted from
the VOIs. Regressors were then created by multiplying the normalized
(z-transformed) raw time series with two condition vectors that con-
tained ones for the six TRs following either winning or not winning the
auction, and zeros otherwise (Cohen et al., 2005; Kahnt et al., 2009). This
produced the two condition vectors for winning and not winning (con-
taining ones and zeros) that were multiplied with the time series of each
VOI to produce the interaction terms used as covariates in a whole-brain
regression analysis. Additional regressors for the condition (psychologi-
cal) and time series (physiological) were included as additional covariates
of no interest.

Individual contrast images for winning and not winning were com-
puted and entered into second-level one-sample t tests. To find related
differences in functional connectivity with the VMPFC/Str and the TPJ/
AI, we performed follow-up region of interest (ROI) analyses.

ROI analyses. We used the Marsbar toolbox for use with SPM5 to
perform ROI analyses to further characterize patterns of activation and
estimate individual differences in connectivity with the VMPFC and
striatum seed regions. Individual connectivity coefficients for winning
and not winning were extracted for the target regions of interest (TPJ and
AI). Paired-sample, two-tailed t tests were used to test whether the psy-
chophysiological interactions were stronger between winning and not
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winning. Individual connectivity regression coefficients were also used
for subsequent correlation analyses with the �win and �loss model param-
eters. For the ROI analyses, we performed additional robust regression
analyses with the Huber weighting function (using the robustfit algo-
rithm in Matlab) to account for possible effects driven by outliers. Given
that these analyses did not change the results (all ps � 0.01), we have
decided to report the results of our linear correlation analyses. Effects
were considered significant at an 
 of 0.0125, based on Bonferroni cor-
rection for multiple comparisons (i.e., p � 0.05/4 ROIs), unless reported
otherwise.

Results
Computational model of bidding behavior
Participants completed 40 rounds of a multiplayer auction task
while undergoing functional brain imaging. As expected, trial-
by-trial analyses revealed that monetary wins and losses were
correlated with increases and decreases in bid factors, indicating
that subjects adjusted their bids based on reinforcement (r �
0.46; p � 0.01; Fig. 2A). However, these analyses also suggested
that there is some equilibrium point where people lose money,
but winning the auction perfectly offsets the loss and results in no
change in bidding. In particular, Figure 2A indicates that subjects
tended to maintain their bidding strategy when incurring small
losses (i.e., �� � 0 when outcome is negative). Furthermore,
consistent with numerous previous studies, we found that partic-
ipants’ bids during the task were initially much higher than opti-
mal (� 	 0 on first round; t(21) � 3.90, p � 0.001) but with
repeated play bid factors declined to an asymptote above the

optimal Nash equilibrium (� � 0.4; at
Nash equilibrium � � 0; Fig. 2B). Finally,
we found that the mean bid factor in-
creases sharply in the first several rounds
of the experiment. Our learning model cap-
tured all of the observed aspects of bidding
throughtime,includingtheinitialriseinmean
bids as well as the gradual reduction toward
Nash equilibrium (Fig. 2B).

We estimated model parameters using
maximum likelihood procedures. The
model included two parameters to esti-
mate the utility of winning or losing inde-
pendent of monetary outcome: �win and
�loss. Best fitting estimates of �win and �loss

were significantly greater than zero across
subjects (�win: mean � 2.40, SE � 0.35,
p � 0.001; �loss: mean � 0.49, SE � 0.11,
p � 0.01). Moreover, �win and �loss were
positively correlated with average bid fac-
tor during the course of the experiment
across subjects (r � 0.71, p � 0.001 and
r � 0.53, p � 0.01, respectively). As will be
relevant for interpreting fMRI results be-
low, we found no relationship between
�win and �loss across subjects (r � 0.07,
p � 0.8), �win was not correlated with the
prediction error in win trials (r � �0.11,
p � 0.27), �loss was not correlated with the
prediction error in non-win trials (r �
�0.05, p � 0.48). Finally, a likelihood ra-
tio test indicated that our reinforcement
learning model captured behavior well
compared with a null hypothesis of ran-
dom responses within our modeled range
of bid factors (D4 � 189.4; p � 0 for all
subjects).

Analyses of trial-to-trial changes in behavior further validated
our estimates of �win and �loss. Since reward (Eq. 2) is dependent
on both �win and �loss, changes in bidding across rounds (sum-
marized at ��) should depend on �win and �loss following wins
and losses, respectively. To confirm this, we compared trial-to-
trial changes in bid factors by regressing �win and �loss against [��
� win] and [�� � not win]. A robust multiple regression of both
�win and �loss on [�� � win] fitted significantly (r � 0.50, F(2,18) �
4.01, p � 0.03), but only �win (b � 0.43, t(18) � 2.44, p � 0.02) and
not �loss (b � �0.13, t(18) � �0.52, p � 0.53) contributed signif-
icantly to the regression. In contrast, in the regression against [��
� not win] (r � 0.34, F(2,18) � 4.85, p � 0.02), �loss contributed
significantly (b � 0.32, t(18) � 2.55, p � 0.01), but not �win (b �
�0.14, t(18) � �0.68, p � 0.50) (Fig. 2B,C). These analyses con-
firm that �win and �loss capture expected, independent, dynamics
of participants’ behavior. In addition, we found that changes in
bidding across rounds (��) was correlated with the magnitude
of monetary gains or losses (r � 0.52, p � 0.001). Together,
these results support our hypothesis that participants use both
monetary and non-monetary outcomes to adjust their bidding
strategy.

Based on previous studies (Fehr and Camerer, 2007; Delgado
et al., 2008; van den Bos et al., 2008), we hypothesized that the
�win and �loss parameters reflect social preferences related to win-
ning or losing to other participants. To further support this hy-
pothesis, we performed an adjunct behavioral experiment on an

Figure 2. Bidding behavior in common value auctions. A, Participants adjusted their bids based on the amount of money earned
or lost an each round of the experiment. Changes in bidding were analyzed in terms of bid factors (�, see Materials and Methods)
and were directly related to money won or lost. �� is the change in bid factor between auction rounds. Green dots represent
rounds that are won and red dots the rounds that were not won (revenue change always 0). B, With repeated play, bidding
approaches an asymptote above Nash equilibrium. Simulation of the reinforcement model with and without the �win and �loss

parameters. The results present the average data of 10,000 simulations; for demonstrative purposes, we have simulated auctions
with a total of 50 rounds using the best fitting parameters for each model. These simulations demonstrate that the initial rise in bid
factors is governed by �loss and the positive asymptote depends on both �win and �loss. Bayesian model comparison indicates that
the full model has the best fit to the behavioral data (Table 1). C, D, Robust regression of �win with [�� � win] (r � 0.41, p � 0.01;
C), and the robust regression of �loss with[�� � not win] (r � 0.36, p � 0.03; D).
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independent subject group in which we separately measured
model parameters and participants’ social and monetary motiva-
tions in the task. As in the main study, participants consistently
bid significantly higher than optimal (i.e., above Nash equilib-
rium; mean � � 0.49, SD � 0.22, t(39) � 14.3, p � 0.001) and
overall incurred a net loss of �22.70 MUs (SD � 22.30) over the
course of the experiment. Additionally, the model fit of the par-
ticipants’ behavior in this experiment yielded very similar esti-
mates (�win � 0.94, �loss � 0.59, 
 � 0.178, and m � 9.5) as in the
imaging experiment. We measured attitudes using a novel ques-
tionnaire in which people rated from “very negative” to “very
positive” assertions related to monetary motivations (e.g., “Win-
ning money made me feel. . . ”) and social motivations (e.g., “Re-
alizing that other players win more auctions than I do made me
feel. . . ”). Next, we performed correlation analyses on the indi-
vidual estimates of the �win and �loss parameters with the mone-
tary and social construct of the questionnaire. Supporting our
hypothesis, the results of these analyses showed that individual
differences in both �win and �loss are correlated with self-reported
feelings associated with the social impact of winning or losing an
auction (Spearman’s � � 0.37, p � 0.02 and Spearman’s � �
�0.46, p � 0.003, respectively). In contrast, �win and �loss were
not related to preferences over monetary gains and losses (Spear-
man’s � � �0.18, p � 0.26 and Spearman’s � � �0.26, p � 0.08,
respectively). Importantly, post hoc comparison of correlation
coefficients also revealed that the correlations of �win and �loss

with the social factor was significantly larger than with the money
factor, and vice versa (z � 2.88, p � 0.001 and z � 3.11, p � 0.001,
respectively).

Neural correlates of prediction errors
To further investigate the origins of bidding behavior, we per-
formed whole-brain analyses on fMRI data collected as partici-
pants performed in the experiment. Given the strength of our
reinforcement learning model in capturing behavior, our first
interest was the neural basis of this learning process. Following
others (Montague et al., 1996; O’Doherty et al., 2003; Li et al.,
2006), we identified brain regions related to valuation by identi-
fying areas that correlated with the prediction errors that underlie
learning (Eqs. 6 –9). We used best-fitting model parameters to
generate estimated trial-wise prediction errors and correlated this
signal with BOLD responses in a whole-brain analysis. We found
significant correlated responses bilaterally in the Str [more spe-
cifically, caudate; Montreal Neurological Institute (MNI): �6, 3,
0] as well as the VMPFC (MNI: �3, 54, �12) (Fig. 3, Table 2).
These areas have been associated with reward prediction errors in
reinforcement learning numerously (for review, see Cohen,
2008).

Neural correlates of �win and �loss

Our second major claim is that the winner’s curse persists due to
biases in net reward that reflect social preferences. We captured
this bias in our model parameters �win and �loss. Here, we dem-
onstrate that these signals arose separately from the right TPJ and
AI and affected value through (direct or indirect) connections
with the VMPFC and Str.

First, we identified brain regions associated with �win and �loss

by contrasting brain activity related to winning or not winning
the auction. Our regression model controlled for responses re-
lated to other aspects of reward, including monetary wins/losses
and reward prediction error (for details of the GLM, see Materials
and Methods). The contrast [win 	 not win] revealed an area in
the right TPJ (Fig. 4A, Table 1), whereas the opposite contrast

[not win 	 win] was associated with activity in the dorsal anterior
cingulate cortex/pre-supplementary motor area (dACC/pre-
SMA) and the bilateral AI (Fig. 4B, Table 1).

To explore how the TPJ, dACC/pre-SMA, and AI are related
to bidding behavior, we explored the relationship between brain
activity, �win, �loss, and bidding behavior in subsequent ROI
analyses.

A robust multiple regression of both �win and �loss on param-
eter estimate (P.E.) [win] in the TPJ fitted significantly (r � 0.59,
F(2,19) � 4.31, p � 0.03), but only �win (b � 0.55, t(19) � 3.94, p �
0.002) and not �loss (b � 0.13, t(19) � 0.09, p � 0.94) contributed
significantly to the regression. This indicates that those partici-
pants that attributed relatively more utility to winning (regardless
of monetary gain or loss) showed more activity in the right TPJ
when they won the auction (Fig. 4C). In contrast, a robust mul-
tiple regression of both �win and �loss on P.E. [not win] in the AI
fitted significantly (r � 0.56, F(2,18) � 3.92, p � 0.03), but only
�loss (b � 0.52, t(18) � 2.83, p � 0.01) and not �win (b � 0.14, t(18)

� 0.66, p � 0.52) contributed significantly to the regression.
Given that the time series between the left and right hemispheres
for anterior insula were highly correlated (r � 0.88), parameter
estimates of left and right structures were collapsed by averaging
time series in subsequent analyses. The results for each AI ana-
lyzed separately yielded qualitatively similar results. The robust
multiple regression of both �win and �loss on [P.E. not win] in the

Figure 3. Neural correlates of reinforcement learning in common value auctions. Individual
trial-by-trial estimates of reward prediction errors correlate with activity in the striatum and
VMPFC ( p � 0.05, FWE; k 	 10).

Table 2. Brain regions revealed by whole brain contrasts

Anatomical region L/R BA Z

MNI coordinates

x y z

Prediction error
VMPFC L/R 11 6.37 �3 54 �12
Ventral striatum (caudate head) L/R — 6.45 �6 3 0

Outcome (win 	 not win)
Right TPJ R 40 5.05 54 �57 33
Posterior cingulate cortex L/R 7 5.18 4 �60 35

Outcome (not win 	 win)
Anterior insula

Left L — 5.74 �30 27 0
Right R — 5.78 45 18 �9

dACC L/R 32 5.95 3 18 48
Postcentral gyrus R 2 5.66 59 �24 44

MNI coordinates, peak voxels reported. L, Left; R, right.
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dACC did not show significant fit (r � 0.22, F(2,18) � 0.89, p �
0.56). These analyses showed that those participants that attrib-
uted relatively more negative utility to not winning the auction
also showed more activity in the AI when they did not win. In
sum, these results indicate that activity in the TPJ and AI is related
to how much utility participants attribute to winning or not win-
ning the auction.

Interaction between neural systems
Above, we identified the striatum and VMPFC as regions associ-
ated with updating values that govern bidding behavior. Since
�win and �loss are assumed to affect learning, we next aimed to
determine whether the TPJ and AI showed functional coupling
with the VMPFC and Str during the outcome phase of the exper-
iment. We did so through a set of PPI analyses, using the ROIs
from the previously reported whole-brain analyses.

First, we contrasted the level of functional connectivity during
the outcome phase of winning and not winning trials. The anal-
yses showed that there was significantly increased TPJ-VMPFC
functional connectivity after winning versus not winning an
auction (t(21) � 3.11, p � 0.01). In contrast, there was greater
AI-VMPFC connectivity after not winning versus winning (t(21)

� �2.94, p � 0.01; Fig. 5A). Connectivity analyses of the Str with
TPJ and AI showed the same pattern of changed connectivity
strength related to winning or not winning (t(21) � 2.83, p � 0.02
and t(21) � 2.744, p � 0.03, respectively; Fig. 5A). However, we
found no differences in VMPFC-Str connectivity strength for
winning or not winning (t(21) � 0.77, p � 0.45, Fig. 5A). This was
true even though VMPFC and Str are significantly functionally

connected during the outcome phase (p � 0.001 following both
wins and losses).

Second, because of our previous results showing that the level
of activity in the TPJ and bilateral AI was dependent on outcome
and individual differences in social values (�win and �loss), we
hypothesized that connectivity strength between these regions
and the VMPFC and Str would also be related to �win and �loss. We
specifically hypothesized that the connectivity strength of TPJ-
VMPFC/Str after winning, and the insula-VMPFC/Str after not
winning, would be related to �win and �loss. As predicted, our
results indicated that TPJ-VMPFC connectivity strength after
winning was correlated with �win across subjects (r � 0.61, p �
0.003), and that AI-VMPFC connectivity strength after not win-
ning was correlated with �loss (r � 0.45, p � 0.008; Fig. 5B).
Similarly, TPJ-Str connectivity strength after winning was corre-
lated with �win (r � 0.60, p � 0.003), and AI-Str connectivity
strength after not winning was correlated with �loss (r � 0.44, p �
0.01; Fig. 5B).

Finally, we hypothesized that connectivity strength between
the TPJ/AI and VMPFC/Str would also be related to overbidding
(i.e., �). We found that trial-by-trial changes in bidding behavior
(��) are related to connectivity strength with the TPJ and AI.
More importantly, we also found that connectivity strength pre-
dicted individual differences in overbidding: TPJ-VMPFC con-
nectivity strength after winning and AI-VMPFC connectivity
strength after not winning were both correlated with overbidding
(mean �; r � 0.59, p � 0.005 and r � 0.51, p � 0.01, respectively;
Fig. 6). Again, the Str showed the same pattern: � correlated with
TPJ-Str connectivity strength after winning (r � 0.55, p � 0.01)

Figure 4. Neural correlates of winning and not winning the auction. A, Results of the whole-brain contrast of [win 	 not win] selectively identified a regions of the right TPJ ( p � 0.05; FWE, k 	
10). B, In contrast, losing auctions (contrast of [not win 	 win]) is related to activity in the dACC and bilateral anterior insula ( p � 0.05; FWE, k 	 10). These responses were related to social
preferences. C, D, The value of winning (�win) correlated with TPJ activity (parameter estimate of [win]; C), and the disutility of losing (�loss) predicted the size of the responses in the anterior insula
(parameter estimate [not win]; not significant for dACC; D).
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and with AI-Str connectivity strength after not winning (r � 0.51,
p � 0.01; Fig. 6).

Together, the PPI analyses indicate a direct relationship be-
tween brain areas that represent value as people develop bidding
strategies (VMPFC and Str) and regions commonly implicated in
social cognition and emotion (AI and TPJ). Furthermore, the
strength of connectivity between these networks predicted indi-
vidual estimates of social preferences (�win and �loss parameters)
and, crucially, overbidding. These findings suggest a mechanism
for how social preferences may bias bidding behavior toward
financially risky choices in competitive environments.

Discussion
Auctions provide an ideal environment to study systematic biases
in decision making that arise in competitive environments. We
hypothesized that people develop bid strategies essentially by
trial-and-error through a process of reinforcement learning. The
brain areas we found to be associated with this process, the stria-
tum and VMPFC, have been consistently implicated in this type
of learning process. Moreover, reinforcement learning is gener-

ally thought to be relatively automatic in nature, underlying basic
associative learning processes. Based on this, we propose that
competitive strategies do not result from deliberate reasoning
alone. Instead, behavior is driven by an adaptive process, which
converges on what seems to produce the best results.

Reinforcement learning models are designed to learn which
behavior maximizes expected reward (Sutton and Barto, 1998).
Relying on associative learning mechanisms to develop a bid
strategy therefore does not explain why the suboptimal bidding
strategies are so persistent. Recent developments in behavioral
game theory (Fehr and Schmidt, 1999; Camerer, 2003) and deci-
sion neuroscience (Fehr and Camerer, 2007) have shown that
behavior and neural activity are driven in part by social prefer-
ences. That is, people not only derive utility from their own mon-
etary outcomes but also from their performance relative to others
(Fehr and Schmidt, 1999), from giving to worthy causes
(Andreoni, 1990), and from maintaining a positive social image
(Benabou and Tirole, 2006). Consistent with social preference
models, we assumed that reward is biased by events related to

Figure 5. Functional connectivity of the VMPFC and striatum. A, Differences in VMPFC and Str task-related connectivity during winning or not winning the auction. Bars represent mean and SEM
of the PPI coefficients. B, There is a significant relationship between individual �win estimates and TPJ-VMPFC/Str connectivity strength after winning, and a significant relationship between the
individual �loss estimates and AI-VMPFC/Str connectivity strength after not winning the auction. For all plots, significance is indicated as *p � 0.01 and **p � 0.005.

Figure 6. Functional connectivity of striatum and VMPFC. TPJ-VMPFC/Str connectivity strength after winning and AI-VMPFC/Str connectivity strength after not winning predicted the individual
differences in the size of the winner’s curse. In the plots, significance is indicated as *p � 0.01 and **p � 0.005.
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social factors. Namely, we assume that winning and losing per se
have value (�win and �lose, respectively). We support this assump-
tion in several ways. First, these values predict various aspects of
behavior, both aspects of the evolution of bids across time, and
individual differences in trial-by-trial changes in bidding. Sec-
ond, we have shown that individual differences in both �win and
�loss are correlated with self-reported measures of feelings about
the social, but not monetary, impacts of winning or losing auc-
tions. Third, we identify brain areas associated with these values
in the TPJ and anterior insula. The TPJ is a structure that has
often been associated with social cognitive processes such
as taking the perspective of others (Saxe and Kanwisher, 2003;
Hampton et al., 2008) and processing changes of your position
within a social hierarchy (Zink et al., 2008; Chiao et al., 2009). Of
course, TPJ activity is more generally associated with the reorien-
tation of attention to salient stimuli (Corbetta et al., 2008). Con-
cluding that responses in TPJ are related to some aspect of social
cognition is therefore problematic (Mitchell, 2007). Nonetheless,
taking all of the data together supports the hypothesis that win-
ning and losing are socially salient events, particularly for those
participants who reported being highly socially motivated.

As for the neural structures associated with losing, the anterior
insulae have been associated with negative outcomes in social
interactions, such as unfair offers in the Ultimatum Game
(Sanfey et al., 2003) and betrayal in the Trust Game (King-Casas
et al., 2005). Our findings may therefore reflect the negative affect
associated with seeing another person win the auction. However,
a recent study aimed at understanding the more fine-grained
functional parcellation of the insula suggested that there is a func-
tional difference between dorsal and ventral regions within in the
anterior insula (Chang et al., 2012). Whereas the dorso-anterior
insula was found to be more consistently involved in higher cog-
nitive processing such as task switching (Dosenbach et al., 2006),
the ventro-anterior region associated more often with socio-
emotional processing. Our anterior insula regions overlap with
both dorso-anterior and ventro-anterior regions, potentially in-
dicating that our observed anterior insular activity reflects not
only the socio-emotional processing of the outcome of the auc-
tions but may also be involved in signaling the need for change of
the current behavioral strategy.

Interestingly, a recent paper has shown that the right TPJ and
bilateral insula are more strongly functionally connected with the
VMPFC during charitable donation decisions compared with
food purchasing decisions, supporting the idea that social context
may modulate the information exchange between these networks
(Hare et al., 2010). This idea is further supported by a recent
study with macaques that showed that single cells in the VMPFC
tracked both magnitude of future rewards and the motivational
value of rewards obtained in a social context. More specifically,
these neurons were found to track momentary social preferences
and social rank of other monkeys (Azzi et al., 2012). Our connec-
tivity analyses suggest a mechanistic account for how such a social
modulation of value may occur. First, consistent with several recent
studies, our results suggest that activity in TPJ and AI are involved in
processing social aspects of outcomes in multiplayer interactions
(Rilling and Sanfey, 2011). Second, we show that these areas interact
with the Str and VMPFC. Finally, the strength of this interaction was
correlated with individual differences in overbidding. Together,
these results suggest a novel mechanism for the influence of social
and affective processes on competitive behavior.

Our results have implications for psychological and economic
models of competitive behavior. One prominent account for

competitive behavior states that individuals are (exclusively)
driven by the motivation to maximize differences in pay-offs
between themselves and their competitors (Messick and
McClintock, 1968; Loewenstein et al., 1989). That there are com-
petitive environments in which individuals fail to maximize these
differences is often explained in terms of bounded rationality
(Eyster and Rabin, 2005). However, the results presented in this
paper suggest that in competitive situations, individuals may
hold preferences for winning (and avoiding losing), regardless of
the (monetary) costs. Based on these results, we hypothesize that
the nature and salience of the social context (e.g., the number and
identity of the other bidders in the auction) may mediate the
interaction between socio-emotional and reward areas to bias
competitive decisions. For instance, if the other players are mem-
bers of a salient outgroup, competitive motivations may increase,
whereas if the other players are anonymous others, competitive-
ness may decrease (van den Bos et al., 2008). Another way of
manipulating competitive motivations suggested by the current
model would be to temporarily inhibit or excite the TPJ with
techniques like transcranial magnetic stimulation.

Recently, a series of neuroimaging studies of social interac-
tions have used depth of social reasoning (theory of mind) to
describe individual differences in strategic behavior (Hampton et
al., 2008; Coricelli and Nagel, 2009; Yoshida et al., 2010). In con-
trast to our study, these experiments have revealed an important
role for the dorsal medial prefrontal cortex in social reasoning.
Although it is unlikely that individual differences in depth of
processing underlie individual differences in bidding strategies in
first price common value auctions (Gneezy, 2005), they do play a
role in different types of auctions. An interesting avenue for fu-
ture research would be the development of experiments and
computational models that could investigate the putative roles
of both social preferences and depth of processing in strategic
behavior.

Of course, we have only begun to understand what is bound to
be a number of complex factors that determine the impact of
social values on competitive economic decisions (Seo and Lee,
2012). Nonetheless, functional neuroimaging seems to be a pow-
erful tool, enabling quantification of these factors through mea-
sures of the brain systems we have identified.
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