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ASPP1/2 Regulate p53-Dependent Death of Retinal Ganglion
Cells through PUMA and Fas/CD95 Activation In Vivo
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The transcription factor p53 mediates neuronal death in a variety of stress-related and neurodegenerative conditions. The proapoptotic
activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1 and ASPP2. However,
whether ASPP1/2 play a role in the regulation of p53-dependent neuronal death in the CNS is currently unknown. To address this, we
asked whether ASPP1/2 contribute to the death of retinal ganglion cells (RGCs) using in vivo models of acute optic nerve damage in mice
and rats. Here, we show that p53 is activated in RGCs soon after injury and that axotomy-induced RGC death is attenuated in p53
heterozygote and null mice. We demonstrate that ASPP1/2 proteins are abundantly expressed by injured RGCs, and that short interfering
(si)RNA-based ASPP1 or ASPP2 knockdown promotes robust RGC survival. Comparative gene expression analysis revealed that siASPP-
mediated downregulation of p53-upregulated-modulator-of-apoptosis (PUMA), Fas/CD95, and Noxa depends on p53 transcriptional
activity. Furthermore, siRNA against PUMA or Fas/CD95 confers neuroprotection, demonstrating a functional role for these p53 targets
in RGC death. Our study demonstrates a novel role for ASPP1 and ASPP2 in the death of RGCs and provides evidence that blockade of the

ASPP-p53 pathway is beneficial for central neuron survival after axonal injury.

Introduction

The nuclear transcription factor p53 mediates the apoptosis of
postmitotic neurons exposed to a wide range of insults (Culmsee
and Mattson, 2005). Neuronal death induced by p53 has been
documented in a variety of neurodegenerative diseases, suggest-
ing a key role for this transcription factor in the regulation of
neuronal viability after injury (Chatoo et al., 2011; Chang et al.,
2012). Given its critical role in the control of cell death, several
mechanisms exist to ensure tight regulation of p53 activity. The
level of p53 protein is kept low in most cell types, including neu-
rons (Soussi, 2000), via rapid and continuous degradation fol-
lowing ubiquitination by Mdm2 and MdmX (Wade et al., 2010).
Additional control of p53 function is exerted via posttransla-
tional modifications such as phosphorylation, acetylation,
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and/or methylation, and by interactions with protein partners
(Boehme and Blattner, 2009).

The identification of the apoptosis-stimulating proteins of
p53 (ASPP), a family of ankyrin repeat and proline-rich domain-
containing proteins, has revealed a new form of p53 regulation.
The ASPP family is composed of three members: ASPP1, ASPP2
and iASPP. ASPP2 was identified as a p53-binding protein in a
yeast two-hybrid screen (Iwabuchi et al., 1994), and ASPP1 was
found in a homology search (Nagase et al., 1998). ASPP1 and
ASPP2 enhance p53-dependent death of tumor cells by selec-
tively increasing the ability of p53 to activate proapoptotic gene
transcription (Lopez et al., 2000; Ao et al., 2001; Samuels-Lev et
al., 2001; Bergamaschi et al., 2006), whereas iASPP inhibits p53-
dependent cell death (Yang et al., 1999; Bergamaschi et al., 2003).
ASPP1 and ASPP2 play a role in tumor suppression by increasing
the ability of p53 to induce apoptosis, but not cell cycle arrest,
in tumor-derived cell lines (Samuels-Lev et al., 2001; Slee et
al.,, 2004). ASPP2-null mice die perinatally and although
ASPP2 heterozygous mice survive to adulthood, they display a
much higher propensity for developing tumors compared
with wild-type counterparts (Vives et al., 2006). This may have
physiological relevance since ASPP1/2 protein levels are re-
duced in many forms of cancer, a deficit associated with poor
patient prognosis (Lossos et al., 2002; Liu et al., 2004, 2005;
Agirre et al., 2006).

ASPP1/2 function has been examined solely in relation to tu-
mor biology, but the role of these proteins in neuronal apoptosis
has not been established. To address this, we asked whether
ASPP1 or ASPP2 regulate death of adult retinal ganglion cells
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(RGC:s) after axonal injury. RGCs are CNS neurons that undergo
a predictable onset and time course of apoptotic death following
optic nerve axotomy. Here, we demonstrate that ASPP1 and
ASPP2 proteins are abundantly expressed by intact and injured
RGCs, and that depletion of ASPP1 and ASPP2 using short inter-
fering (si)RNAs promotes RGC survival in vivo. Moreover, our
data support a critical role for the p53-upregulated-modulator-
of-apoptosis (PUMA) and Fas/CD95 in siASPP2-mediated sur-
vival of injured RGCs. This study identifies a novel role for ASPP1
and ASPP2 as important regulators of neuronal death in the in-
jured CNS.

Materials and Methods

Experimental animals. Animal procedures were performed in accordance
with the guidelines of the Canadian Council on Animal Care for the use
of experimental animals (www.ccac.ca). All surgeries were performed in
adult, female Sprague Dawley rats (180-200 g) or in p53 knock-out mice
under general anesthesia (2% Isoflurane, 0.8 L/min). p53 heterozygote
mice (B6; 12952—T7p53""1T”j/] ; Jackson Laboratory) were maintained in
our animal facility and bred to produce p53-null and wild-type littermate
control mice.

Axotomy-induced RGC death assay. Selective RGC death was induced
by complete transection (axotomy) of the optic nerve leading to rapid
onset and predictable apoptotic loss of these neurons (Berkelaar et al.,
1994; Cheng et al., 2002). Before axotomy, RGCs were backlabeled by
application of Fluorogold (2%; Fluorochrome) to the superior colliculus,
the primary target of these neurons in the rodent brain. To ensure that all
RGCs were fully labeled before axonal injury, axotomy was performed
7 d after Fluorogold application. The left optic nerve was transected at
0.5-1 mm from the optic nerve head avoiding damage to the ophthalmic
artery. Fundus examination was performed to check the integrity of the
retinal circulation after surgery. The right eye was never operated on and
served as intact control. At 1 or 2 weeks postlesion, rats were killed by
transcardial perfusion with 4% paraformaldehyde (PFA), and the retinas
were removed and flat-mounted vitreal side up on a glass slide for exam-
ination of the ganglion cell layer. Fluorogold-labeled neurons were
counted within three square areas at distances of 1, 2, and 3 mm from the
rat optic disc in each of the four retinal quadrants for a total of 12 retinal
areas. In mice retinas, quantification was performed as in rats but sam-
pled areas were localized at 0.25, 0.625, and 1 mm from the optic disc, for
a total of 12 retinal areas. Microglia and macrophages, which may have
incorporated Fluorogold after phagocytosis of dying RGCs, were ex-
cluded from our analysis of neuronal survival based on their morphol-
ogy. Fluorescent staining was examined with a Zeiss Axioskop 2 Plus
microscope (Carl Zeiss) and pictures were captured with a CCD video
camera (Retiga, Qimaging) and analyzed with Northern Eclipse software
(Empix Imaging).

Reverse transcription and quantitative real-time PCR. Total RNA was isolated
from individual retinas using the RNEasy Mini kit (Qiagen) or TRIzol re-
agent (Invitrogen). cDNAs were generated from 0.5-3 ug of total RNA using
the Moloney Murine Leukemia Virus reverse transcriptase (Invitrogen). PCR
for p53 was performed using the following primers: p53 forward: 5'-GAT
GGTGACGGCCTGGCTCCT-3’, p53 reverse: 5'-CTCGAAGCGCTC
ACGCCCAC-3', B-actin forward: 5'-CACCACTTTCTACAATGAGC-
3', B-actin reverse: 5'-CGGTCAGGATCTTCATGAGG-3’, and the
following cycle conditions: 94°C for 1 min, 58°C for 1 min, 72°C for 1
min. Reaction products were separated on agarose gels, visualized under
UV light and digitalized using Gel Doc EZ System (Biorad). Densitomet-
ric analysis was performed with ImageJ software (NIH). For p53 target
genes, quantitative real-time PCR (qPCR) was performed using the Plat-
inum SYBRGreen SuperMix (Invitrogen) and a real-time PCR apparatus
(BioRad). Rat primer sets were as follows: PUMA forward: 5'-CGGAGA
CAAGAAGAGCAACA-3’, PUMA reverse: 5'-TAGTTGGGCTCCATT
TCTGG-3', Fas/CD95 forward: 5'-CCGACAACAACTGCTCAGAA-3’,
Fas/CD95 reverse: 5'-GGTGCAGTTCGTTTCCACTT-3’, Bax forward:
5'-TGCAGAGGATGATTGCTGAC-3', Bax reverse: 5'-GATCAGCTC
GGGCACTTTAG-3', Noxa forward: 5'-GGAGTGCACCGGACATAA
CT-3’, Noxa reverse: 5'-CTCCAATTCTCCGGAGTTGA-3', GAPDH
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forward: 5'-ATGGGAAGCTGGTCATCAAC-3’, GAPDH reverse: 5'-
GTGGTTCACACCCATCACAA-3". The ASPP2 primers (QT01599402)
were purchased from Qiagen. Mouse primer sets were as follows: PUMA
forward: 5'-CAAGAAGAGCAGCATCGACA-3, PUMA reverse: 5'-TAG
TTGGGCTCCATTTCTGG3',Fas/CD95forward:5 -AAACAAACTGCA
CCCTGACC-3', Fas/CD95 reverse: 5'-CAACCATAGGCGATTT
CTGG-3', Bax forward: 5'-CACGTGACCGTGGTGCGCCG-3": Bax
reverse: 5'-CCGCTCCCAAGCTGCTCCCCG-3',Noxaforward:5'-CAC
CGGACATAACTGTGGTT-3’, Noxa reverse: 5'-TTGAGCACACTCG
TCCTTCA-3', HRPT forward: 5'-ACTGTAATGATCAGTCAACGGG-
3’, and HRPT reverse: 5'-GGCCTGTATCCAACACTTCG-3'. B-actin,
HRPT and GAPDH were used as internal standards for data calibration,
and the 2 ~*Ct formula was used for the calculation of differential gene
expression, as described previously (Chatoo et al., 2009).

siRNA. The siRNA molecules against ASPP1, ASPP2, and Cy3-labeled
siRNA were designed at Quark Pharmaceuticals. The control siRNA
against GFP has been described previously (Hamar et al., 2004). All these
siRNAs were stabilized by alternating 2’ O-methylation (Czauderna et al.,
2003) and were synthesized by BioSpring. The following siRNA se-
quences (sense strands) for ASPP1 and ASPP2 were tested with similar
results, ASPP1: 5'-GGAGAGAAGCACACTGAAA-3', 5'-CAGCGTTTA
CATTTCCTAA-3', and 5'-CCGTGTTCTTGAGCAACAA-3'; ASPP2:
5'-AGGGAGTGTTTGAATAAGC-3"and5'-CACCCAGAGAACATTTA
TT-3'. ThesiRNA sequences (sense strands) against PUMA: 5 -GAGCGG
CGGAGACAAGAAGAGUU-3";Fas/CD95:5'-GUGCAAGUGCAAACC
AGACUU-3';and Noxa: 5'-CAAGGAAAGCUGACGGAGA-3',5'-GAA
CAGAAGUGGCUACGAA-3', 5'-CCAUGGAUUUCCUCGGCAA-3/,
and 5'-AAGCAAUGGUCGUCGAGCA-3' were purchased from Thermo
Fisher Scientific. The fluorescent siRNA used for the visualization of in-
traocular distribution, sequence 5'-GUGCCAACCUGAUGCAGCU-3’
(sense strand), contained a Cy3 fluorophore at the 3" end of the antisense
strand.

Intravitreal injections. siRNA against ASPP1, ASPP2, PUMA, Fas/
CD95, Noxa, siCy3, or control siGFP (2 ug/ul, total volume: 5 ul) were
injected into the vitreous chamber of the left eye using a Hamilton sy-
ringe fitted with a 32-gauge glass microneedle. PBS was used as vehicle
control. The sclera was exposed and the tip of the needle was inserted at
a 45° angle through the sclera and retina into the vitreous space using a
posterior approach. This route of administration avoided injury to the
iris or lens, which can promote RGC survival (Mansour-Robaey et al.,
1994; Leon et al., 2000).

Retinal immunohistochemistry. Animals were perfused transcardially
with 4% PFA and retinal cryosections (16 wm) were prepared as previ-
ously described (Pernet et al., 2005; Lebrun-Julien et al., 2009). Primary
antibodies were added to the retinal sections in blocking solution and
incubated overnight at 4°C: phospho-p53 (Serl5; 20 ug/ml; Abcam),
ASPP1 (1 pg/ml; Bethyl Laboratories), ASPP2 (0.5 ug/ml; Bethyl Labo-
ratories), or iASPP (0.5 wg/ml; Bethyl Laboratories). For phospho-p53
(Serl5), retinas were subjected to heat-mediated antigen retrieval by
incubating sections in 0.01 M sodium citrate in 0.5% Tween 20 (pH 6) at
85-90°C for 30 min. Blocking peptides (2.5 ug/ml; Bethyl Laboratories)
were incubated overnight with ASPP1 or ASPP2 primary antibodies (5:1
ratio) before application onto retinal sections. Sections were washed and
incubated with secondary antibodies: anti-rabbit IgG (1-8 ug/ml; Cy3,
Alexa 594, or Alexa 488; Jackson ImmunoResearch Laboratories). Fluo-
rescent labeling was observed with a microscope Zeiss AxioSkop 2 Plus
(Carl Zeiss).

Western blot analysis. Whole fresh retinas were rapidly dissected and
homogenized with an electric pestle (Kontes) in ice-cold lysis buffer (20
mu Tris pH 8.0, 135 mm NaCl, 1% NP-40, 0.1% SDS, and 10% glycerol
supplemented with protease inhibitors). Protein homogenates were cen-
trifuged at 10,000 rpm for 10 min, and the supernatants were removed
and resedimented to yield solubilized extracts. Retinal extracts were re-
solved on SDS polyacrylamide gels and transferred to nitrocellulose
membranes (Bio-Rad Life Science). Blots were incubated overnight at
4°C with each of the following primary antibodies: phospho-p53 (Ser15;
2 wg/ml; Abcam), ASPP1 (1 ug/ml; Bethyl Laboratories), ASPP2 (0.5
ug/ml; Bethyl Laboratories), iASPP (0.5 ug/ml; Bethyl Laboratories),
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Statistical analyses. Data analysis and statis-
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Figure 1.  Axotomized RGCs die in a p53-dependent manner. 4, RT-PCR analysis revealed that p53 mRNA levels donot change ~ (Fig. 1B,D), indicating that axotomy

at 1or3 d (shown here) after axotomy with respect to noninjured retinas (Student's ¢ test, p > 0.05). B, In contrast, a significant
increase in axotomy-induced phosphorylation of p53 at serine 15 (S15) was readily detected at 1 d after axotomy, but returned to
basal levels at 7 d postlesion (ANOVA, *p << 0.05). C, Retinal immunostaining of Fluorogold-labeled RGCs confirmed that p53
phosphorylation (activation) was detected in these neurons at 1 d after axotomy. Scale bars, 10 m. D, Protein levels of the p53
apoptotic targets PUMA and Fas/(D95 increased at 1 d after axotomy, but returned to normal levels at 7 d postinjury. Bax and Noxa
remained unchanged. E, Analysis of RGC loss quantified at 1 week after axotomy in p53-null, heterozygote, and wild-type retinas
demonstrated an allelic dose dependency on p53 (ANOVA, ***p << 0.001). Data are expressed as RGC densities (RGCs/mm%

mean = SD).

Bax (1.5 wg/ml; N20; Santa Cruz Biotechnology), PUMA (1 ug/ml; Ab-
cam), Noxa (0.5 ug/ml; Sigma-Aldrich), Fas/CD95 (1 ug/ml; BD Trans-
duction Laboratories), or -actin (0.5 pg/ml; Sigma-Aldrich).
Membranes were incubated in anti-rabbit or anti-mouse peroxidase-
linked secondary antibodies (0.5 wg/ml; GE Healthcare). Blots were de-
veloped with a chemiluminescence reagent (ECL; GE Healthcare) and
exposed to X-OMAT imaging film (Eastman Kodak). Densitometric
analysis was performed using Scion Image software on scanned autora-
diographic films obtained from a series of three independent Western
blots, each performed using retinal samples from distinct experimental
groups.

leads to early and transient activation of
this pathway.

To address the functional role of in-
creased p53 activity in axotomy-induced
RGC death, we analyzed the density of
RGCs in p53 heterozygote (p53*/7) and
null (p53~/7) mice subjected to optic
nerve injury. RGCs were first labeled by
application of the retrograde tracer Fluo-
rogold to the superior colliculus, followed by axotomy and quan-
tification of neuronal survival. Figure 1E shows that 73% of RGCs
survived in p53 /'~ retinas and 65% in p53™/~ retinas, while only
50% remained in wild-type retinas at 1 week postlesion. The total
density of RGCs in noninjured (intact) p53*/*, p53*/~, and
537/ adult retinas was similar, indicating that p53 is not re-
quired for developmental programmed RGC death, consistent
with previous findings (Li et al., 2002). These data demonstrate
that optic nerve axotomy leads to activation of p53 in RGCs and
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that p53 plays a role in axotomy-induced RGC death in a dose-
dependent manner.

ASPP1 and ASPP2 are expressed by adult RGCs

To characterize the role of ASPP1 and ASPP2 in RGC death, we
first determined which retinal cells express them. Retinal immu-
nohistochemistry showed abundant expression of endogenous
ASPP1 and ASPP2 in the ganglion cell layer (GCL) (Fig. 2A,K)
while other retinal layers were virtually devoid of ASPP1/2. Since
displaced amacrine cells account for ~40% of the total number of
neurons in the GCL (Perry, 1981), we performed colocalization
studies where RGCs were retrogradely labeled with Fluorogold
(Fig. 2B,L). All Fluorogold-labeled neurons displayed robust
ASPP1 and ASPP2 immunoreactivity (Fig. 2C—F,M-P), indicat-
ing that adult RGCs are endowed with high levels of ASPP1/2
proteins. Colabeling with the nuclear marker DAPI demon-
strated that ASPP1 had a nuclear and cytoplasmic (perinuclear)
localization within RGCs (Fig. 2H-] ), while ASPP2 was primarily
found in RGC nuclei (Fig. 2R-T'). ASPP1 and ASPP2 blocking
peptides resulted in absence of staining (Fig. 2G,Q), confirming
the specificity of the ASPP1 and ASPP2 antibodies.

Following axotomy, there were no detectable changes in the
levels or subcellular localization of ASPP1, ASPP2, or the anti-
apoptotic member iASPP visualized by retinal immunohisto-
chemistry (Fig. 3A). Analysis of protein homogenates at 24 or
48 h (Figs. 3, 4) after axotomy confirmed that ASPP1, ASPP2, and
iASPP levels were similar to those in intact, noninjured retinas
(Fig. 3B,C). A time course analysis of ASPP proteins up to 5 d
postaxotomy revealed no change in their levels with respect to
control retinas (data not shown). Collectively, these data indicate
that ASPP1 and ASPP2 are abundantly expressed by intact and
axotomized RGCs.

Selective knockdown of retinal ASPP1 or ASPP2 by
intravitreal siRNA delivery

To investigate the role of ASPP1/2 proteins in retinal neuron
death, we synthesized siRNA sequences against ASPP1 or ASPP2.
We first examined whether intraocular siRNA delivery led to
effective uptake by adult RGCs using a Cy3-tagged control
siRNA. Figure 4 shows that a single intravitreal injection of Cy3-
siRNA resulted in robust Cy3 labeling in RGCs as early as 5 h after
administration (Fig. 4A—F). The colocalization of Cy3 and Fluo-
rogold confirmed that siRNA was rapidly taken up by RGCs after
intravitreal delivery (Fig. 4G-I).

To assess the ability of siRNAs to knockdown retinal ASPP1 or
ASPP2 protein expression in vivo, we performed Western blot
analysis of retinal homogenates from eyes that received a single
injection of each siRNA at the time of axotomy. Administration
of siRNA against ASPP1 (siASPP1) led to a significant reduction
of retinal ASPP1 protein at 24 h after delivery, while a control
siRNA against GFP (siGFP) had no effect (Fig. 4J,K). Impor-
tantly, siASPP1 did not reduce the protein levels of the other
family members, ASPP2 or iASPP, confirming the specificity of
the siRNA. Similarly, siRNA against ASPP2 (siASPP2) selectively
depleted retinal ASPP2 protein levels without reducing ASPP1 or
iASPP levels (Fig. 4L,M). Quantification of ASPP1 or ASPP2
protein levels at 24 h after treatment with siASPP2 or siASPP1,
respectively, did not show a compensatory increase in these pro-
teins (Fig. 4 K, M, hatched bars). Endogenous levels of ASPP1 and
ASPP2 proteins returned to basal at 48 h after siRNA delivery
(Fig. 4J]-M, black bars). Immunohistochemistry of axotomized
retinas treated with siASPP1 or siASPP2 confirmed that siRNA-
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mediated knockdown of ASPP1/2 occurred in RGCs, visualized
with Fluorogold (Fig. 4 N, O). These data demonstrate that intra-
vitreal delivery of siRNA results in rapid and effective uptake by
RGCs, and that siRNAs against ASPP1 and ASPP2 promote tran-
sient depletion of ASPP proteins in these neurons.

ASPP1 and ASPP2 knockdown protects RGCs from
axotomy-induced death

To determine whether ASPP1 and ASPP2 were required for
axotomy-induced RGC death, we asked whether targeted siRNA-
mediated knockdown promoted RGC survival. For this purpose,
RGCs were retrogradely labeled before optic nerve transection
and intravitreal injections of siRNA against ASPP1 or ASPP2
were performed concomitant with axotomy. Flat-mounted reti-
nas from eyes treated with siASPP1 or siASPP2 consistently dis-
played higher densities of Fluorogold-labeled RGCs than those
treated with control siGFP (Fig. 5A—D). Quantitative analysis
demonstrated that ASPP1 or ASPP2 knockdown resulted in sub-
stantial RGC survival relative to vehicle-treated (PBS) or control
siGFP-treated eyes (Fig. 5E), with siASPP2 promoting slightly
more neuroprotection (79%; 1636 * 62 RGCs/mm?) than
siASPP1 (69%; 1430 =+ 34 RGCs/mm?) at 1 week postinjury. All
the siRNA sequences against ASPP1 or ASPP2 yielded similar
results.

We also examined the effect of siASPP1 and siASPP2 on RGC
survival at 2 weeks after axotomy, a time-point when few RGCs
remain alive in the absence of treatment (Lebrun-Julien et al.,
2009). Figure 5E shows that only 6% of RGCs survived in animals
treated with vehicle or control siGFP (130 * 7 RGCs/mm?),
whereas 26% RGC survival was observed in animals that received
siASPP1 or siASPP2 (542 * 30 RGCs/mm? or 509 * 24 RGCs/
mm?, respectively). The combination of siASPP1 and siASPP2
did not increase RGC survival further (Fig. 5E, black bars), sug-
gesting that ASPP1 and ASPP2 activate redundant pathways to
promote RGC death. We conclude that ASPP1 and ASPP2 are
required for p53-dependent axotomy-induced death of RGCs in
the adult retina.

siASPP2 protects axotomized RGCs through downregulation
of the p53 proapoptotic targets PUMA and Fas/CD95

To investigate the mechanisms by which ASPP protein knock-
down might lead to RGC neuroprotection after optic nerve in-
jury, we examined changes in p53 proapoptotic targets at the
mRNA and protein levels (Figs. 6, 7). We focused on siASPP2
because it confers enhanced neuroprotection over siASPP1. Real-
time qPCR analysis of rat retinal samples at 6 h after axotomy and
siASPP2 administration, a time-point when siRNA is already
present in RGCs (Fig. 4A-I), revealed downregulation of ASPP2
and the p53 apoptotic targets PUMA, Fas/CD95, and Noxa com-
pared with uninjured or control siRNA-treated retinas (Fig. 6A).
There was no change in Bax expression levels. To further substan-
tiate our findings, we performed qPCR in retinal samples from
p53-null mice and wild-type littermate controls collected at 6 h
after axotomy with or without siASPP2 treatment. Overall, the
transcript levels of PUMA, Fas/CD95, and Noxa were signifi-
cantly reduced in noninjured or axotomized p53-null mice with
respect to wild-type littermates, suggesting that these genes are
transcriptionally regulated by p53 (Fig. 6B, C,E). More impor-
tantly, ASPP2 knockdown effectively reduced PUMA, Fas/CD95,
and Noxa gene expression in axotomized retinas from p53 wild-
type mice but not from p53 knock-out mice (Fig. 6 B, C,E), while
Bax remained unchanged (Fig. 6D). siASPP2 did not reduce
PUMA and CD95 expression further relative to the already
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Figure2. ASPP1and ASPP2are expressed by adult RGCs. Retinalimmunofluorescence demonstrated abundant expression of endogenous ASPP1 (A-G) and ASPP2 (K—Q) in RGCs visualized with
the retrograde tracer Fluorogold. DAPI staining showed that ASPP1 is present in RGC nuclei and cytoplasm (perinuclear) (H-J), while ASPP2 is primarily in the nuclei (R-T). ASPP1 and ASPP2
blocking peptides resulted in absence of staining (G, Q), confirming the specificity of the ASPP1 and ASPP2 antibodies. Scale bars: A—Cand K-M, 70 um; D-G and N-Q, 50 um; H-Jand R-T, 10
um. RPE, Retinal pigment epithelium; PS, photoreceptor segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer;
FG, Fluorogold.
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reduced levels found in p53-null mice.
Collectively, these data demonstrate
that siASPP2-mediated knockdown of
PUMA, Fas/CD95, and Noxa depends
on p53 transcriptional activity.

Western blot analysis of axotomized
retinal samples at 24 h after siRNA admin-
istration showed that siASPP2 reduced
PUMA and Fas/CD95 protein levels rela-
tive to control siGFP (Fig. 7A,B), while
Bax and Noxa levels did not change with
any of the treatments (Fig. 7C,D). These
findings, supported by our observation
that PUMA and Fas/CD95 are upregu-
lated following axotomy (Fig. 1D), raised
the possibility that they might play a role
in the p53-dependent death of axoto-
mized RGCs. To test this, we administered
siRNAs against PUMA or Fas/CD95 at the
time of axotomy and quantified retro-
gradely labeled RGCs at 1 week postin-
jury. siPUMA or siFas/CD95 effectively
downregulated endogenous retinal PUMA or
Fas/CD95, respectively (Fig. 7E,F). Im-
portantly, a substantial increase in RGC
survival was observed in retinas exposed
to siPUMA (77%; 1597 = 38 RGCs/mm?,
n = 4) or siFas/CD95 (69%; 1432 + 71
RGCs/mm?, n = 4) relative to siGFP-
treated controls (Fig. 7H). Unlike PUMA
or Fas/CD95, siASPP2-mediated decrease
in Noxa transcript levels at 6 h after axo-
tomy (Fig. 6) did not correlate with Noxa
protein reduction at 24 h postinjury (Fig.
7D). Since this discrepancy might simply
reflect a difference in the kinetics of Noxa
mRNA and protein synthesis (Aikawa et
al., 2010; Armstrong et al., 2010), we also
used a siRNA against Noxa to assess its
role on RGC survival at 1 week after axo-
tomy. siNoxa effectively reduced endoge-
nous Noxa protein levels (Fig. 7G), but
did not result in significant RGC protec-
tion (Fig. 7H), suggesting that although
Noxa is transcriptionally regulated by
P53, it does not play a prominent role in
RGC death. We conclude that ASPP2
knockdown protects RGCs via downregu-
lation of the p53 targets PUMA and Fas/
CD95, and that these molecules mediate
axotomy-induced RGC apoptosis.

Discussion

The present study explored the functional
role of the p53 coactivators ASPP1 and
ASPP2 in the regulation of injury-induced
death of adult retinal neurons in vivo. Our
data support four major conclusions.
First, axotomy-induced RGC death is me-
diated inter alia through p53 activation in
a gene dose-dependent manner. Second,
ASPP1 and ASPP2 proteins are abun-
dantly expressed by intact and injured
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Figure 3.  Expression of ASPP family members after optic nerve axotomy. A, The levels or subcellular localization of ASPP1,
ASPP2, or the anti-apoptotic member iASPP, visualized by retinal immunohistochemistry and Fluorogold (FG) staining, did not
change at 48 h after optic nerve injury. Scale bars, 10 em. B, Analysis of protein homogenates confirmed that ASPP1, ASPP2, and
iASPP levels in axotomized retinas collected at 48 h were similar to those in intact, noninjured retinas. The bottom blot is the same
as the top, but probed with an antibody that recognizes 3-actin used to confirm equal protein loading. C, Densitometric analysis
of Western blots, showing the ratio of ASPP proteins relative to B-actin, confirmed that there is no significant change in protein
expression after injury (Student’s  test, p > 0.05).
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GCL, ganglion cell layer.
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RGCs. Third, selective siRNA-mediated
knockdown of ASPP1 or ASPP2 leads to
substantial RGC survival after axonal in-
jury. Fourth, the neuroprotective effect of
siASPP2 involves downregulation of the
P53 apoptotic targets PUMA and Fas/
CD95, and siRNAs against PUMA or Fas/
CD95 effectively promote RGC survival.
Our data support a novel, key role of pro-
apoptotic ASPP family members in the
regulation of retinal neuron death.

Axonal injury is a major cause of neu-
ronal loss in the CNS of adult mammals
and it is the primary damaging event in
most optic neuropathies, including glau-
coma. Using an axotomy model, we found
that p53 phosphorylation and upregula-
tion of the p53 proapoptotic targets
PUMA and Fas/CD95 are markedly in-
creased at 1 d after injury, a time that pre-
cedes the onset of RGC death. In adult
rodents, RGCs survive for 5 d after axo-
tomy and then die abruptly (Villegas-
Pérez et al., 1993; Berkelaar et al., 1994);
therefore, this finding suggests that early E
P53 activation plays a causal role in
injury-induced RGC loss. In support of
this, our data further demonstrate that
p53 deficiency promotes RGC survival af-
ter axotomy in a gene dose-dependent
manner. This is consistent with studies
showing that inactivation of the p53 gene
attenuates RGC death following ischemia,
excitotoxicity, or optic nerve crush
(Rosenbaum et al., 1998; Li et al., 2002;
Park et al., 2008).

ASPP1 and ASPP2 are cofactors that
enhance the proapoptotic function of
P53, but not its ability to regulate cell cycle
arrest (Samuels-Lev et al., 2001). ASPP
proteins are known to interact directly

1500+
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RGCs/mm? (mean * S.E.M.)

500+

with the p53 DNA-binding domain
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through their ankyrin and SH3 domains, 0
readily increasing its transcriptional activ-
ity at proapoptotic gene promoters (Go-
rina and Pavletich, 1996; Patel et al.,
2008). We demonstrate that RGCs express
high endogenous levels of ASPP1 and
ASPP2 that do not change after axotomy,
supporting the hypothesis that these
neurons become vulnerable to injury-
induced activation of p53. It is unlikely
that the function of ASPP1 and ASPP2
changes after injury, but rather that they are poised to act as
cofactors to facilitate rapid p53-mediated transcriptional activa-
tion of PUMA and Fas/CD95 following axotomy. This is consis-
tent with previous studies showing that other p53 cofactors, such
as Brn-3b and SP1, can effectively modulate p53 activity without
undergoing stress-induced changes in function or expression lev-
els (Budhram-Mahadeo et al., 2006; Dhar et al., 2006; Chatoo et
al,, 2011).

To address the functional role of ASPP1/2, we used a siRNA-
based approach to knockdown ASPP1/2 gene expression in vivo.

Figure5.

the mean = SEM.
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ASPP1 and ASPP2 knockdown protects RGCs from axotomy-induced death. Fluorogold-labeled RGCs in flat-mounted
retinas from a representative noninjured eye (4) or axotomized eyes treated with siASPP1 (B), siASPP2 (C), or control siGFP (D) at
1week postinjury. Scale bars, 100 .em. E, Quantitative analysis of RGC survival following intraocular injection of iASPP1 (hatched),
siASPP2 (dark gray), combined siASPP1 and siASPP2 (black), control siGFP (light gray) or PBS (white) (ANOVA, ***p < 0.001;*p <
0.05). The density of RGCs in intact, uninjured Sprague Dawley rat retinas is shown as reference (open bar). Data are expressed as

siRNA has been successfully delivered to RGCs via injection into
the optic nerve or the superior colliculus (Lingor et al., 2005;
Koeberle et al., 2010), but the invasive nature of these approaches
greatly limits their application. We chose to deliver siRNA mol-
ecules by intravitreal injections, which led to effective siRNA up-
take by RGCs, as previously demonstrated by us (Ahmed et al.,
2011). We cannot rule out that other retinal cells also incorpo-
rated siRNA injected into the vitreous chamber; however, we
show that this strategy is suitable for silencing genes that are
highly enriched in RGCs. Our results show that targeted siRNA
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Figure 6.

0.01). Bax gene expression remained unchanged (D).

successfully downregulated retinal ASPP1 and ASPP2 by ~85-
90% at 24 h after intravitreal delivery, but this effect was transient
since protein levels were restored by 48 h. Despite this short-lived
effect, our data demonstrate a strong neuroprotective effect of
siASPP1/2, suggesting that there is a window of opportunity soon
after axotomy in which ASPP1/2 knockdown counters the pro-
apoptotic effect of p53. This is supported by our observation that
the levels of phospho-p53, PUMA, and Fas/CD95, which are
upregulated at 24 h after axotomy, drop to basal levels at 7 d
postinjury. Therefore, siASPP1/2 treatment to knockdown pro-
apoptotic p53 targets during this critical period effectively atten-
uates RGC loss.

To identify the mechanism by which ASPP1/2 silencing de-
layed RGC death, we examined mRNA and protein levels of p53
proapoptotic targets. Comparative gene expression analysis re-
vealed a substantial downregulation of PUMA, Fas/CD95, and
Noxa in axotomized rat retinas derived from eyes treated with
siASPP2 but not with control siRNA. Importantly, ASPP2
knockdown effectively reduced PUMA, Fas/CD95, and Noxa

siASPP2-mediated knockdown of PUMA, Fas, and Noxa depends on p53 transcriptional activity. 4, Real-time qPCR
analysis of rat retinal samples at 6 h after axotomy and siASPP2 administration revealed that ASPP2 knockdown leads to down-
regulation of PUMA, Fas/CD95, and Noxa (ANOVA, ***p << 0.001; **p << 0.01), but not Bax (ANOVA, p > 0.5) gene expression.
B-E, gPCR of retinal samples from p53-null mice and wild-type littermate controls collected at 6 h after axotomy and siASPP2
injection. Transcript levels of PUMA, Fas/CD95, and Noxa were significantly reduced in noninjured or axotomized p53-null mice
with respect to wild-type littermates. Moreover, ASPP2 knockdown effectively reduced PUMA, Fas/CD95, and Noxa gene expres-
sion in axotomized retinas from p53 wild-type mice, but not from p53 knock-out mice (B, C, E) (ANOVA, ***p < 0.001; **p <

ence of siASPP2, we cannot entirely rule
out a decrease in Bax activity following
PUMA downregulation. PUMA can re-
lease cytosolic p53 from its inactive
complex with Bcl-XL to form a PUMA-
Bcl-XL complex, allowing p53 to acti-
vate Bax (Chipuk et al., 2005).
Therefore, a decrease in PUMA levels
could potentially reduce Bax activity by
reducing its release from Bcl-XL.

Our data also demonstrate that ASPP2 knockdown leads to
downregulation of Fas/CD95 and that siRNA-mediated Fas/
CD95 silencing was neuroprotective. Fas/CD95 is a death recep-
tor of the tumor necrosis factor receptor superfamily of single-
pass transmembrane proteins (Ashkenazi, 2002; Peter et al.,
2007). Fas/CD95 is activated by Fas ligand (FasL) leading to the
recruitment of the adaptor protein FADD (Fas-associated death
domain) and activation of caspase 8 (Haase et al., 2008). Analysis
of p53 responsive elements in the CD95 gene revealed a role for
p53 in Fas/CD95 transcription (Schilling et al., 2009). Further-
more, nuclear ASPP1 can activate p53-induced Fas/CD95 expres-
sion (Aylon et al., 2010). FasL has been shown to increase in
retinal microglia in a rat model of ocular hypertension (Ju et al.,
2006) and FasL-positive autoreactive T cells have been implicated
in the loss of RGCs following heat shock protein immunization
(Wax et al., 2008). More recently, the membrane-bound form of
FasL was implicated in glaucomatous RGC degeneration
(Gregory et al., 2011). Collectively, these studies support a role
for Fas/CD95 in RGC death. Our data, specifically, demonstrate
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In conclusion, we used a loss-of-
function approach to identify the role of
the p53 activators ASPP1 and ASPP2 in
retinal neuron death following optic
nerve axotomy. Our data demonstrate a
novel and prominent role of the pro-
apoptotic ASPP1/2 proteins in the death
of RGCs that involves the p53 targets
PUMA and Fas/CD95. These findings ex-
pand our understanding of the molecular
basis of RGC neurodegeneration and might have implications for
the design of strategies for neuroprotection in the injured CNS.

Figure 7.
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