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It is widely acknowledged that the predictive performance of clinical prediction
models should be studied in patients that were not part of the data in which
the model was derived. Out-of-sample performance can be hampered when pre-
dictors are measured differently at derivation and external validation. This may
occur, for instance, when predictors are measured using different measurement
protocols or when tests are produced by different manufacturers. Although such
heterogeneity in predictor measurement between derivation and validation data
is common, the impact on the out-of-sample performance is not well studied.
Using analytical and simulation approaches, we examined out-of-sample perfor-
mance of prediction models under various scenarios of heterogeneous predictor
measurement. These scenarios were defined and clarified using an established
taxonomy of measurement error models. The results of our simulations indicate
that predictor measurement heterogeneity can induce miscalibration of predic-
tion and affects discrimination and overall predictive accuracy, to extents that
the prediction model may no longer be considered clinically useful. The mea-
surement error taxonomy was found to be helpful in identifying and predicting
effects of heterogeneous predictor measurements between settings of prediction
model derivation and validation. Our work indicates that homogeneity of mea-
surement strategies across settings is of paramount importance in prediction
research.
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1 INTRODUCTION

Prediction models have an important role in contemporary medicine by providing probabilistic predictions of diagnosis
or prognosis.1 Prediction models need to provide accurate and reliable predictions for patients that were not part of the
dataset in which the model was derived (ie, derivation set).2 The ability of a prediction model to predict in future patients
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TABLE 1 Possible sources of measurement heterogeneity in measurements of predictors, illustrated by examples from previously
published prediction studies

Type of Predictor Examples of Predictors Examples of Measurement Heterogeneity
Anthropometric Height Guidelines on imaging decisions in osteoporosis care are established using standardized
measurements Weight measurements of height, while in clinical practice height is measured using

Body circumference nonstandardized techniques or self-reported values.8
Physiological Blood pressure In scientific studies, blood pressure is often measured by the average of multiple
measurements Serum cholesterol measurements performed under standardized conditions, while blood pressure

HbA1c measurements in practice deviate from protocol guidelines in various ways due to
Fasting glucose variability in available time and devices.9

Diagnosis Previous/current The diagnosis “hypertension” can be defined as a blood pressure of ≥ 140∕90 mm Hg
disease (without use of anti-hypertensive therapy) or as the use of anti-hypertensive drugs.10

Treatment/ Type of drug used The cut-off value for an “increased length of stay in the hospital” to predict unplanned
Exposure status Smoking status readmission may depend on the country in which the model is evaluated.11

Dietary intake
Imaging Presence or size of tissue In scientific studies, review of FDG PET scans may be protocolized or performed by

on ultrasound, MRI, CT a single experienced nuclear medicine physician, blinded to patient outcome.12 In routine
or FDG PET scans practice, FDG PET scans may be reviewed under various systematics or by a

multidisciplinary team.13

(ie, out-of-sample) can be evaluated in an external validation study. While out-of-sample predictive performance is in
general expected to be lower than performance estimated at derivation,1 large discrepancies are often contributed to sub-
optimal modeling strategies in the derivation of the model3-5 and differences between patient characteristics in derivation
and validation samples.6,7

Another potential source of limited out-of-sample performance is when predictors are measured differently at deriva-
tion than at (external) validation. This may occur, for instance, when predictors are categorized using different cut-off
values or when predictors are based on diagnostic tests that were produced by different manufacturers (see Table 1 for
examples). Although some studies have mentioned that such heterogeneity in predictor measurements might hamper
out-of-sample model performance (eg,14,15), effects of measurement heterogeneity in prediction studies have received little
attention. Particularly, its impact on predictive performance has not been formally quantified.

In this study, we investigate the out-of-sample performance of a clinical prediction model in situations where predictor
measurement strategies at the model derivation stage differed from measurement strategies at the model validation stage.
The different scenarios of heterogeneous predictor measurement were defined using a well-known taxonomy of measure-
ment error models, described by, eg, Keogh and White.16 We varied the degree of measurement error in the derivation data
and validation data to recreate qualitative differences in the predictor measurement structures across settings. Hence,
the measurement error perspective serves as a framework to define predictor measurement heterogeneity. We focus on
logistic regression, since this model is widely applied in clinical prediction research.17

This paper is structured as follows. In Section 2, we define the measurement error models used to describe scenarios of
measurement heterogeneity. In Section 3, we derive analytical expressions to identify and predict effects of measurement
error on in-sample predictive performance. In Section 4, we illustrate the effects of measurement heterogeneity across
settings on predictive performance in large sample simulations and contrast these to the impact of measurement error
within the derivation setting. In Section 5, we present an extensive set of Monte Carlo simulations in finite samples to
examine the impact of measurement heterogeneity on out-of-sample predictive performance. We end with discussing the
implications of our findings in Section 6.

2 EXPRESSING MEASUREMENT HETEROGENEITY IN TERMS OF
MEASUREMENT ERROR MODELS

Consider a random sample of N independent individuals i = 1, … ,N. Let Y be a binary response variable with values
yi ∈ {0, 1}. We define a logistic regression model for estimating the probability that Y = 1 given values of a set of P
continuous predictor variables, X = {X1, … ,XP}. The probability of observing an event (Y = 1) given the predictors,
𝜋i = P(Yi = 1 |Xi), is defined as

𝜋i =
1

1 + exp(−(𝛼 + 𝜷Txi))
,
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where 𝛼 is an intercept (scalar), 𝜷 is a P-dimensional vector of regression coefficients.
For simplicity of presentation, we consider a single vector X ⊂ X. To distinguish different measurements of the same

predictor, we denote an exact measurement of the predictor (eg, bodyweight measured on a scale) by X and a pragmatic
measurement (eg, self-reported weight) by W. In most measurement error literature, X denotes an error-free true value
and W denotes an observed error-prone version of X.18 However, for prediction purposes, it is hardly ever feasible (or
even undesirable) to obtain error-free measurements in clinical practice, and hence we use the terms exact measurement
for X and pragmatic measurement for W. The connection between X and W can be formally defined using measurement
error models. We define a general model of measurement heterogeneity for continuous predictors in line with existing
measurement error literature.16,18 Assuming that the relation between X and W is linear and additive, the association
between W and X can be described as

𝔼(W |Y = 𝑦) = 𝜓Y=𝑦 + 𝜃Y=𝑦𝔼(X) + 𝜖Y=𝑦,

Var(W |Y = 𝑦) = 𝜃2
Y=𝑦𝜎

2
X + 𝜎2

𝜖Y=𝑦
, (1)

where 𝜖Y=𝑦 ∼  (0, 𝜎2
𝜖Y=𝑦) and all parameters may depend on the value of Y, indicating that measurements can differ

between individuals in which the outcome is observed (cases) and individuals in which the outcome is not observed (non-
cases). The parameter 𝜓 reflects the mean difference between X and W |Y = y, 𝜃 indicates the linear association between
measurement W |Y = y and X, and 𝜎2

𝜖 reflects variance introduced by random deviations in the measurement process,
where a larger 𝜎2

𝜖 indicates that the measurement W is less precise. The term measurement error applies to situations where
both an exact measurement and a pragmatic measurement of a predictor are available within a setting (eg, the derivation
set), and thus where the parameters 𝜓 , 𝜃 and 𝜎2

𝜖 define the degree of measurement error in W with respect to X. The term
measurement heterogeneity refers to situations where the same predictor is measured heterogeneously across settings of
derivation and validation. The most precise measurement (whether available at derivation or validation) corresponds to
X and the parameters 𝜓 , 𝜃 and 𝜎2

𝜖 define the degree of heterogeneity between X and W. We now consider three types
of measurement error models that are particular forms of Equation (1), based on which we specify both within-sample
measurement error and measurement heterogeneity across settings.

Random measurement error model
Under 𝜓 = 0 and 𝜃 = 1, Equation (1) reduces to the following model:

𝔼(W) = 𝔼(X) + 𝜖, (2)

where 𝜖 ∼  (0, 𝜎2
𝜖 ) is independent of X and Y. This is referred to as the random or classical measurement error model.16,18

W is a mean-unbiased measurement of X, since 𝔼(W |Y ) = 𝔼(W) = 𝔼(X). An example of a predictor measurement
corresponding to the random measurement error model is reading body weight from the same scale. Each reading, the
value may deviate slightly upwards or downwards, resulting in random deviations. Variation in the size of these deviations
across settings due to precision of the available scales is an example of random measurement heterogeneity.

Systematic measurement error model
When 𝜓 ≠ 0 and/or 𝜃 ≠ 1, yet when 𝜓 and 𝜃 have the same values for cases and noncases, predictor measurements
correspond to a systematic measurement error model.16 The systematic measurement error model is defined as

𝔼(W) = 𝜓 + 𝜃𝔼(X) + 𝜖, (3)

where 𝜖 ∼  (0, 𝜎2
𝜖 ) is independent of X and Y. It follows that W is no longer a mean-unbiased measurement of X

(𝔼(W) ≠ 𝔼(X)). Systematic measurement heterogeneity may occur, for example, when a blood glucose monitor is replaced
by a monitor from a different manufacturer that is calibrated differently. The switch in measurement instrument may
introduce a shift by a constant in the measured predictor values, ie, a change in 𝜓 (additive systematic measurement
error). Furthermore, observed values may depend on the actual value of a predictor, where 𝜃 represents linear dependen-
cies between X and W. For instance, values of self-reported weight may be underreported, especially by individuals with
a higher actual weight, ie, 𝜃 < 1 (multiplicative systematic measurement error). The size of 𝜓 and 𝜃 can differ across set-
tings, for example when weight is measured using a scale in one setting (eg, 𝜃 might be close to 1) and as a self-reported
value in another setting (eg, 𝜃 might deviate from 1), which would result in systematic measurement heterogeneity.
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Differential measurement error model
In case measurement procedures differ between cases and noncases, ie, when 𝜓1 ≠ 𝜓0 and/or 𝜃1 ≠ 𝜃0 and/or 𝜎2

𝜖1 ≠

𝜎2
𝜖0, the measurements can be described by Equation (1) above, also referred to as differential measurement error.16

Differential measurement of predictors is conceivable in settings where assessment of predictors are done in an unblinded
fashion, such as case-control studies.19 For example, when patient history is collected after observing the outcome event,
cases may be more likely to recall health information prior to the outcome event than noncases, also known as recall bias.20

This may for example lead to over-reporting in cases, ie, 𝜓1 > 𝜓0, a stronger association between reported and actual
predictor values, ie, 𝜃1 > 𝜃0, or more precise predictor measurements, ie, 𝜎2

𝜖1
< 𝜎2

𝜖0
, in cases than in noncases. Prospec-

tive differential measurement error may occur when a prediction model influences the way that predictors are measured
in clinical practice. After clinical uptake of a prediction model, physicians may measure predictors differently in patients
in whom they suspect the outcome of interest (potential future cases), guided by the knowledge that these particular
predictors are of importance. For example, in these patients, body weight may be measured using a scale, whereas the pre-
diction model may have been derived from self-reported measurements of body weight, introducing a difference between
measurement procedures of (potential) cases and noncases (ie, differential measurement error), as well as a difference in
measurement strategy between derivation and application setting (ie, differential measurement heterogeneity).

3 PREDICTIVE PERFORMANCE UNDER WITHIN-SAMPLE
MEASUREMENT ERROR

In this section, we define analytical expressions that indicate how substituting an exact predictor measurement, X, with
a pragmatic predictor measurement, W, affects apparent predictive performance in the situation where both measure-
ments X and W are available in the derivation sample of a prediction model. For brevity, we will evaluate a single-predictor
model. Expressions of in-sample predictive performance under random measurement error were previously derived by
Khudyakov and colleagues for a probit prediction model.21 The current paper extends these expressions to a logistic
regression model. We measure predictive performance by the concordance-statistic (c-statistic) and Brier score, measur-
ing discrimination and overall accuracy, respectively. Effects on calibration will be evaluated in the next sections. We will
discuss expressions in terms of sample realizations, that is, realizations yi, xi and wi. In the following, let x̄ = 1

n

∑n
i=1(xi|𝑦i)

and s2
x denote the sample mean and variance of x, let w̄ = 1

n

∑n
i=1(wi|𝑦i) and s2

w denote the sample mean and variance of
w, and let n1 and n0 denote the number of cases and noncases in the sample, respectively.

3.1 C-statistic
To examine the discriminatory performance, we make use of the c-statistic, a rank-order statistic that typically ranges from
0.5 (no discrimination) to 1 (perfect discrimination) and is equal to the area under the receiver operating characteristic
(ROC) curve for a binary outcome.17 Consider a data-generating model relating response variable Y to X by a logit link
function, where X|Y ∼  (𝜇Y , 𝜎

2
Y ) (binormality). Let x̄1 = 1

n1

∑n1
i=1(xi|𝑦i = 1) denote the sample mean of x for cases, let

x̄0 = 1
n0

∑n0
i=1(xi|𝑦i = 0) denote the sample mean of x for noncases, and let s2

x1 + s2
x0 denote the total variance of x. Let Φ

denote the cumulative distribution function of the standard normal distribution. Following Austin and Steyerberg,22 the
c-statistic is approximated by

AUCx = Φ
⎛⎜⎜⎜⎝

x̄1 − x̄0√
s2

x1 + s2
x0

⎞⎟⎟⎟⎠
.

Alternatively, for w, let w̄1 = 1
n1

∑n1
i=1(wi|𝑦i = 1) and w̄0 = 1

n0

∑n0
i=1(wi|𝑦i = 0) denote the sample means of w for cases and

noncases, respectively, and let s2
w1 + s2

w0 denote the total variance of w. The c-statistic of a binary logistic regression model
of the predictor w is then given by:

AUCw = Φ
⎛⎜⎜⎜⎝

w̄1 − w̄0√
s2

w1 + s2
w0

⎞⎟⎟⎟⎠
. (4)
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Under the general measurement error model (Equation 1),

w̄0 = 𝜓0 + 𝜃0x̄0,

w̄1 = 𝜓1 + 𝜃1x̄1,

s2
w0 = s2

x0𝜃
2
0 + s2

𝜖0
,

s2
w1 = s2

x1𝜃
2
1 + s2

𝜖1
.

The impact of measurement error on the c-statistic can now be expressed as

ΔAUC = AUCw − AUCx

= Φ
⎛⎜⎜⎜⎝
(𝜓1 + 𝜃1x̄1) − (𝜓0 + 𝜃0x̄0)√

s2
x1𝜃

2
1 + s2

𝜖1
+ s2

x0𝜃
2
0 + s2

𝜖0

⎞⎟⎟⎟⎠
− Φ

⎛⎜⎜⎜⎝
x̄1 − x̄0√
s2

x1 + s2
x0

⎞⎟⎟⎟⎠
, (5)

where a ΔAUC < 0 indicates that the model has less discriminatory power when w is used instead of x. Equations (4)
and (5) indicate that the expected impact of substituting x by w in prediction model development has the following con-
sequences. In case of random measurement error in w, it can be expected that the model fitted on w has a lower c-statistic
andΔAUC < 0. In case of systematic measurement error in w, the c-statistic is not affected beyond random measurement
error. Differential measurement error can affect model discrimination in both directions. For example, when observed
measurements w are systematically shifted further from x in cases, ie, when 𝜓1 > 𝜓0 and 𝜃1 = 𝜃0 = 1, and when the
difference in mean predictor values between cases and noncases in x is positive, ie, x̄1 > x̄0 and AUCx > 0.5, the mean
difference in predictor values between cases and noncases, w̄1 − w̄0, increases, enlarging the discriminatory power of the
model, ie, ΔAUC > 0. Additional random measurement error affects the c-statistic irrespective of whether the error is
differential or not.

3.2 Brier score
As a measure of overall predictive accuracy we evaluate the Brier score, which is a proper scoring rule that indicates the
distance between predicted and observed outcomes. The Brier score is calculated by23

BS(x) = 1
n

n∑
i=1

(𝑦i − �̂�(xi))2, (6)

where �̂�(xi) = (1 + exp(−(�̂�x + 𝛽xxi)))−1 and a lower Brier score indicates higher accuracy of predictions. Following
Blattenberger and Lad24 and Spiegelhalter,25 the Brier score can be decomposed into

BS(x) = 1
n

n∑
i=1

(𝑦i − �̂�(xi))(1 − 2�̂�(xi)) +
1
n

n∑
i=1

�̂�(xi)(1 − �̂�(xi)), (7)

resulting in a calibration component, (𝑦i−�̂�(xi))(1−2�̂�(xi)), and a refinement component, �̂�(xi)(1−�̂�(xi)). As Spiegelhalter
already noted,25 the calibration component has an expectation of 0 under the null hypothesis of perfect calibration, that is
𝔼0(Yi) = �̂�(xi), and the expected Brier score can be expressed by the refinement term in Equation (7), that is 𝔼0(BS(x)) =
1
n

∑n
i=1 �̂�(xi)(1 − �̂�(xi)). Consequently, the impact of within-sample measurement error on the Brier score of a maximum

likelihood model in the derivation set can be expressed as

𝔼0(ΔBS) = 1
n

n∑
i=1

�̂�(wi)(1 − �̂�(wi)) −
1
n

n∑
i=1

�̂�(xi)(1 − �̂�(xi)), (8)

where
�̂�(wi) =

1
1 + exp(−(�̂�w + 𝛽w(𝜓Y=𝑦 + xi𝜃Y=𝑦 + 𝜖Y=𝑦))

,

where a𝔼0(ΔBS) > 0 indicates that substituting x with w yields less accurate predictions. Realistically, however, a model is
hardly ever perfectly calibrated (see26 for an in-depth discussion of levels of calibration of prediction models). A maximum
likelihood estimate of a logistic regression model attains “weak calibration” in its derivation sample by definition, meaning
that no systematic overfitting or underfitting and/or overestimation or underestimation of risks occurs. In the remaining
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of this paper we use the term “calibration” instead of “weak calibration” and use the term “Brier score” to refer to the
decomposed empirical Brier score in Equation (7).

Expression (8) indicates that substituting x with w in a perfectly specified model has the following consequences. When
the association between w and outcome y is weaker than the association between x and y, a prediction model based on w
provides less extreme predicted probabilities. This results in a larger refinement term for w, ie, 1

n

∑n
i=1 �̂�(wi)(1 − �̂�(wi)) is

larger, and in a positive 𝔼0(ΔBS) and hence lower accuracy.

4 MEASUREMENT ERROR VERSUS MEASUREMENT HETEROGENEITY

The expressions of predictive performance under measurement error indicate that more erroneous predictor measure-
ments lead to less apparent discriminatory power and accuracy. However, these results cannot be generalized directly to
effects of measurement error on out-of-sample performance of prediction models. We use the measurement error model
taxonomy to explore how heterogeneity in measurement structures affects out-of-sample performance. Rather than dis-
tinguishing error-free and error-prone predictor measurements, the measurement error models now express deviations
from homogeneity of measurements across settings.

FIGURE 1 Measures of predictive performance under predictor measurement error and predictor measurement heterogeneity. The
data-generating mechanism corresponded perfectly to the estimated logistic regression model. The top rows show calibration plots of a
single-predictor model that is fitted using predictor measurement x and validated by re-estimating the model on the same data using w. The
bottom rows show situations where the same model is transported from derivation to validation setting, specifically, the model (D) is derived
using x and validated using w, (E) is derived and validated using w, and (F) is derived using w and validated using x. The calibration plots
show the calibration slope (black line) and predicted probability frequencies (bottom-histograms) for situations in which the predictor
measurement variance at validation equals 200% (A,D), 100% (B,E), or 50% (C,F) of the predictor measurement variance at derivation. The
val.prob function from the rms package was used to compute the simulation outcome measures and to generate the calibration plots,27

where we edited the legend format settings in the plot to improve readability. MV = measurement variance of the predictor measurement
used for model validation relative to the predictor measurement used for derivation
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FIGURE 2 Decomposed Brier score under predictor measurement error and predictor measurement heterogeneity. The data-generating
mechanism corresponded perfectly to the estimated logistic regression model. The plot displays the large sample properties of the components
of the Brier score (Equation 7) under increasing random predictor measurement variance at validation, corresponding to the random
measurement error model (Equation 2). The left panel shows the Brier score for a single-predictor logistic regression model that is fitted using
predictor measurement x and validated by re-estimating the model on the same data using w. The right panel shows transportation from w at
derivation to x at validation (up to %MV = 100) and transportation from x at derivation to w at validation (from %MV = 100 onwards). MV =
measurement variance of the predictor measurement used for model validation relative to the predictor measurement used for derivation

A direct comparison of effects of measurement error and effects of measurement heterogeneity on predictive perfor-
mance can be found in Figures 1 and 2, which illustrate large-sample (N= 1 000 000) properties of predictive performance
measures. Effects of measurement error are illustrated by comparing in-sample predictive performance measures of a
prediction model that is first estimated based on x and subsequently estimated based on w, where the latter contains
increasing measurement error. Effects of measurement heterogeneity are illustrated by comparing out-of-sample predic-
tive performance measures of a prediction model that is transported across settings with different predictor measurement
structures. We explored three settings: (i) x is available at derivation and w is available at validation, (ii) w is available at
both derivation and validation, and (iii) w is available at derivation and x is available at validation. In other words, this
section illustrates the impact of measurement error and measurement heterogeneity as an isolated factor by evaluating
the same population at both derivation and validation, and only varying the predictor measurement structures. For the
purpose of demonstration, we focus on random measurement error and -heterogeneity and provide further analyses in
the next section.

Additional to the c-statistic and Brier score, we evaluate calibration as a measure of predictive performance. In logistic
regression, calibration can be determined using a re-calibration model, where the observed outcomes in validation data,
yV, are regressed on a linear predictor (lp).28 This linear predictor is obtained by combining the regression coefficients
estimated from the derivation data, �̂�D and 𝛽D, with the predictor values in the validation data, xiV. The recalibration
model is defined as1:

logit(𝑦V ) = a + b × lp,

where lp = �̂�D + 𝛽DxiV and b represents the calibration slope. A calibration slope b = 1 indicates perfect calibration.
A calibration slope b < 1 indicates that predicted probabilities are too extreme compared to observed probabilities,1,26

which is often found in situations of “statistical overfitting.” A calibration slope b > 1 indicates that the provided pre-
dicted probabilities are too close to the outcome incidence, also referred to as “statistical underfitting”. Additional to the
calibration slope, we evaluated the difference between the average observed event rate and the mean predicted event rate
(ie, calibration-in-the-large, which can be computed as the intercept of the recalibration model while using an offset for
the linear predictor, ie, a|b = 1 ).1

In situations of within-sample measurement error, ie, in the re-estimated model, all calibration plots showed a cali-
bration slope equal to b = 1, indicating perfect apparent calibration (Figure 1A-C). The apparent c-statistic and Brier
score improved with decreasing random measurement error. In case of measurement heterogeneity across samples, ie,
in the transported model, similar changes in the c-statistic and Brier score were found. However, heterogeneous mea-
surements led to a calibration slope b ≠ 1, indicating that predictions were no longer valid (Figure 1D and 1F). When
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measurements at validation were less precise than at derivation, the calibration slope was b < 1, similar to statistical over-
fitting. When measurements at validation were more precise than at derivation, the calibration slope was b > 1, similar
to statistical underfitting. More elaborate illustrations of the impact of measurement heterogeneity in large sample sim-
ulations, including effects of systematic and differential measurement heterogeneity, can be found in the Supplementary
File 1.

Although the total Brier score did not differ substantially between the re-estimated and transported model, the exami-
nation of the large sample properties of the decomposed Brier score (Equation 7) indicated differences in the components
between the procedures (Figure 2). In the re-estimated model, the calibration term equaled zero, and the total Brier score
equaled the refinement term (Figure 2A). The Brier score increased with increasing random measurement error, indicat-
ing that accuracy decreased. In the transported model, changes in the refinement term were counterbalanced by changes
in the calibration term. For example, when measurements at validation were less precise than at derivation, the spread
in predicted probabilities increased (refinement term in Figure 2B decreased). A decrease in the refinement term under
perfect calibration would indicate that overall accuracy of the model is improving, as predicted probabilities are closer to
0 or 1. However, in the transported model this improvement was counterbalanced by a calibration term larger than zero,
which indicates that predicted probabilities were too extreme compared to observed probabilities (Figure 2B).

Figures 1 and 2 illustrate that miscalibration is not introduced by measurement error per se but rather by measurement
heterogeneity across settings of derivation and validation. The discrepancy in calibration between model re-estimation
and model transportation can be reduced to differences in the linear predictors of the recalibration models. In case of
model re-estimation, the linear predictor is expressed by

lpre−est = �̂�w(V) + 𝛽w(V)wiV , (9)

indicating that the parameters �̂�w(V) and 𝛽w(V) are estimated using the predictor values measured by strategy w in the
validation data. In the more realistic validation procedure in which the model is transported over different predictor
measurement procedures, the linear predictor is expressed by

lptransp = �̂�x(D) + 𝛽x(D)wiV , (10)

meaning that regression coefficients are estimated based on xiD and that the model is validated using wiV. This distinc-
tion in recalibration models sheds a different light on previous research into effects of measurement error on predictive
performance. Khudyakov and colleagues derived analytically that calibration in a derivation sample is not affected by mea-
surement error.21 Since their findings are based on the assumption that the linear predictor is defined as in Equation (9),
previous results on the impact of measurement error on predictive performance can be interpreted as effects on in-sample
predictive performance.21,29

5 PREDICTIVE PERFORMANCE UNDER MEASUREMENT
HETEROGENEITY ACROSS SETTINGS

General patterns of predictive performance under measurement heterogeneity were examined in a set of Monte
Carlo simulations in finite samples to evaluate their behavior under sampling variability. Simulations were performed
in R version 3.3.1,30 and our code is accessible online (see https://github.com/KLuijken/Prediction_Measurement_
Heterogeneity_Predictor). We studied the predictive performance of a single- and a two-predictor binary logistic regres-
sion model. For the latter, we evaluated situations in which both predictors were measured heterogeneously across settings
as well as situations in which one of the predictors was measured similar over settings. The data for the single-predictor
model were generated from

logit(Y ) = log(4)X ,

where X ∼  (0, 1).

The data for the two-predictor models were generated from

logit(Y ) = 𝜷TX ,

where X ∼ 

((0
0

)
,

(
1 𝜌X1X2

𝜌X1X2 1

))
.

https://github.com/KLuijken/Prediction_Measurement_Heterogeneity_Predictor
https://github.com/KLuijken/Prediction_Measurement_Heterogeneity_Predictor
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TABLE 2 Input parameters for finite sample
simulations. Full-factorial simulations for the
parameters 𝜓 , 𝜃 and 𝜎𝜖 resulted in 54 scenarios for
the single-predictor model, and 162 scenarios in
both the two-predictor model with and the model
without a predictor that was measured
homogeneously across settings. An additional 54
scenarios of differential measurement error in the
single-predictor model were evaluated, resulting in
a total of 432 scenarios

Factor Values

Derivation 𝜓D 0
𝜃D 1.0
𝜎𝜖(D) 0.5, 1.0, 2.0

Validation 𝜓V 0, 0.25
𝜃V 0.5, 1.0, 2.0
𝜎𝜖(V) 0.5, 1.0, 2.0

The correlation between predictors, 𝜌X1X2, varied with 0, 0.5 and 0.9. Both the 𝛽-parameters in the two-predictor models
have value 2.3 in case 𝜌X1X2 = 0 or 𝜌X1X2 = 0.5, and have value 2.1 in case 𝜌X1X2 = 0.9. We varied the values of the
regression coefficients in order to keep the c-statistic of the data-generating models at an approximate value of 0.80 and
hence to compare predictive performance over models.22 We recreated different measurement procedures of the pre-
dictors using different specifications of the general measurement error model (Equation 1). In the derivation sample,
measurements corresponded to the random measurement error model (Equation 2), while in validation various measure-
ment structures were recreated (see Table 2 for values of input parameters). All measurements contained at least some
erroneous measurement variance to generate realistic scenarios.

In total, 432 scenarios were evaluated. For each scenario, a derivation sample (n = 2000) and a validation sample
(n = 2000) were generated. We did not consider smaller sample sizes, since predictive performance measures are sensi-
tive to statistical overfitting, which would complicate the interpretation of effects of measurement heterogeneity.4,5 The
validation procedure was repeated 10 000 times for each simulation scenario. The number of events was around 1000 in
each dataset, which exceeds the minimal requirement for validation studies.26,31

Simulation outcome measures
The simulation outcome measures were the average c-statistic, calibration slope, calibration-in-the-large coefficient,
and Brier score. The c-statistic was computed using the somers2 function of the rms package.27 The calibration slope
was computed by regressing the observed outcome in the validation dataset on the linear predictor, as defined in
Equation (9). We evaluated calibration graphically by plotting loess calibration curves and overlaying the plots of all 10 000
resamplings.26,32 The calibration-in-the-large was computed as the intercept of the recalibration model, while using an
offset for the linear predictor.1 The empirical Brier score was computed using Equation (6). Additionally, we evaluated
in-sample predictive performance as a reference for effects on out-of-sample performance.

5.1 Simulation results
Identical measurement error structures at derivation and validation resulted in consistent predictive performance across
settings. All out-of-sample measures of predictive performance were affected by measurement heterogeneity. Effects on
predictive performance measures were largest in the single-predictor model (Table 3). The two-predictor model in which
one of the predictors was measured consistently over settings (Figure 3) outperformed the model in which none of the
predictors were measured consistently across settings (Figure 4). Inspection of calibration plots confirmed all patterns
of miscalibration discussed below (Supplementary File 2). By and large, the impact of correlation between predictors
on other parameters was minimal since the correlation structure was equal across compared settings, hence, we show
combined results in the figures.
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TABLE 3 Out-of-sample predictive performance measures under measurement heterogeneity in a single-predictor logistic regression
model. Mean c-statistic, median calibration slope, mean calibration-in-the-large, and mean Brier score (standard deviation) at external
validation of a single-predictor logistic regression model transported from a derivation set (n= 2000) where measurement procedures were
described by the random measurement error model (Equation 2) to validation sets (n= 2000) with various measurement structures under
Equation (1). Predictive performance measures were averaged over 10 000 repetitions. All calibration slopes in the derivation set were equal
to 1.0 (0.0) and are therefore not reported

Measurement Structure C-statistic Calibration Calibration-in- Brier Score
at Validation Derivation Validation Slope the-large (×10) Derivation Validation

𝜎2
𝜖(D) < 𝜎2

𝜖(V) 𝜓 = 0, 𝜃 = 0.5 0.745 (0.033) 0.590 (0.034) 0.247 (0.153) -0.002 (0.006) 0.204 (0.012) 0.281 (0.033)

𝜓 = 0, 𝜃 = 1.0 0.745 (0.033) 0.655 (0.045) 0.380 (0.180) 0.008 (0.014) 0.204 (0.012) 0.257 (0.031)
𝜓 = 0, 𝜃 = 2.0 0.745 (0.033) 0.726 (0.033) 0.428 (0.125) -0.009 (0.003) 0.204 (0.012) 0.232 (0.023)
𝜓 = 0.25, 𝜃 = 0.5 0.745 (0.033) 0.589 (0.034) 0.247 (0.153) -2.202 (0.643) 0.204 (0.012) 0.283 (0.032)
𝜓 = 0.25, 𝜃 = 1.0 0.745 (0.033) 0.655 (0.045) 0.380 (0.180) -2.210 (0.652) 0.204 (0.012) 0.258 (0.031)
𝜓 = 0.25, 𝜃 = 2.0 0.745 (0.033) 0.726 (0.033) 0.428 (0.125) -2.205 (0.651) 0.204 (0.012) 0.233 (0.023)

𝜎2
𝜖(D) = 𝜎2

𝜖(V) 𝜓 = 0, 𝜃 = 0.5 0.700 (0.068) 0.635 (0.069) 0.812 (0.291) 0.001 (0.006) 0.217 (0.020) 0.235 (0.015)

𝜓 = 0, 𝜃 = 1.0 0.700 (0.068) 0.700 (0.068) 1.000 (0.000) 0.001 (0.008) 0.217 (0.020) 0.218 (0.020)
𝜓 = 0, 𝜃 = 2.0 0.700 (0.068) 0.753 (0.042) 0.955 (0.377) -0.002 (0.013) 0.217 (0.020) 0.204 (0.014)
𝜓 = 0.25, 𝜃 = 0.5 0.700 (0.068) 0.635 (0.069) 0.811 (0.293) -1.529 (1.027) 0.217 (0.020) 0.237 (0.014)
𝜓 = 0.25, 𝜃 = 1.0 0.700 (0.068) 0.700 (0.068) 1.002 (0.002) -1.530 (1.033) 0.217 (0.020) 0.219 (0.019)
𝜓 = 0.25, 𝜃 = 2.0 0.700 (0.068) 0.753 (0.042) 0.955 (0.377) -1.526 (1.024) 0.217 (0.020) 0.205 (0.013)

𝜎2
𝜖(D) > 𝜎2

𝜖(V) 𝜓 = 0, 𝜃 = 0.5 0.655 (0.045) 0.681 (0.045) 3.147 (1.991) 0.003 (0.007) 0.230 (0.011) 0.234 (0.009)

𝜓 = 0, 𝜃 = 1.0 0.655 (0.045) 0.745 (0.034) 3.106 (1.563) 0.000 (0.006) 0.230 (0.011) 0.220 (0.014)
𝜓 = 0, 𝜃 = 2.0 0.655 (0.045) 0.781 (0.014) 2.160 (0.969) 0.005 (0.009) 0.230 (0.011) 0.203 (0.013)
𝜓 = 0.25, 𝜃 = 0.5 0.655 (0.045) 0.681 (0.045) 3.156 (2.001) -0.846 (0.528) 0.230 (0.011) 0.235 (0.008)
𝜓 = 0.25, 𝜃 = 1.0 0.655 (0.045) 0.745 (0.034) 3.102 (1.559) -0.846 (0.532) 0.230 (0.011) 0.221 (0.013)
𝜓 = 0.25, 𝜃 = 2.0 0.655 (0.045) 0.781 (0.014) 2.159 (0.967) -0.851 (0.535) 0.230 (0.011) 0.203 (0.013)

5.1.1 Random measurement heterogeneity
When measurements were less precise at validation compared to derivation, ie, when 𝜎2

𝜖(D) < 𝜎2
𝜖(V), the c-statistic decreased

and Brier score increased at validation. In the single-predictor model, the c-statistic decreased from 0.75 at derivation
to 0.59 − 0.73 at validation and the Brier score increased from 0.20 at derivation to 0.23 − 0.28 at validation (Table 3,
bottom rows). Furthermore, the median calibration slope at validation was smaller than 1, ranging from 0.25 − 0.43
in the single-predictor model. When measurements were more precise at validation compared to derivation, ie, when
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FIGURE 3 Measures of predictive performance under measurement heterogeneity in one of two predictors in finite sample simulations.
Mean c-statistic, median calibration slope, and mean Brier score averaged over 10 000 repetitions with interquartile range and 95%
confidence interval for a two-predictor model where one of the predictors is measured consistent across settings, whereas the other is
measured heterogeneously. Horizontal bars indicate performance measures at model derivation, while boxes indicate performance at
external validation. The predictor measurement structure in the derivation set (n = 2000) corresponds to the random measurement error
model (Equation 2). In the validation set (n = 2000), predictor measurements consist of varying structures under Equation (1)
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FIGURE 4 Measures of predictive performance under measurement heterogeneity in both predictors in finite sample simulations. Mean
c-statistic, median calibration slope, and mean Brier score averaged over 10 000 repetitions with interquartile range and 95% confidence
interval of a two-predictor logistic regression model in which both predictors are measured heterogeneously across settings. Horizontal bars
indicate performance measures at model derivation, while boxes indicate performance at external validation. Measurements in the derivation
set (n = 2000) are recreated using Equation (2), which corresponds to the random measurement error model. In the validation set (n = 2000),
measurements correspond to various measurement structures under Equation (1)

𝜎2
𝜖(D) > 𝜎2

𝜖(V), the c-statistic was increased, from 0.66 to 0.68 − 0.78 in the single-predictor model, and the Brier score was
decreased, changing from 0.23 to 0.20 − 0.24 in the single-predictor model. However, the improved c-statistic and Brier
score were accompanied by median calibration slopes greater than 1, ranging from 2.16 − 3.16 in the single-predictor
model (Table 3, top rows). Calibration-in-the-large was not affected by random measurement heterogeneity. Similar effects
on predictive performance were observed for the two-predictor models, which are presented graphically in Figures 3 and 4.

5.1.2 Systematic measurement heterogeneity
When measurements at external validation changed by a constant compared to derivation, ie, when 𝜓D = 0 and
𝜓V = 0.25, the risk on observing the outcome was systematically overestimated, which is reflected in the negative value
for calibration-in-the-large coefficient (Table 3). Changes in 𝜓 had little effect on the calibration slope and Brier score,
and no apparent effect on the c-statistic. Multiplicative systematic measurement heterogeneity, ie, 𝜃D ≠ 𝜃V, reinforced
or counterbalanced effects of random measurement heterogeneity in the direction of the systematic measurement het-
erogeneity. When the association between x and w was relatively weak at validation, eg, when 𝜃V = 0.5, predictive
performance deteriorated (black bars in Figures 3 and 4), whereas predictive performance improved when the association
between x and w was relatively strong, eg, when 𝜃V = 2.0 (gray bars in Figures 3 and 4).

5.1.3 Differential measurement heterogeneity
We highlight four specific scenarios in which the single-predictor model was derived under differential random mea-
surement error, ie, 𝜎2

𝜖1 ≠ 𝜎2
𝜖0, and validated using nondifferential measurements, and vice versa (Table 4). Differential

measurement led to miscalibration at external validation in all scenarios. The c-statistic and Brier score at validation

TABLE 4 Effects of differential measurement of predictors in events and nonevents in four scenarios. Mean
c-statistic, median calibration slope, and mean Brier score (standard deviation) averaged over 10 000 repetitions for a
single-predictor logistic regression model under four specific measurement error structures varying in the degree of
random measurement variance under the differential measurement error model (Equation 1). By default, 𝜎2

𝜖 is set to
1.0. When 𝜎2

𝜖1 = 0.5, measurements are more precise in cases. When 𝜎2
𝜖1 = 2.0, measurements are less precise in cases

C-statistic Calibration Brier Score
Differential Measurement Error at... Derivation Validation Slope Derivation Validation

Derivation 𝜎2
𝜖1 = 0.5 0.730 (0.011) 0.707 (0.012) 0.780 (0.071) 0.209 (0.004) 0.219 (0.004)

𝜎2
𝜖1 = 2.0 0.655 (0.012) 0.707 (0.012) 1.856 (0.208) 0.231 (0.003) 0.223 (0.002)

Validation 𝜎2
𝜖1 = 0.5 0.706 (0.012) 0.730 (0.011) 1.293 (0.120) 0.217 (0.003) 0.211 (0.003)

𝜎2
𝜖1 = 2.0 0.706 (0.012) 0.655 (0.012) 0.547 (0.061) 0.217 (0.004) 0.237 (0.005)
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slightly improved when cases were measured less precise at derivation or more precise at validation. For example, when
cases were measured less precise at derivation, ie, 𝜎2

𝜖1(D) > 𝜎2
𝜖0(D), the c-statistic increased from 0.66 to 0.71 at validation

and the Brier score decreased from 0.23 to 0.22. However, the median calibration slope at validation was 1.86.

6 DISCUSSION

Heterogeneity of predictor measurements across settings can have a substantial impact on the out-of-sample performance
of a prediction model. When predictor measurements are more precise at derivation compared to validation, model dis-
crimination and accuracy at validation deteriorate, and the provided predicted probabilities are too extreme, similar to
when a model is overfitted with respect to the derivation data. When predictor measurements are less precise at derivation
compared to validation, discrimination and accuracy at validation tend to improve, but the provided predicted proba-
bilities are too close to the outcome prevalence, similar to statistical underfitting. These key findings of our study are
summarized in Table 5. The current study emphasizes that a prediction model not only concerns the algorithm relat-
ing predictors to the outcome, but also depends on the procedures by which model input is measured, ie, qualitative
differences in data collection.

Measurement error is commonly thought not to affect the validity of prediction models, based on the general idea that
unbiased associations between predictor and outcome are no prerequisite in prediction studies.18 By taking the measure-
ment error perspective, our study revealed that prediction research requires consideration of variation in measurement
procedures across different settings of derivation and validation, rather than analyzing the amount of measurement error
within a study. A recent systematic review by Whittle and colleagues demonstrated that measurement error was not
acknowledged in many prediction studies, and pointed out the need to investigate consequences of measurement error in
prediction research.33 An important starting point for this research following from our study is that the generalizability
of prediction models depends on the transportability of measurement structures.

Specification of measurement heterogeneity can help to explain discrepancies in predictive performance between
derivation and validation setting in a pragmatic way. The relatedness between derivation and validation samples is gener-
ally quantified in terms of similarity in person-characteristics (also referred to as “case-mix”), and regression coefficients1.
Previously proposed measures to express sample relatedness are the mean and spread of the linear predictor7 or the corre-
lation structure of predictors in both samples.34 The information on sample relatedness can be incorporated in benchmark
values of predictive performance to assess model transportability.6 While regression coefficients and case-mix distribu-
tions clearly quantify sample relatedness, it is impossible to disentangle the sources of discrepancies from these statistical
measures. For example, a decrease of the regression coefficients or the spread of the linear predictor at external validation
could be due to differences across settings in either person-characteristics or the means by which these characteristics
were measured. Moreover, less precise predictor measurements affect both the regression coefficients and the spread of
the linear predictor, meaning that measurement heterogeneity can mask similarities and differences between the indi-
viduals in a derivation and validation sample. Knowledge of substantive differences between derivation and validation
setting can help researchers determining to which extent the prediction model is transportable.

In theory, measurement error correction procedures could be applied to adjust for measurement heterogeneity when
data on both X and W are available.16 Alternatively, the degree of measurement heterogeneity could be quantified using
the residual intraclass correlation (RICC), which expresses the clustering of measurements across physicians or centers.15

Yet, we expect that the applicability of these methods in correcting for measurement heterogeneity will be limited not only
due to the fact that individual patient data of both the derivation and validation set are required, but furthermore because
it is infeasible to disentangle measurement parameters from other characteristics of the data. The main contribution of
the taxonomy of measurement error models rises from its aptitude to conceptualize measurement heterogeneity across
settings in pragmatic terms.

The following implications for prediction studies follow from our work. Ideally, prediction models are derived from
predictor measurements that resemble measurement procedures in the intended setting of application. Data collection
protocols that reduce measurement error to a minimum do not necessarily benefit the performance of the model as the
precision of measurements will most likely not be obtained in validation (or application) settings. Deriving a prediction
model from these precise measurements could result in miscalibration similar to model overfitting and reduced discrim-
ination and accuracy at external validation. Furthermore, researchers should bear in mind the implications of using a
“readily available dataset” for model derivation or validation as data quality directly affects predictive performance of
the model. For instance, validating a model in a clinical trial dataset, in which measurements typically contain minimal
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measurement error, may increase measures of discrimination and accuracy, yet the model may provide predicted prob-
abilities too close to the event rate due to miscalibration. Another example is the promising use of large routine care
datasets for model validation.5,35,36 Predictor measurement procedures may vary greatly within such datasets or differ from
the procedures used to collect the data for the derivation study, which could increase the predictor measurement vari-
ance to a level that no longer resembles the amount of measurement variance within a clinical setting. Hence, rather than
analyzing data because they are available, prediction models should be derived from and validated on datasets collected
with measurement procedures that are in widespread use in the intended clinical setting. Finally, it is important to clearly
report which measurement procedures were used for derivation or validation of a prediction model. The influential TRI-
POD Statement has drawn attention to the importance of reporting measurement procedures.14 Our findings indicate that
descriptions of measurement procedures at model derivation are essential for proper external validation of the model.
Likewise, the validation studies ideally contain descriptions of deviations from measurements used at derivation, as these
may introduce discrepancies in predictive performance.

Our study redefines the importance of predictor measurements in the context of prediction research. We highlight
heterogeneity in predictor measurement procedures across settings as an important driver of unanticipated predictive per-
formance at external validation. Preventing measurement heterogeneity at the design phase of a prediction study, both in
development and validation studies, facilitates interpretation of predictive performance and benefits the transportability
of the prediction model.
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