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Abstract

Communication between and within cells is essential for multicellular life. While intracellular 

signal transduction pathways are often specified in molecular terms, the information content they 

transmit remains poorly defined. Here, we review research efforts to merge biological 

experimentation with concepts of communication that emerge from the engineering disciplines of 

signal processing and control theory. We discuss the challenges of performing experiments that 

quantify information transfer at the molecular level, and we highlight recent studies that have 

advanced toward a clearer definition of the information content carried by signaling molecules. 

Across these studies, we emphasize a theme of increasingly well-matched experimental and 

theoretical approaches to decode the data streams directing cellular behavior.

Introduction: Parallels between systems for information transfer

The study of cellular signal transduction –the transfer of non-genetic information within and 

between cells - has been a key interface point between experimental biology and systems 

biology. For biomedical researchers and experimental biologists, signal transduction 

pathways are of interest because of their central role in coordinating organismal 

development and physiological homeostasis. The etiology of most chronic human diseases 

can be traced to abnormal function of a regulatory network, such as mutations that alter 

signaling protein activity. For engineers and scientists trained in quantitative methods, these 

inter- and intra-cellular communication networks have characteristics that parallel well-

studied problems in communication, presenting an attractive challenge for the application of 

well-established theoretical tools with the hope of overcoming some of the limitations of 

purely experimental research. The relationship between these fields has been renewed and 

revisited many times over the past 30 years (1–3). The most important biological insights 

have emerged when experimental and quantitative tools are carefully and thoughtfully 

conjoined. In this essay we focus on a particular area of renewed collaboration, in which 

advances in the ability to detect signaling events with a high level of detail in individual cells 

have enabled connections to the engineering discipline of signal processing. Our discussion 

is intended as a guide to further reading, rather than a comprehensive review, with the goal 
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of drawing interest to emerging questions in this area that will likely be rewarding over the 

next few years.

In traditional signal transduction experiments, the significance of a biochemical event is 

often evaluated (sometimes subconsciously) by its apparent magnitude. For example, 

following a stimulus, a band on western blot representing the phosphorylation of a protein 

may be 10-fold more intense than the corresponding band from unstimulated cells. This 

increase may be judged more significant than one in which a 2-fold change is induced. 

However, such judgements are often made in the absence of knowledge of whether these 

differences have functional importance within the cells of interest. A 2-fold increase may be 

sufficient to saturate the process being studied, while a 10-fold increase evokes no further 

response. Conversely, both activity levels might fall below the threshold to induce a cellular 

response of interest. The true significance of the result (for the cell) depends on the strength 

of the signal relative to the responsiveness of the next step in the process. Establishing this 

quantitative relationship between signal and response is often challenging and leads to a 

great deal of ambiguity in both conceptual and formal models of signaling processes. In this 

essay, we explore both the experimental challenges inherent in addressing such questions 

within signaling pathways and the broader biological concepts that have emerged from 

research in this area.

The scenario described above is an example of a problem inherent in any multi-stage 

communication system, whether natural or human-engineered. Communication systems - 

including signaling pathways, neural networks, or electronic circuits - consist of multiple 

elements in sequence, each of which receives an input signal and produces an output signal 

(Fig. 1A). The basic function of each element, whether it be a kinase within a signaling 

cascade, a neuron within a neural pathway, or a transistor within a radio, is to produce an 

output signal that is variable and dependent on the input signal. The simplest types of 

element simply relay the input signal without changing it, while more complex elements can 

transform the input signal in a number of ways to create the output signal. In engineering, 

the relationship between the input and the output for each element is known as its “transfer 

function”. Importantly, transfer functions can be used to characterize the behavior of 

individual elements within a system (e.g., the response of a single protein kinase within a 

cascade; Fig. 1B) or larger sets of connected components (e.g. an entire kinase cascade; Fig. 

1C). This concept has played a central role in the development of electronic communication 

systems, from radio broadcasting to cellular telephones, and is also essential to our 

understanding of information processing in neural and sensory systems. Yet, the application 

of such ideas to intracellular signaling pathways has been limited, especially in mammalian 

systems.

A fundamental concept has emerged from these other communication-related fields that has 

strong implications for signal transduction pathways: for a pathway to transmit information - 

such as the concentration of an extracellular ligand - the transfer functions of every element 

in the pathway must be well aligned. If they are not, the ability of the system to act as a 

conduit for information is severely compromised (4). If elements are connected without 

attention to alignment, it is more likely than not that their input and output ranges will be 

mismatched, and the output of one element will either over- or under-stimulate the next 
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element, leading to either saturation of the downstream element or failure to stimulate a 

response. A simple illustration of such a situation can be obtained visually, by walking from 

a dark room into bright sunlight; the initial discomfort and visual difficulty of this 

experience results, in part, from saturation of the rhodopsin-coupled G-protein signaling 

pathway in the photoreceptor cells of the eye. Fortunately, the visual system has adaptive 

properties that quickly adjust the transfer function of the system, enabling more intense 

input signals to be effectively processed (5). Within both engineering and neurobiology, such 

adaptation is termed “gain control”. Mechanisms facilitating gain control have been well-

studied in neuronal and sensory systems (6), where they are essential for ensuring that the 

outputs and inputs of successive neurons are appropriately matched.

The application of concepts from the signal processing field (see Box 1), such as transfer 

functions and gain control, to intracellular signaling pathways has remained limited (7). 

Much of this conceptual gap can be attributed to a lack of appropriate experimental data 

with which to accurately measure transfer functions. To fully employ concepts from the 

signal processing field, the ideal data collection method would quantify specific signaling 

protein activities within individual cells to avoid artifacts from averaging across 

heterogeneous cells. It would also provide high temporal resolution, to determine when 

signaling reaches steady state or whether frequency-modulated responses occur, and would 

permit monitoring multiple molecular signals to allow for repeated stimulation of the same 

cell. While fully realizing this ideal remains difficult, studies based on live-cell imaging now 

enable many of these criteria to be achieved with reasonable effort. These experiments can 

be conducted with relatively inexpensive widefield epifluorescence microscopes, and 

detailed protocols for all stages of setup and analysis are available (8–10). When combined 

with appropriate quantitative methods, such studies have uncovered noteworthy 

characteristics that are common among mammalian signal transduction pathways (11). We 

focus on three topics in cellular communication that stand out with recent works bringing 

together theoretical and experimental aspects: dynamic range, signal processing, and 

information transfer.

Accurately measuring signaling events across their dynamic range

The challenge of quantifying the informational content of a signaling event is intimately 

linked to the problem of measuring that event within the cell. This connection is 

fundamental: in such experiments, the experimentalist is attempting to perform, in essence, 

the same task that the signaling pathway itself performs within the cell – that of 

distinguishing different levels of the input signal, with sufficient accuracy to control a 

cellular process (or to understand the regulation of that process, in the case of the 

researcher). Both the experimentalist and the signaling pathway face limits on the accuracy 

with which this signal can be quantified. These include: 1) measurement noise, 2) limits on 

sensitivity that determine the lower limit of input signal that is reliably detectable, and 3) 

saturation when the detection process reaches its maximum value at a sub-maximal input 

strength, preventing it from distinguishing further increases in the input. In any experiment, 

it must be remembered that the measurement process itself is an element with its own 

transfer function, and taking this transformation into account is essential for correctly 

interpreting the data.
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An instructive example of the relationship between cellular signals and measurements can be 

found in recent experiments in which two fluorescent protein-based reporters for the same 

kinase were monitored in the same cell (12, 13). One reporter, EKAR3, was a FRET-based 

construct, in which phosphorylation by the kinase ERK induces a conformational change 

leading to a shift in the emission properties of a CFP/YFP FRET pair. In the other reporter, 

ERK-TR, phosphorylation of the reporter by ERK disrupts a nuclear localization sequence 

fused to RFP, causing the fluorescent protein to be exported from the nucleus (Fig. 2A). 

Both reporters are reversible, respond rapidly to changes in ERK activity induced by 

upstream growth factors or pharmacological inhibitors, and typically show strong qualitative 

agreement in their responses (12). However, when reporter responses were compared on a 

cell-by-cell for different stimulus strengths, a clear differential relationship emerged: 

EKAR3 was capable of detecting smaller impulses of ERK, but reached saturation at lower 

levels than ERK-TR (Fig. 2B, C) (13). Because these measurements used different detection 

modalities but were made simultaneously within same cell, technical artifacts could be ruled 

out and the differences attributed to different dynamic ranges of response for the different 

reporters, providing a clear demonstration that such differences exist at the level of an 

individual cell.

From this result, it becomes clear that each of the reporter signals represents a different view 

of cellular ERK activity, as filtered through their respective transfer functions. Considering 

this difference a bit more deeply, it is noteworthy that while the reporters are synthetic 

proteins, they operate on principles similar to many endogenous kinase substrates, in which 

phosphorylation induces changes in conformation or cellular localization. Thus, it can be 

inferred that among the many natural protein substrates of ERK, there may be significant 

variation in the dynamic range of input to which they respond. Such differences have in fact 

been documented among endogenous substrates, and may function to create unique 

responses to different strengths of signals. One example of such ordering can be found in the 

substrates of cyclin dependent kinases, whose sensitivities to phosphorylation vary such that 

they respond in a staged manner to progressively higher CDK activity over the course of the 

cell cycle (14). Similarly, differences in promoter sensitivity underlie ordered responses to 

morphogen gradients (15), and may enable time-dependent protein synthesis such that large 

protein complexes can be assembled more efficiently (16). Thus, in considering carefully the 

transfer properties involved in accurately measuring even one signaling node, we not only 

learn about the quality and limitations of the data, but also gain insight into organizing 

principles for how cells process the information contained within the pathway’s activity.

Another transformation inherent in many experimental approaches is the averaging of a 

measured quantity across a large number of cells (17). Determining an average behavior is 

often an essential step in analysis and interpretation of data, even when data are collected 

with single-cell resolution. However, relying on averages alone can severely distort the 

apparent transfer function for a process. For example, individual cells within a population 

might display a 3-fold increase in signal intensity between their unstimulated and stimulated 

responses, but vary by 10-fold in the concentration of stimulus to which they respond (Fig. 

3). Population-average measurements of these cells would indicate that the overall response 

spans a more than 10-fold range, with an EC50 defined by the median individual response, 

while individual cell measurements would indicate only a 3-fold range. Thus, a population 
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measurement of dynamic range will in fact represent a convolution of the individual cell 

behaviors and the range of response sensitivities among cells, rather than the range of the 

response in any individual cell. Both quantities may contain important information for the 

system and may be useful in characterizing the response, but need to be distinguished if the 

ultimate goal is a quantitative model of typical cell behavior. Fitting a model to the 10-fold 

range of output would impose unrealistic constraints on the model and would likely lead to 

errors as other parts of the model are adjusted to accommodate this inaccuracy.

Signal processing by pathways: lessons from single-node measurements

Signaling events are now routinely measured with single-cell resolution. The most 

accessible approach is to use activity-specific antibodies or other fluorescent probes, to 

capture a “snapshot” measurement of the signaling activity status of many cells at a fixed 

point in time (18, 19). Because of the need to chemically fix cells, such datasets are limited 

in their time resolution, but they can nonetheless establish the distribution of responses 

possible for a given cell type. When coupled with information theory, a mathematical 

framework for quantifying the relationship between the stimulus and intracellular responses, 

such datasets can be used to estimate the ability of the pathway to resolve different strengths 

of input stimuli (20, 21). Such studies have revealed the variability inherent in signal 

processes, but are limited in their ability to quantify time-dependent responses, potentially 

failing to account for some information.

To capture information carried in the time domain, live-cell measurements with fluorescent 

protein-based reporters allow for the tracking of cells for minutes, hours, or days following a 

stimulus (22). A growing number of studies have revealed that many signaling pathways 

respond to a simple step-up stimulus with diverse kinetic outputs (23–25)(for a 

comprehensive review, see (11)). One way in which kinetics may carry information is 

termed “dose-to-duration” encoding, in which different input strengths induce transient 

pulses of response with varying durations (26). Downstream responses that integrate the 

amount of time that the responding signal remains active are thus not limited in their 

response by the range of amplitudes of the upstream signal. Another advantage of live-cell 

data is the ability to measure each cell in multiple states, such as pre- and post-stimulus. 

Such within-cell comparisons can be essential, because some pathways employ fold-change 

detection in which the response is proportional to the relative change, as opposed to the 

absolute magnitude of the input signal (27, 28).

Live cell measurements also allow for a more sophisticated form of analysis, in which 

complex time-dependent input signals are used as stimuli, and measurements are recorded at 

a downstream node (29). Stimulus patterns can be generated using microfluidics to make 

rapid changes in extracellular ligand concentration (30, 31), or optogenetic tools such as 

engineered light responsive signaling elements (32). This approach comes much closer to 

methods used to characterize transfer functions in electronic circuits, because it allows the 

experimenter to determine the response to both the magnitude and the frequency of the 

stimulus. Moreover, the same cell can be repeatedly interrogated, avoiding the assumptions 

inherent in combining data from different cells’ responses.
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One insight that is consistent among all of these studies is that signaling pathways operating 

in individual cells have fairly limited dynamic ranges. Moreover, cells within a population 

often diverge substantially in their threshold of response to a stimulus (13, 33–35). Thus, the 

situation depicted in Figure 3 is relatively common and has implications for many 

commonly held models of cellular functions. Perhaps most strikingly, it means that any 

individual cell cannot mount reliably distinct responses to more than a small range of input 

concentration. While studies examining this issue have debated different approaches to 

quantifying the output function, collectively they suggest that the upper limit of the “channel 

capacity” for many mammalian signaling pathways is approximately 2 bits. This means that 

the output magnitude of a stimulated pathway, at any given time, can distinguish up to about 

four different concentrations of stimulus.

A solution to this seemingly limited view of cellular information processing, is that, because 

of the high degree of variability between cells, “decision making” functions may instead be 

performed at the population level rather than at the single-cell level. For example, at a sub-

saturating dose of a ligand, only a subset of cells will respond due to the heterogeneity in 

responsiveness. Further increases in ligand concentration will push a number of the non-

responders over their activation threshold, leading to a response to both ligands that is easily 

distinguished from activation by a single ligand. Such population-level information 

processing is supported by theoretical models, which point out that such heterogeneity may 

be essential when regulating inherently binary responses such as cell death (36). For 

example, if all cells shared the same sensitivity to a death-inducing ligand like TNF, the only 

regulatory possibilities would be to either retain or eliminate the entire population. With a 

broadly distributed range of sensitivities, it becomes possible to reduce the population by a 

desired fraction depending on the dose of the ligand. Thus, broad distributions of signal 

pathway responsiveness can provide an organism with a higher degree of control over the 

behavior of a tissue (36, 37).

An elegant experimental example of such population-level control can be found in the 

Drosophila embryo. Nuclei respond to the morhphogen Bicoid – which is distributed in an 

anterior-posterior gradient - by activating certain genes wherever the Bicoid concentration 

exceeds a certain level. This response has a high degree of precision, enabling each nucleus 

to determine unambiguously whether it lies on the anterior or posterior side of the boundary 

(38). Detailed studies of the kinetics of this process in individual nuclei reveal that their 

individual ranges of response are too small to explain the full dynamic range. Instead, the 

organism-level response depends on the fact that each nucleus is probabilistic in its capacity 

to respond and thus is independent from the strength or duration of response (39). Because 

the mRNAs produced by each nuclei are exported and shared within the local area of the 

syncytium, the collective mRNA production in each region averages the local nuclei, such 

that the stochastic nature of induction enhances the overall dynamic range.

Stepwise transfer of information in signaling pathways

Population-level information processing is a reasonable strategy for functions that are 

collective properties of multiple cells, such as the total amount of a molecule synthesized, or 

the fraction of cells taking on a given fate. However, other cellular functions appear to 
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demand careful cell-autonomous regulation (36). For example, maintenance of cellular ATP 

levels is essential for cell viability, and deviations from the normative concentration must be 

quickly and accurately corrected to prevent cell death. This need for accuracy implies that 

some regulatory functions may require tighter regulatory control than has been measured for 

signaling pathways thus far. Accordingly, cells have developed strategies for gain control, 

also termed Dose Response Alignment (or DoRA) to reduce the tendency toward 

mismatches in the dynamic range in signaling cascades. Despite the fact that it is relatively 

difficult to ensure that the quantitative parameters of a pathway maintain DoRA, such 

regulation appears to be pervasive across many systems, implying that DoRA is a trait 

selected for in the evolution of regulatory systems (4).

A key component for DoRA is negative feedback from a lower tier of the cascade to a higher 

tier. The capacity of negative feedback to shift multi-tiered responses toward alignment is 

well-known from many human-designed systems in which it is used to linearize the system 

response (4). Such a strategy has also been confirmed to operate and produce DoRA within 

the yeast MAPK cascade, and may potentially explain other instances of DoRA (40). 

Importantly, however, negative feedback alone is insufficient to produce DoRA; also 

required is a mechanism for comparing the input to the output and adjusting the output to 

match the input (41). Such a mechanism is analogous to “proportional control” in 

engineered systems, where the strength of feedback is adjusted to be proportional to the 

difference between output and input. Further exploration of the mechanisms for DoRA in 

biochemical networks is ongoing, and differences in the results of theoretical studies to date 

underscore the complexity of this problem (41, 42), which remains surprisingly understudied 

despite its fundamental importance to intracellular signaling functions.

Ultimately, to measure the transfer function of a signaling process as it occurs in the cell, the 

researcher must make accurate measurements of both the input and output signal in such a 

way that the dynamic range of each measurement matches or exceeds the range of the input 

and output values as they occur in the cell. Given the caveats of population measurements 

relative to single-cell ones (discussed above), such measurements would best be made using 

time-lapse single-cell techniques. However, despite advances in live-cell signaling reporters 

(43), there remain few cases in which multiple reporters are available for sequential steps 

within a pathway. One area where such sequential measurements are both achievable and of 

high interest is in understanding information transfer from signaling pathways to their target 

genes. Studies using the yeast transcription factor Msn2, have pioneered concepts in this 

area (24, 44). Msn2 responds to multiple stresses, including glucose limitation, high salt, and 

oxidative stress, raising the question of how subsets of genes specific to each stress are 

activated by the same transcription factor. Live-cell measurements have made it possible to 

link the dynamics of Msn2 localization, which varies according to the initiating stress, to the 

expression of different Msn2 client genes. This work has revealed that different dynamic 

patterns and magnitudes of Msn2, when coupled to differential response parameters for 

target gene promoters, can encode specific gene expression profiles. In mammalian cells, 

similar concepts have begun to be explored in the p53 and Ras/MAPK systems (13, 45, 46), 

where gene expression profiles are more complex.
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Echoing the theme of the single-node measurements discussed above, from these studies it is 

clear that there is a high degree of cell-to-cell variability that limits the amount of 

information that can be transmitted by any one pathway. What remains to be determined is 

whether this variability results primarily from stochastic events, or whether it reflects 

differences in the activity of pathways not measured. Ultimately, answering this question 

will be of great importance in interpreting genome-wide single-cell expression profiling, 

which are now possible.

Conclusion

For many, the ultimate goal of signal transduction research is to understand the cellular 

communication systems that regulate human physiology, in sufficient detail to know which 

components are required for healthy functioning, and to identify means to restore function 

when these systems break down. For much of its history, work in this field has focused on 

enumeration of the proteins, small molecules, and nucleic acids involved in these processes 

and elucidation of their interactions. It has been noted many times that while this cataloging 

is an essential first step, models that capture systems-level behavior will be needed to 

integrate this knowledge. While a wave of “systems biology” research over the past 15 years 

has endeavored to build such models, it remains unclear to many whether this goal has been 

achieved, given the failure of broadly useful and predictive quantitative models to emerge. If 

this goal has not yet been achieved, is it because we still lack key molecular details, or 

because we have yet to develop the correct modeling approaches? It can be argued that, 

while both are likely to be true, there is an important third obstacle: many of the experiments 

reported thus far have failed to quantify the key operational properties of signaling networks 

that enable predictive modeling (7, 47). Many of the studies discussed here have appreciated 

this gap and have contributed to an emerging conceptual framework that stresses the 

importance of these properties, while others have developed new tools aimed at making such 

measurements accessible. With these technologies now in place, we anticipate that the next 

few years will yield substantial insights into the properties of signal transduction pathways 

that enable them to transmit information, an appreciation of the limitations on reliability, and 

ultimately quantitative models of how cell fates and identities are specified through signaling 

pathways.
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Box 1

Planning a multidisciplinary signal transduction study

For experimental biologists, incorporating quantitative methods from other fields into 

their area of study can seem intimidating. However, what is frequently perceived as the 

main obstacle – an inherent difficulty in mathematical approaches – is more often in 

reality a lack of familiarity with the existence and capabilities of quantitative methods. 

Thus, a collaborator broadly experienced in quantitative analysis is often an essential 

resource. Of course, the most important ingredient in any successful collaboration is a 

shared interest in the topic of study. But a second main question is where to look for such 

a collaborator, and what areas of expertise are most germane for a potential project. We 

provide a short summary below of quantitative approaches that integrate well with 

modern signal transduction studies. On a university campus, individuals skilled in these 

areas can be found in a wide range of departments, including the usual suspects of 

systems biology, statistics, physics, and various engineering fields. However, there are 

now many similarly trained researchers in less obvious disciplines, including plant 

biology, epidemiology, and sociology – especially as these fields incorporate larger 

datasets and quantitative methods.

Dynamical systems.

Methods to simulate how systems evolve over time, using differential equations or similar 

types of models to represent the changes in interlinked parameters. Important for the 

majority of modeling studies in signal transduction.

Commonly used in:

Most engineering disciplines, systems biology, economics, ecology.

Biological example:

Will the activity of a kinase cascade remain elevated following stimulation, return to 

baseline levels, or oscillate? (48)

System identification.

Methods to determine which model best represents the relationship between measured 

variables. Important for characterizing the transfer functions between signaling molecules 

and pathways. Many applications include machine learning techniques.

Commonly used in:

Electrical, mechanical, and aeronautical engineering, systems biology, computer science 

and bioinformatics.

Biological example:

Can a mathematical model accurately predict which genes are activated under a given 

stimulus? (49)

Control theory.
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Methods to predict the behavior of systems with feedback loops, and to control devices 

using feedback (for example, thermostats). Important for systems with heavy or complex 

regulation, and for designing strategies to modulate systems (e.g. therapeutics).

Commonly used in:

Electrical, mechanical, and aeronautical engineering.

Biological example:

How does the cell maintain constant levels of metabolites such as ATP? (50).

Information theory.

Methods to quantify information – how much a given measurement tells you about a 

system. Important for assessing the reliability of a signaling system, especially in the 

presence of confounding noise.

Commonly used in:

Electrical engineering, communications, applied physics.

Biological example:

How different must two concentrations of ligand be for a signaling pathway to distinguish 

between them? (20)
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Summary Points

• Concepts used to engineer communication systems can augment cell 

signaling studies.

• The dynamic range of signaling processes is an essential factor determining 

how they transfer information about stimuli.

• Single cells are often limited in their information processing capacity, but 

variability between cells can improve signal discrimination at the tissue level.

• Operational properties of signaling pathways are essential parameters for 

predictive models.
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Figure 1. 
Alignment of transfer functions in signal transduction cascades. A. Hypothetical signaling 

cascade function. Many known signaling pathways share a similar structure, in which 

proteins A,B, and C exist in both inactive (X,Y,and Z) and active states (X*,Y*, and Z*). For 

each step, the “input” is the concentration of the active upstream stimulating molecule, and 

the “output” is the steady-state concentration of active molecules produced. B. Curves 

relating the input to the output for two of the stages shown in A. For each signaling step, 

these curves indicate the concentration of active output molecules as a function of the input. 

If a change in concentration of active X occurs (red arrows in A and B), the concentration of 

active Y changes accordingly (yellow oval in A and yellow arrows in B). This change in 

active Y becomes the input to the next step (green arrows in A and B), resulting in a change 

in active Z (blue ovals in A and blue arrows in B). Note that if the Y*→Z* transfer function 

were misaligned (gray dotted line), the induced change in Z* would be much smaller (gray 

circles), reducing the ability of the pathway to transmit changes in the activity of X. C. A 

potential transfer curve for the overall cascade, relating the stimulus strength to the final 

output of the pathway, Z*. The shape of this curve depends on the alignment of the curves 

for the individual steps as shown in (B).
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Figure 2. 
Parallel signaling processes with differing transfer parameters. A. Experimental setup for 

measuring two synthetic ERK substrates. EKAR is a FRET-based reporter that undergoes a 

conformational change upon phosphorylation by ERK, leading to changes in fluorescence 

emission characteristics, while ERKTR is a translocation-based reporter that shifts its 

predominant localization from the nucleus to the cytosol upon phosphorylation by ERK. B. 

Measurements of ERK activity pulses in a single cell expressing both EKAR and ERKTR. 

C. Scatter plot of peak heights as measured by both EKAR and ERKTR. Data are re-printed 

with permission from (13).

Albeck et al. Page 16

Essays Biochem. Author manuscript; available in PMC 2019 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Relationship between single-cell and population-level responses. A hypothetical population 

of cells is depicted, which vary in their responsiveness to ligand (colored curves). The bold 

curve represents the aggregate response for a population of cells with a distribution of 

individual response curves. At increasing concentrations of ligand, an increasing number of 

cells (top, gray) are progressively recruited to the response.
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