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Abstract

Transcriptome-wide association studies using predicted expression have identified thousands of 

genes whose locally regulated expression is associated with complex traits and diseases. In this 

work, we show that linkage disequilibrium induces significant gene-trait associations at non-causal 

genes as a function of the expression quantitative trait loci weights used in expression prediction. 

We introduce a probabilistic framework that models correlation among transcriptome-wide 

association study signals to assign a probability for every gene in the risk region to explain the 

observed association signal. Importantly, our approach remains accurate when expression data for 

causal genes are not available in the causal tissue by leveraging expression prediction from other 

tissues. Our approach yields credible sets of genes containing the causal gene at a nominal 
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confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We 

illustrate our approach by using an integrative analysis of lipid traits, where our approach 

prioritizes genes with strong evidence for causality.

Transcriptome-wide association studies (TWASs) using predicted expression levels have 

been proposed as an approach to identify novel genomic risk regions and putative risk genes 

involved in complex traits and diseases1–3. Since TWAS based on predicted expression relies 

on only the genetic component of expression, it can be viewed as a test for non-zero local 

genetic correlation between expression and trait1,4,5. Significant genetic correlation in this 

setting is often interpreted as an estimate of the effect of SNPs on a trait mediated by the 

gene of interest. However, this interpretation requires very strong assumptions that are 

probably violated in empirical data due to linkage disequilibrium (LD) and/or pleiotropic 

SNP effects1–3,6–11. Therefore, TWAS has been mostly utilized as a test of association, in 

contrast to methods that attempt to directly estimate the mediated effect (that is, Mendelian 

randomization3,6–9).

In this work, we show that the gene–trait association statistics from TWAS at a known risk 

region are correlated as a function of LD among SNPs and expression quantitative trait loci 

(eQTL) weights used in the prediction models. The effect is similar to LD tagging in 

genome-wide association studies (GWASs) where LD within a region induces associations 

at tag SNPs (yielding the traditional Manhattan-style plots). Even in the simplest case where 

a single SNP causally impacts the expression of a gene, which in turn causally impacts a 

trait, LD among SNPs used in the eQTL prediction models induces significant gene-trait 

associations at nearby non-causal genes in the region. The tagging effect is further 

exacerbated in the presence of multiple causal SNPs and genes. As an illustrative example, 

consider a risk region with six genes where a single SNP is causal for a single gene which 

impacts the trait (Fig. 1). Although genes 3 and 4 in Fig. 1 have non-overlapping prediction 

weights due to different eQTL genetic regulation, LD among SNPs with non-zero prediction 

weights induces correlations in the TWAS statistics at genes 3 and 4. Estimating the 

correlation structure of predicted expression among nearby genes enables statistical fine-

mapping over gene–trait associations. However, several confounding factors can bias 

inference. First, there is a body of evidence supporting horizontal pleiotropic effects from 

SNPs8,11,12, which bias gene–trait association statistics. Second, it is critical that TWAS 

fine-mapping approaches maintain robustness when the causal mechanism is not steady-state 

levels of gene expression10. Fine-mapping in these instances without controlling for 

confounding could prioritize non-causal genes.

Here, we propose an approach to perform statistical fine-mapping over the gene–trait 

association signals from TWAS. Our approach, FOCUS (fine-mapping of causal gene sets), 

accounts for the correlation structure induced by LD and prediction weights used in the 

TWAS and controls for certain pleiotropic effects. FOCUS takes as input GWAS summary 

data, expression prediction weights (as estimated from eQTL reference panels), and LD 

among all SNPs in the risk region, and estimates the probability for any given set of genes to 

explain the TWAS signal. We extend probabilistic SNP fine-mapping approaches13–15 to 

estimate sets of genes that contain the causal genes (defined here as a gene responsible for 
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the association signal) at a predefined confidence level (that is, ρ-credible gene sets). We 

perform extensive simulations and show that FOCUS is approximately unbiased in 

estimating the posterior probabilities and credible sets at a specified certainty when the 

causal gene is present in the data. When the causal tissue is unavailable and alternative 

tissues with correlated expression levels are used as a proxy, FOCUS maintains its 

performance under standard assumptions. Finally, as a demonstration using real GWAS data, 

we apply FOCUS to four GWASs of lipid levels16. We find that FOCUS prioritizes genes 

with established roles in low-density lipoprotein (LDL) risk (for example, SORT1)17.

Results

Methods overview.

To disentangle the causal and tagging gene–trait associations at a TWAS-significant region, 

we analytically derive the covariance structure among TWAS statistics as a function of LD 

and eQTL weights used in prediction. Next, we model the entire vector of marginal TWAS 

association statistics (ztwas) at all genes in a region (TWAS significant and not-significant), 

using a multivariate Gaussian distribution parameterized by the effect sizes at causal genes 

(λpe), residual SNP effects (λsnp), and the correlation structure induced by inferred 

expression weights (Ω) with LD (V) as

Z twas λsnp , λ pe , Ω, V N ΩTV λsnp + ΩTVΩ λpe , ΩTVΩ

(see Methods). We control for bias resulting from pleiotropic effects of SNPs by including 

an intercept term that quantifies the average SNP effect sizes (λsnp) tagged by predicted 

expression ΩTV λsnp; see Methods). To allow for genes without prediction models in the 

relevant tissue (due to quality control and/or low power in eQTL studies), we leverage recent 

work demonstrating that eQTLs are largely shared across tissues18 and include prediction 

models from proxy tissues for such genes (see Methods). We employ a standard Bayesian 

approach to compute the marginal posterior inclusion probability (PIP) for each gene in the 

region to be causal given the observed TWAS statistics. To avoid overfitting, we integrate 

out the unknown causal effects λpe using a multivariate Gaussian prior (see Methods). We 

use PIPs to compute ρ-credible gene set that contain the causal gene with probability ρ (refs. 
13–15). To account for missing causal mechanisms, due to either unpredicted expression or 

other latent functional mechanisms, we include the null model as a possible outcome in the 

credible set, which acts as a regularization for posterior estimates at observed genes (see 

Methods). Lastly, we use a simulation-based procedure to compute posterior predictive 

checks19 that measure the FOCUS model’s goodness-of-fit given observed TWAS Z-scores.

FOCUS yields accurate credible sets in simulations.

To characterize the predicted expression correlation structure and to validate our framework, 

we used extensive simulations starting from real genotype data to generate expression 

reference panels and GWAS summary data (Fig. 2; see Methods). We confirmed that non-

causal genes in risk regions show significant association with trait as a function of LD and 

eQTL weights (see Supplementary Fig. 1), which motivates TWAS fine-mapping to 
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prioritize genes causally impacting trait10. We simulated complex traits under a variety of 

architectures to assess the performance of 90%-credible gene sets computed using FOCUS 

(Fig. 3; see Methods). When the causal gene was assayed in its relevant tissue, we found that 

90%-credible gene sets contained 83% (s.d. 0.04) of causal genes across simulations on 

average (Fig. 3 and Supplementary Fig. 2). FOCUS models an intercept term to control for 

pleiotropic SNP effects (λsnp) tagged through predicted expression. In simulations where 

SNPs directly impacted downstream trait, we found a small decrease in performance (Fig. 3; 

see Methods), which suggests that FOCUS maintains performance despite regressing out the 

average local effect. Next, we varied sample size across GWAS and reference eQTL data 

sets. Intuitively, we found improved performance for FOCUS to detect causal genes as 

sample size increased (Fig. 3 and Supplementary Fig. 3). Sample size for the eQTL 

reference panel affected performance to a larger degree than GWAS sample size, consistent 

with earlier reports1. For example, at NeQTL = 100, we found that 90%-credible gene sets 

contained the causal gene in 76% of simulations, which is significantly lower when 

compared with 84% for NeQTL = 500 (Mann–Whitney U-test P=2.52 × 10–6). Next, we 

explored how underlying heritability of expression at causal genes impacts prioritization. 

Heritability defines the prediction upper bound for SNP-based approaches20,21, and we 

expect performance to improve as non-zero heritability is easier to detect. We confirmed that 

performance increased with heritability of causal gene expression (Fig. 3). For example, we 

simulated gene expression having heritability hg
2 = 0.01 and inferred eQTL weights using 

NeQTL = 500 and found a significant decrease in performance when compared with hg
2 = 0.2

(Mann–Whitney U-test P = 1.1 × 10–5). We investigated the role of the prior effect-size 

distribution for gene expression4,22 and found performance to remain stable for a wide range 

of values (Supplementary Figs. 4 and 5). Lastly, similar results were obtained when using 

sparse regression to predict gene expression (Supplementary Fig. 6) and when using an 

alternative FOCUS model to account for variation across pleiotropic effects (Supplementary 

Note and Supplementary Fig. 7).

FOCUS remains stable when using proxy tissues.

Next, we investigated the performance of FOCUS when the causal gene in the relevant tissue 

is missing but is measured in a different tissue (see Methods). In real data, a gene may act 

through a tissue that is difficult to assay in large sample sizes but may have similar cis-

regulatory patterns in tissues that are easier to collect (for example, blood). Indeed, several 

studies1,4,18,23 established that cis-regulated gene expression levels exhibit high genetic 

correlation across tissues and functional architectures. The intuition in this approach is that 

the loss in power from using the correlated tissue is offset by the gain in power due to larger 

eQTL sample size. Here, we consider a causal gene to be successfully fine-mapped if its 

corresponding proxy tissue model is in the 90%-credible gene set. When sample sizes for 

eQTL in the relevant and proxy tissues were the same, but heritability in proxy tissue was 

lower than in the relevant tissue, we found a significant loss in accuracy. We found that 90%-

credible sets captured the causal gene in 75% (s.d. 0.09) of simulations compared with 83% 

(s.d. 0.04) when averaging over values of ρg (Mann–Whitney U-test P = 8.7 × 10–5; Fig. 3). 

This effect was not observed when heritability of proxy tissue gene expression was at least 

that of expression in the relevant tissue (Mann–Whitney U-test P = 0.27). For example, when 
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expression in the relevant tissue was hg
2 = 0.2 but hg

2 = 0.01 in the proxy, we found that 90%-

credible gene sets contained the causal gene in significantly fewer simulations (64% versus 

83%; Mann–Whitney U-test P = 8.6 × 10–7). This suggests that when causal eQTLs are 

shared across tissues, increased heritability of expression increases power to detect the 

causal gene. In our simulations we found correlation of effect sizes at shared eQTLs to play 

no major role in performance when heritability of expression in the relevant and proxy tissue 

was similar (hg
2 = 0.2; Fig. 3 and Supplementary Fig. 8). In the case of zero correlation 

between effect sizes at the same eQTL SNPs, this result can be interpreted as pleiotropic 

effects on independent molecular traits, which are known to be difficult to differentiate from 

a causal effect1,3,8. However, we note that this result could be impacted by the simulation 

setup that enforces 1–2 eQTL SNPs as causal across tissues. Collectively, these results 

demonstrate that FOCUS is relatively robust to model perturbations and performs well when 

underlying tissue-specific causal genes are represented by proxy tissue eQTL weights.

FOCUS is robust to confounding.

We have shown that TWAS statistics are correlated due to LD between eQTL SNPs, 

implying that when predicted expression for the causal gene is not included in the inference, 

nearby genes will probably be prioritized in fine-mapping. FOCUS controls for this scenario 

by explicitly modeling the null (that is, causal configuration c = 0; see Methods) as a 

possible explanation when computing credible gene sets. We tested the performance of 

FOCUS in standard-null simulations, when there is no relationship between expression and 

trait, and found that the null model was contained in the 90%-credible gene set in 2,495 of 

2,500 of our simulations. On average, 90%-credible sets contained 3.4 models (including the 

null) and 2.4 when restricted to genes only. In 298 of 2,500 simulations, the null model was 

the only model defining the 90%-credible gene set. For the remaining 2,202 of 2,500 

credible gene sets, the average posterior probability for the null model was considerably 

greater than for neighboring gene models found in credible gene sets (average posterior 0.75 

versus 0.075; P < 2 × 10–16). Together, these results indicate that FOCUS is accurate when 

no relationship between gene expression and trait exists. We next performed experiments 

using simulations where causal gene expression impacts the downstream trait but has been 

masked from the data before testing. We found the null model in 69% (s.d. 0.07) of 90%-

credible gene sets (Fig. 4), which was a significantly greater percentage compared with 

simulations where the causal gene was present (41%, s.d. 0.05; Mann–Whitney Latest P 
=4.2 × 10–4). Altogether, we find that FOCUS is robust in the challenging setting of 

prioritizing the null model when causal expression is missing.

Next, we investigated simulations in which there is no mediated effect of steady-state gene 

expression on downstream trait, but eQTLs for genes have pleiotropic effects on downstream 

trait (that is, pleiotropic eQTLs). Here, we measured performance by counting how often the 

null model was prioritized over corresponding regional genes for each risk region in the 

pleiotropy simulations. Overall, we found that the null model was the top-ranked model for 

251 of 500 regions (Fishers exact P < 2.2 × 10–16). Similarly, the 90%-credible gene sets 

within pleiotropic eQTL simulations were enriched with null model capture (328 of 500 

sets; Fisher’s exact P < 2.2 × 10–16). We next compared performance across simulation 
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types. We focused on credible sets that contained the null model and computed the average 

posterior probability in pleiotropic eQTL simulations and standard simulations. The credible 

gene sets contained the null model in a larger fraction of regions compared with those from 

standard simulations (Fig. 4). Similarly, focusing on the null models captured in credible 

sets, pleiotropic eQTL simulations resulted in more posterior density being assigned to the 

null model compared with those from standard simulations (Mann–Whitney U-test P = 
0.04). Together, these results imply that FOCUS prioritizes the null model in the majority of 

simulated scenarios where SNPs exhibit a horizontal pleiotropic effect. Lastly, we performed 

simulations in which a non-causal gene shares the same regulatory eQTL as the causal gene. 

We found computed PIPs to be similar between the causal and non-causal in this eQTL 

scenario, reflecting the challenge in discerning causality when regulatory variants are shared 

across genes (Supplementary Fig. 9).

FOCUS improves resolution for fine-mapping causal genes.

Having established that causal genes are contained in the credible set, next we quantified the 

average number of genes captured. We found that 90%-credible gene sets contained 4.4 

genes on average (s.d. 1.3) in the relevant-tissue simulations, which resulted in an average 

54% of predicted genes per risk region. We found a similar number of genes in 90%-credible 

gene sets across simulations when varying model parameters and sample sizes 

(Supplementary Figs. 10–15). For completeness, we prioritized genes in simulations using 

90%-credible gene sets for direct comparison with TWAS P values and the posterior 

probability of colocalization (COLOC PP4 (ref. 24)). In detail, we simulated a complex trait 

where multiple genes in a region are causal and each gene has multiple eQTLs (see 

Methods).

We then selected genes in two ways. First, we selected the same number of genes using 

either P value or PP4 ranking as the 90%-credible gene set (listed as ‘matched’). Second, we 

selected genes using standard thresholds for COLOC (PP4 ≥ 0.8) and TWAS P value (P < 

0.05/15,277). We found that prioritizing genes by using credible sets outperformed both 

alternatives (Fig. 5 and Supplementary Table 1). For example, FOCUS captured 89% (s.d. 

0.01) of simulated causal genes on average compared with 84% (s.d. 0.02) and 77% (s.d. 

0.06) for P value and PP4 ranking when matching for size. FOCUS performance was similar 

with respect to TWAS and COLOC when eQTLs were shared across genes, having captured 

82% (s.d. 0.07) of causal genes compared with 79% (s.d. 0.06) for TWAS-matched and 71% 

(s.d. 0.02) for COLOC-matched (Fig. 5). Relative performance for FOCUS improved when 

comparing with non-size-matched methods (Fig. 5). Similarly, using relaxed thresholds to 

determine colocalization (PP4) showed comparable results (Supplementary Table 1). 

Overall, we find that FOCUS has greater sensitivity to identify causal genes across realistic 

simulations.

Application to lipid GWAS.

Next, we re-analyzed a large-scale GWAS of lipid measurements16 with eQTL weights from 

adipose tissue. We assumed that the relevant tissue for expression driving lipids is adipose 

tissue, given its well-characterized role25–28. To account for missing gene prediction models, 

we incorporated gene expression models for genes not predictable from adipose tissue across 
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45 tissues measured in 47 reference panels. In detail, for a gene without a predicted model in 

adipose tissue, we included the prediction model with the best accuracy across all other 

tissues (Supplementary Table 2; see Methods). Of the 26,292 known genes in RefSeq 

(version 65) (ref. 29), we found 12,663 covered in our data, with the remaining 2,614 genes 

not found in RefSeq. Adipose-prioritized TWAS identified 301 (202 unique) significant 

genes at 108 (63 unique) independent regions after accounting for the total number of per-

trait tests performed (P < 0.05/15,277; Supplementary Figs. 16–19, Table 1, and 

Supplementary Table 3). Of the 160 (89 unique) risk regions found through GWAS, 75 (46 

unique) overlapped significant TWAS results, which is increased compared with earlier 

work30 that found 25% overlap between GWAS and eQTL at risk regions (Table 1). Of the 

75 trait–region pairs with a significant TWAS association, 47 had multiple significant TWAS 

associations, thus motivating our fine-mapping approach.

We next applied FOCUS at the 75 GWAS risk regions with evidence for regulatory action on 

genes driving lipid levels to compute PIPs and estimate credible sets of genes at each of the 

regions (see Methods). We found that observed risk regions can be explained by 1.5 causal 

genes on average, with 61 of 75 risk regions containing fewer than 2 causal genes in 

expectation (Supplementary Figs. 20 and 21). The average maximum PIP across credible 

sets was 88% (and decreased exponentially for lower ranked genes; Supplementary Fig. 20). 

Together, these results imply that most risk regions can be explained by a single causal gene. 

Using computed PIPs, we estimated 90%-credible gene sets for each risk region and found a 

significant reduction in the number of prioritized genes (mean 1.9) compared with 

transcriptome-wide-significant genes (mean 3.2; Mann–Whitney U-test P = 7.24 × 10–4; 

Supplementary Table 4). We compared the sensitivity of FOCUS to the setting of the prior 

variance term σc
2  and found computed PIPs to be highly similar across lipid traits (t-test P < 

2.2 × 10–16; Supplementary Fig. 22). Comparing FOCUS results with those of TWAS 

ranking, we found that in 47 of 75 total trait–region pairs, the gene with the highest TWAS 

Z-score was also the gene with the highest PIP. When excluding the null model, this 

proportion increased to 57 of 75. As a positive control, we examined the 1p 13 locus for 

LDL, as this region harbors risk SNP rs12740374 (NC_000001.10:g.109817590 G>T) 

which has been shown to perturb transcription of the SORT1 gene and impact downstream 

LDL levels17. We found 4 of 34 genes included in the 90%-credible set, of which SORT1 
had a posterior probability 95% (Fig. 6 and Supplementary Table 5).

Finally, we investigated regions whose 90%-credible gene sets contained the null model 

(that is, regions with weaker evidence for models of gene expression driving risk). An 

instance that contains the null model in its credible set may be partially consistent with the 

observed association between expression levels and trait being due to chance. We found 25 

of 75 instances of the null model captured in credible sets for lipid traits (Supplementary 

Table 4), which suggests that most overlapping GWAS risk regions are more consistent with 

risk contributed from cis-regulated expression levels, compared with statistical noise 

explaining observed signal. PIP output by FOCUS are conditioned on the FOCUS model 

being correct. If the FOCUS model does not accurately capture the underlying generative 

process, then PIPs will be biased. We used a simulation procedure (see Methods) to quantify 
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model fit for each gene and found that the FOCUS model largely agreed with observed data 

(that is, TWAS Z-scores; see Supplementary Fig. 23).

Discussion

In this work we presented FOCUS, a fine-mapping approach that estimates credible sets of 

causal genes by using prediction eQTL weights, LD, and GWAS summary statistics. We 

demonstrated that FOCUS prioritizes the null model in null simulations and is accurate in 

identifying causal genes when genes at a region impact downstream trait. We found 90%-

credible gene sets to be largely stable across a variety of simulations, with the biggest impact 

in performance due to eQTL reference panel sample size and SNP-heritability of gene 

expression. We applied FOCUS to four lipid TWASs (for example, high-density lipoprotein 

(HDL), LDL, triglyceride, and total cholesterol levels) and found that SORT1 was correctly 

identified as a putative causal gene. Interestingly, our real-data results in lipids suggest that 

most regions can be explained by a single causal gene. Overall, our results highlight the 

utility of using credible sets in prioritizing causal genes by jointly assigning posterior 

probabilities, which are both easily interpretable and comparable across genes and regions.

In addition to providing a quantification of the confidence in how many genes need to be 

validated to identify the causal genes in the region, our probabilistic approach yields several 

benefits. First, FOCUS naturally allows for multiple causal SNPs and genes while 

integrating gene-effect sizes by using conjugate priors; this is particularly important, as 

recent works have shown that allelic heterogeneity (that is, multiple causal genes and SNPs 

at a region) is pervasive in both eQTL and GWAS18,31. Second, in this work, we investigated 

predicted gene expression, but FOCUS could generally be applied to other predicted 

molecular traits with an established role in complex trait etiology (for example, alternatively 

spliced exons32,33). For example, several recent works have supporting evidence for splice 

variation playing an important role in driving risk of schizophrenia34,35.

We conclude with several limitations and caveats of our approach. A broad overview of the 

challenges in TWAS is presented in ref. 10, and we outline several here. First, our model 

assumes that complex trait or disease risk is a linear function of steady-state expression 

levels at causal genes. Several works have demonstrated that risk prediction using a linear 

combination of predicted steady-state or observed expression levels can outperform standard 

SNP-based models34,36, which supports a linear model of gene expression impacting 

complex trait or disease risk. However, higher-order models that capture complex regulatory 

networks of transcription factors and gene expression may also reflect underlying biology. 

As reference gene expression data sets grow in size, accurately modeling these assumptions 

may be possible. Similarly, if risk is mediated through context-specific expression and not 

steady-state expression levels, then FOCUS will have a loss in performance. Second, while 

our simulations used the genomic best linear unbiased predictor (GBLUP)37,38 throughout 

for its straightforward implementation, we recommend a cross-validation approach to select 

the best fitting linear model (for example, GBLUP, Bayesian sparse linear mixed model 

(BSLMM)39) using the ratio of out-of-sample prediction accuracy normalized by the total 

SNP-heritability of gene expression, which is implemented in the FUSION framework1,34. 

Third, when the causal gene is not present in the data, our approach will partially inflate 
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posterior probabilities at tagging genes. We attempt to mitigate this scenario by adding an 

intercept term to the model and incorporating gene models measured in proxy tissues. Our 

simulated results using proxy tissues were performed using a model where causal eQTLs are 

shared between proxy and relevant tissues18. This assumption may be violated in real data if 

causal eQTLs are tissue specific. Fourth, our approach assumes that the causal tissue is 

known (for example, adipose tissue causal for lipids25–28). This cannot always be known for 

complex traits or diseases with less understood biology. However, recent work has shown 

that the most relevant (that is, probably causal) tissue for complex traits can be accurately 

estimated using eQTL data40. Coupled with estimation of the causal tissue, we suggest 

prioritizing genes with high normalized prediction accuracy in related tissues. We note that 

our results were strongly dependent on sample size in the eQTL reference panel, which is 

reflected in expression prediction accuracy. We therefore recommend prioritizing eQTL data 

with sample sizes greater than 100 if possible, and performing inference on genes with 

robustly non-zero SNP-heritability.

Methods

Model and sampling distribution of marginal TWAS summary statistics.

Here, we briefly describe our model for a quantitative trait, the sampling distribution for 

TWAS summary statistics, and the FOCUS model. For a full account please see 

Supplementary Note. We model a quantitative trait for n individuals y by a linear 

combination of expression levels for m genes G ∈ ℝn × m as

y = Xβ + Gα + ϵ

Where X ∈ ℝn × p is the centered and variance-standardized genome-wide genotype matrix 

at p SNPs, β is the p pleiotropic effects of X on y, α is the vector of causal effects for the m 

genes, and ∊ is random environmental noise with 𝔼[ϵ] = 0 and 𝕍[ϵ] = Inσe
2 . We model G as a 

linear function of genotype weighted by eQTLs for the m genes as G = XW, where 

W ∈ ℝp × m is the eQTL effect-size matrix. We note that the scaled environment term for G 

is absorbed into ∊ (Supplementary Note).

We model marginal TWAS tests on y using predicted expression G = XΩ as 

Z twas = 1
σe nGTy, where Ω is an estimate of W using independent eQTL reference panels. 

After marginalizing out unknown causal gene effects α the sampling distribution is

Z twas λsnp , Ω, V, c, nσc
2 N ΩTV λsnp , 𝒱Dc𝒱 + 𝒱 ,

Where V = n−1XTX is the SNP correlation (LD) matrix, λsnp is the residual-or pleiotropic 

SNP non-centrality parameter, 𝒱 = ΩTVΩis the predicted expression covariance, and Dc is 

the prior variance for effects at causal genes nσc
2  as indicated by a binary status vector c 

(Supplementary Note).

Mancuso et al. Page 9

Nat Genet. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To perform inference of which genes are causal given TWAS statistics ztwas, we compute the 

posterior distribution of any set of causal genes c,

Pr c ztwas, λsnp , Ω, V, nσc
2 =

N Z twas ΩTV λsnp , 𝒱Dc𝒱 + 𝒱 Pr (c)

∑c′ ∈ C N z twas ΩTV λsnp , 𝒱Dc, 𝒱 + 𝒱 Pr c′

where C is the set of all binary vectors of length m. We assume a Bernoulli prior for each 

causal indicator ci ~ Bern(p). In practice, we set p = 1 × 10–3. We compute the marginal PIP 

for the ith gene as

PIP ci = 1 z twas , λsnp , Ω, V, nσc
2 = ∑

c′ ∈ 𝒞:ci′ = 1
Pr c′ z twas , λ snp , Ω, V, nσc

2

We compute this expression using direct enumeration for regions with fewer than 20 gene 

models. For larger regions, we limit enumeration to at most five causal genes. The posterior 

null under this model, Pr 𝔠 = 0|ztwas λsnp , Ω, V, nσc
2 ,captures the probability that none of the 

predicted expression models included in our analysis explain the observed TWAS Z-scores. 

Using PIPs, we can estimate the expected number of causal genes at a risk region mc 

𝔼 mc = ∑i = 1
m PIP ci = 1|Z twas , λ snp , Ω, V, nσc

2 .

Credible gene sets.

PIPs offer a flexible mechanism to generate gene sets for functional follow-up. We 

generalize the concept of credible SNP sets from SNP fine-mapping14,15 to compute 

credible gene sets. Here, a ρ-credible gene set contains a causal gene with probability ρ. 

Formally, if we define the normalized PIP for gene i as

nPIP ci = 1 ztwas =
PIP ci = 1 z twas

Pr c = 0 ztwas + ∑i′ = 1
m PIP ci = 1 ztwas

where the denominator sums over the PIP for the null model as well as the remaining gene 

model PIPs at the region. A ρ-credible gene set is defined as a set of gene models at a region 

S = G1, …, Gk such that ∑i = 1
k nPIP ci = 1|ztwas ≥ ρ .We use a greedy approach to compute 

a minimal ρ-credible gene set that first sorts gene models at a region and includes models 

until at least ρ of the normalized-posterior mass is explained.

Model validation using the posterior predictive distribution.

To test the validity of the FOCUS model at GWAS risk regions in real data, we use a 

posterior predictive sampling procedure19. This approach alternates between sampling 

causal configurations c from the posterior distribution and sampling Z-scores Ztwas*  from the 

generative distribution after conditioning on the causal configuration. This enables us to 

compare the distribution of simulated data with our observed statistics ztwas. When our 
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observed data ztwas are not fit within reasonable bounds of the simulated data we can be 

more confident that the FOCUS model and computed PIPs are inconsistent with the actual 

data-generating process. Specifically, at each risk region with m genes we perform the 

following: at each risk region, we sample the causal status for each gene using the posterior 

distribution ci Bern pi = PIP ci = 1|ztwas, λspp , Ω, V, nσc
2 . Given a complete causal 

configuration c, we then sample Z-scores Z twas* N ztwas |ΩTV λsnp , 𝒱Dc𝒱 + 𝒱 .We repeat 

this a fixed number of times and compute a posterior Z-score (and P value) of model fit for 

the ith gene as Z post, i =
mean z twas,i

⋆ − ztwas , i
s . d . ztwas , i*

. Deviations from the null of N (0,1) indicate 

poor model fit.

Gene expression simulations.

We simulated TWAS association statistics starting from real genotype data and gene 

definitions. To simulate genotype samples, we first partitioned genotype data for 489 

individuals of European ancestry in 1000Genomes42 into independent LD blocks as defined 

by LDetect41. We annotated LD blocks with all genes in RefSeq29 whose transcription start 

site was flanked by region boundaries. To simulate GWAS and expression reference panel 

genotypes, we sampled standardized genotypes using the multivariate Gaussian 

approximation X N 0, V , where V is LD estimated from the 1000Genomes individuals. For 

both GWAS panel and eQTL reference panel, we simulated gene expression of each gene in 

the ith LD block annotation list by selecting k causal SNPs preferentially located near 100 

kilobases of the transcription start site (TSS) and then computed g = Xw + ϵ, where X is the 

n × p centered and standardized genotype matrix, w N 0,
hg
2

k Ik is the causal eQTL effects, 

and ϵ N 0, sg
2 1

hg
2 − 1 In  is random environmental noise where sg

2 = wTVw . Here, k, 

depending on the simulation, is 1, 2, 1%, or 10% of SNPs. To simulate expression in two 

correlated tissues, we sample eQTL effects at shared causals under a bi-variate Gaussian 

distribution as w ., 1 , w ., 2 N
0
0 ,

hg, 1
2 /k ρg

ρg hg, 2
2 /k

, wherehg
2 is the SNP-heritability for gene 

expression in tissue, and ρg is genetic correlation. For proxy tissue simulations, we used 

values of proxy tissue expression hg
2 ∈ 0.01, 0.05, 0.1, 0.2 andρg ∈ 0.0, 0.25, 0.5, 0.75, 1.0 . We 

repeated this for a total of 50 randomly sampled LD blocks. For shared-eQTL simulations, 

we restrict all genes in a region to share the same zeros across eQTL effects (that is, share 

the same causal SNPs). Effect sizes at causal SNPs for each gene are then drawn 

independently according to the above.

Complex trait simulations.

We simulated complex trait for the GWAS panel as a linear combination of the causal gene 

expression and uniform pleiotropic effects. We first sampled the number of causal genes at 
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each region assuming mi
c Poi (1), where mi

C is the number of causal genes at region i, with 

constraints of 1 ≤ mi
c ≤ mi for mi total number of genes at region i. Let Gc = [Gc

(1), …, Gc
(50)]

be the Ngrass × Mc matrix of gene expression restricted to the Mc = ∑i = 1
50 mi

c causal genes. 

Similarly, let X = X(1), …, X(50)  be the Ngwas × P genotype matrix across all 50 regions 

where P = ∑i = 1
50 pi for pi SNPs at region i. For standard simulations where pleiotropic SNP 

effects are uniform at each region (that is, expectation of the FOCUS model), we sampled 

regional effects as βi N 0, h pleio
2 /50 and set β = 1p1

β1, …, 1p5
β50  Then we computed 

y = Xβ + G cα + ϵ, where α N 0, I
Mc  is causal effects for gene expression, 

ϵ N 0, st
2 1

hGE
2 − 1 In , st

2 = βXTXβ + αTGc
TGcα, and Gc is the centered and variance-

standardized version of Gc. The ‘standard null’ simulation fixed α = 0 and β = 0. We 

performed an association scan on simulated data y, X(1), …, X(50)  and computed SNP-trait 

Z-scores zgwas using Wald statistics from linear regression. To perform a TWAS we fitted 

weights Ω(1), …, Ω(50) for the expression reference panel using GBLUP37,38 or least absolute 

shrinkage and selection operator (LASSO)43, which were then used to compute ztwas. We 

then performed fine-mapping using the FOCUS algorithm on simulated ztwas vectors. Unless 

stated otherwise, simulation parameters were set to Ngwas = 50,000, NeQTL = 500, 

expression hg
2 = 0.2, traithGE

2 = 0.1 (that is, variance explained in trait due to genetic 

component of gene expression1,4), and h pleio
2 = 0.05.

We also simulated complex trait for the GWAS panel as a linear combination of causal gene 

expression (see above) but differed how pleiotropy manifests for the variance-component 

model of pleiotropy (see Supplementary Note).Our ‘pleiotropic eQTL’ simulation has SNP 

effects drawn independently and occurring only at a subset of eQTLs (rather than all SNPs) 

in the simulation. We first sampled 1–2 eQTLs per region and then sampled pleiotropic 

effect sizes as βi N 0, hpleio
2 /PeQTL , where PsQTL is the total number of eQTLs with 

pleiotropic effects. Next, we set β to βi for selected eQTLs and 0 otherwise.

Data sets.

We downloaded publicly available summary statistics for lipid measurement GWASs16. We 

filtered sites that were not bi-allelic, were ambiguous (that is, allele 1 is reverse complement 

with allele 2), or had minor allele frequency (MAF) less than 0.01. To perform TWASs on 

each of the lipid traits we used the software FUSION (see Code availability). FUSION takes 

a summary-based approach to TWASs and requires as input GWAS summary statistics (that 

is, SNP Z-scores) and eQTL weights. We downloaded publicly available expression weight 

code availability
FUSION TWAS method (http://www.gusevlab.org/projects/fusion/) and FOCUS fine-mapping methods (http://github.com/bogdanlab/
focus).
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data as part of the FUSION package. Reference LD was estimated in 1000Genomes42 using 

489 European individuals. Quality control, cis-heritability of expression, and model fitting 

have been described elsewhere1,4,34. We prioritized adipose for our TWAS approach and 

used other reference panels to act as proxy for adipose. That is, for all possible tissue-

specific gene models in a region, we first test predicted expression using adipose gene 

models. Then for the remaining genes found only in proxy tissue models, we select those 

with the best prediction accuracy (that is, out-of-sample R2 normalized by complete-data hg
2

estimates). This resulted in 15,277 unique genes. Risk regions for FOCUS are approximately 

1-megabase regions obtained from LDetect41 that contain at least 1 genome-wide-significant 

SNP (Pgwas < 5 × 10–8).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Illustration of the induced correlation structure for predicted expression.
a, Top: Manhattan plot indicating strength of SNP association with trait. Middle: Expression 

weight matrix for six genes in the region, with the causal gene indicated in red. Each row 

corresponds to a gene (denoted G1, to G6), and each column represents a SNP. Color 

indicates magnitude of eQTL effect. Bottom: The correlation structure (LD) across SNPs. 

Darker color indicates stronger correlation. b, Top: Transcriptome-wide association signal 

indicating strength of predicted expression association with trait. Bottom: Induced 

correlation of predicted expression. Darker color indicates stronger correlation between 

predicted expression levels. Dashed lines indicate the genome-wide (transcriptome-wide) 

significance threshold.
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Fig. 2 |. Simulation diagram for alternative and null scenarios.
The top three diagrams represent simulations under the alternative. Here, gene expression 

and SNPs causally impact trait (standard); the causal gene in the relevant tissue is missing, 

but measured in a proxy tissue (proxy-tissue); and simulations are shown in which nearby 

genes share the same eQTLs (shared eQTL). The lower three diagrams represent simulations 

under the null or confounding instances. Here, there is no impact on downstream trait from 

genetics (standard null), the causal gene is missing in the reference panel and unavailable in 

proxy tissues (masked), and downstream trait is strictly a function of direct effects from 

SNPs that are eQTLs for genes (pleiotropic eQTL). We indicate the contribution of the 

environment to gene expression and trait as envg and envt, respectively.
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Fig. 3 |. Credible gene sets are well calibrated in simulations.
Box-plots represent the distribution of the proportion of causal genes captured in the 90% 

(dashed line)-credible set over simulations (that is, sensitivity; see Methods). Specifically, 

the median, upper and lower quartiles, 1.5× interquartile range, and outlier simulations 

(points). a, Standard simulations with and without pleiotropic SNP effects on trait. 

Prediction models were trained using the relevant (that is, causal) tissue. b, Calibration as a 

function of eQTL reference panel sample size. c, Calibration as a function of heritability of 

causal gene expression. d, Calibration using prediction models trained using proxy tissue 

measurements. e, Calibration using proxy tissue when heritability of reference gene 

expression varies compared with fixed hg
2 = 0.2 in the relevant tissue. f, Calibration using 

proxy tissue when genetic correlation of reference gene expression and gene expression in 

the relevant tissue vary.
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Fig. 4 |. FOCUS credible sets alleviate bias in confounding simulations.
‘Standard sim’ indicates simulations under our standard pipeline. ‘Masked sim’ indicates 

simulations where the causal genes are pruned before analysis. ‘Pleiotropic eQTLs’ 

indicates simulations where gene expression does not mediate an effect on a downstream 

trait, but the same eQTLs have direct effects on a downstream trait. a, Box-plots represent 

the median, upper and lower quartiles, and 1.5× interquartile range of the proportion of 

genes captured in the 90%-credible gene sets over simulations. b, Violin plots represent the 

distribution of the posterior probability for null models captured in 90%-credible sets. Points 

represent the median posterior probability.
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Fig. 5 |. FOCUS accurately prioritizes causal genes in simulations.
a, Size of the 90%-credible gene set in standard simulations with and without pleiotropic 

SNP effects on trait. Prediction models were trained using the relevant (that is, causal) 

tissue. Box-plots represent the median, upper and lower quartiles, and 1.5× interquartile 

range of the total number of genes captured in the 90%-credible gene sets over simulations. 

b, Method sensitivity in capturing causal genes in simulations. We ranked genes based on 

their P value (TWAS; P < 0.05/15,277) or colocalization score (PP4 ≥ 0.8). We also selected 

the same number of ranked genes as the 90%-credible gene set (matched). ‘Standard’ refers 

to simulations in which eQTLs are sampled for each gene. ‘Shared’ refers to simulations in 

which eQTLs are sampled and shared among all genes.
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Fig. 6 |. 1p13 locus for LDL.
a, Correlation for predicted expression at the 1p13 locus. Genes in the 90%-credible set are 

labeled in light blue. The direction and magnitude of correlation between predicted 

expression levels are indicated by color (Corr). b, TWAS Z-scores at the 1p13 locus. Each 

point represents the association strength for each tested gene. Genes in the 90%-credible 

gene set are labeled in light blue. Dashed red lines indicate transcriptome-wide-significance 

threshold. Gene names are indicated by ID.
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Table 1 |

Summary of-based fine-mapping in lipid GWAS gene risk regions

Lipid trait GWAS
risk
regions

GWAS risk
regions with
TWAS-
significant
genes

TWAS
genes
at risk
regions

Genes in
90%-credible
sets

HDL 43 18 64 30

LDL 36 20 56 40

Total cholesterol 51 24 73 53

Triglycerides 30 13 33 25

Overall 160 75 226 148

unique 89 46 146 100

A GWAS risk region is defined to be an LD block defined by LDetect41 harboring at least one genome-wide-significant SNP (P < 5 × 10–8) 
reported in ref. 16. A TWAS gene is a gene whose predicted expression reaches transcriptome-wide significance of P < 0.05/15,277. Overall results 
are presented as total counts across traits with unique results discarding repeated elements.
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