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Abstract

Objectives.—A systematic review of /n vitro studies was conducted to assess the effect of
thermal treatments on flexural strength or critical load to failure of porcelain-veneered zirconia
(PV2).

Sources.—L.iterature searches were performed up to June 2018 in PubMed/MEDLINE, Scopus
and Web of Science databases, with no publication year or language limits.

Data.—From 393 relevant studies, 21 were selected for full-text analysis, from which 7 failed to
meet the inclusion criteria. The 14 remaining papers were included for the systematic review: 8 for
meta-analysis and 6 restricted to descriptive analyses. Hand searching of reference lists resulted in
no additional papers.

Study selection.—/n vitro studies using PVZ specimens testing the influence of thermal
treatments on the fracture resistance to monotonic or cyclic loading. Papers evaluating cooling rate
were divided into those applying fast cooling from above the porcelain glass transition temperature
(Tg), or from below it. Meta-analyses were performed separately for flexural strength and critical

load to failure, using random effects at a 5% significance level.

Conclusions.—Delaying furnace opening at a temperature below the porcelain T, is advised for

PVZ restorations, in order to improve their fracture resistance. Additional information is required
to confirm the apparently beneficial effect of self-glaze and repeated veneer firings on the
mechanical properties of these restorations. Finally, in order to obtain conclusive and relevant
evidence regarding thermal treatments and the fracture resistance of PVZs, future studies should
concentrate on anatomically-correct crown specimens.
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1. Introduction

Yttria-stabilized tetragonal zirconia polycrystal ceramic has been perceived as a superior
restorative material due to its biocompatibility and mechanical properties.! Porcelain-
veneered zirconia restorations combine the strength of the zirconia framework with the
excellent optical properties of the veneering porcelain.? The clinical survival rates of these
restorations range from 90% to 95% in 5 years.3-> However, only about 70%,%~7 did not
require any intervention for continued function. Veneer fracture has been the leading cause
of the reduced success rates.5.” These fractures may be repairable by polishing or filling with
another restorative material (minor chipping) or not repairable (major chipping or
catastrophic fractures), which lead to restoration replacement. Several factors have been
associated to veneer failures, such as porcelain heterogeneous thickness,82 non-anatomical
design of the framework,10-12 coefficient of thermal expansion (CTE) mismatch,!2 elastic
modulus4 and fracture toughness of porcelain,® inadequate veneer firing,16 or residual
thermal stresses.1’- 18

Deleterious thermal stress gradients have been associated to the cooling rate after the last
firing.1920 When the bilayer restoration is fast cooled, meaning the restoration is exposed to
a thermal shock in high temperatures by immediately opening the furnace once the firing
schedule is done, the surface of the porcelain solidifies and contract earlier, while the inner
region remains at higher temperature. When the inner temperature decreases, the already
solid surface hinders the contraction of the inner porcelain upon cooling, and residual tensile
stresses become locked into the material system.1420 In contrary, when slow cooling is used,
the restoration stays under controlled temperature reduction, thus, the whole structure of the
restoration is expected to cool uniformly, effectively reducing residual thermal stresses.?!
However, not all previous studies have shown difference in the strength of bilayer systems
after fast or slow cooling.22-24 Various other thermal treatments have been proposed to
overcome the chipping susceptibility and improve the fracture resistance of veneer ceramic,
including glaze,?®> number of veneer firings,26:27 and additional firing in different
temperatures.28 Previous studies suggest that these thermal treatments may relief thermal
stresses.29:30

Considering that veneer chipping is a current clinical problem and it is strongly associated to
the thermal treatments experienced by the porcelain veneered restoration, a systematic
compilation of the contradictory literature and pooled data analysis may provide clear
conclusions. Thus, this systematic review sought to assess the available scientific literature,
investigating the following research question: How do thermal treatments (glaze, number of
veneer firings, annealing, and cooling rate) influence the flexural strength or critical load to
failure of porcelain-veneered zirconia?
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2. Materials and methods

This systematic review was prepared and reported according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA).31 A non-registered protocol
was elaborated prior to the literature search. The PICOS question was defined as follows:
Population: porcelain-veneered zirconia (PVZ) specimens with any geometry; Intervention:
slow cooling, more than two veneer firings, over- or self-glaze, or annealing; Comparison:
fast cooling (from above or below transformation temperature (Tg) of the veneer porcelain),

up to two veneer firings, no glaze, or no annealing; Outcomes: flexural strength or critical
load to failure; Study design: /n vitro studies.

2.1 Search Strategy

Literature search was carried out in PubMed/MEDLINE, Scopus and Web of Science
databases to identify relevant articles up to June 2018. The search was conducted with no
publication year or language limits. The studies were searched from PubMed/MEDLINE
using the following strategy: ((zirconi*) OR (ytzp) OR (y-tzp)) AND ((dental
porcelain*[MeSH Terms]) OR (porcelain) OR (veneer*) OR (bilayer) OR (veneered
zirconia)) AND ((glaze*) OR (firing*) OR (fast cooling) OR (slow cooling) OR (cooling
rate) OR (thermal treatment) OR (heat treatment) OR (annealing)) AND ((Compressive
strength [MeSH Terms]) OR (strength) OR (flexural) OR (resistance) OR (load) OR (failure)
OR (fatigue)). A sensitive search strategy was adapted for Scopus and Web of Sciences. The
results of all databases searches were crosschecked to eliminate duplicates.

2.2 Selection of studies and eligibility criteria

Two reviewers (CSR and ILA) independently assessed the identified publications and
selected them by title and abstract based on the following inclusion criteria: /n7 vitro studies
using PVZ specimens, which tested the influence of any thermal treatments on flexural
strength or critical load to failure regardless the mechanical test configuration adopted
(monotonic or cyclic loading).

The final decision about inclusion of a given study was made based on full-text evaluation of
potentially relevant papers. Those which were not in accordance with the following criteria
were excluded: 1) at least one intervention group subjected to more than two veneer firings,
glaze firing, annealing, or slow cooling; 2) at least one comparison group subjected up to
two veneer firings, no glaze, no annealing, or fast cooling, respectively; and 3) quantitative
results reported as mean values and standard deviation (or equivalent central tendency and
dispersion values) for flexural strength (MPa) or for critical load to failure (N), along with
description of the sample sizes of each group. Reference lists of the included papers were
also screened. When fatigue data was described in terms of reliability or number of cycles,
authors were contacted and asked to provide the means and standard deviations of flexural
strength or critical load to failure. Otherwise, these papers were not considered for meta-
analyses. Any discrepancies between the reviewers were resolved through discussion and
judgment by a third reviewer (LGM). The inter-examiner agreement (Kappa coefficient) was
calculated for both phases (eligibility criteria: 0.86 and exclusion criteria: 0.95). Both

Dent Mater. Author manuscript; available in PMC 2020 May 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

da Silva Rodrigues et al. Page 4

reviewers also collected the data from the eligible studies independently, which were then
compiled and discussed for consensus.

2.3 Risk of bias assessment

Quality of the studies was assessed by the two reviewers using the modified Consolidated
Standards of Reporting Trials (CONSORT) checklist.32 The following items were evaluated
in each paper: 1) Structured summary of trial design, methods, results and conclusions, 2a)
Scientific background and explanation of rationale, 2b) Specific objectives and/or
hypothesis, 3) The intervention of each group, including how and when it was performed,
with sufficient detail to enable replication, 4) Completely defined, pre-specified primary and
secondary measured of outcome, including how and when they were assessed, 5) How the
sample size was determined, 6) Method used to generate the random allocation sequence, 7)
Mechanism used to implement the random allocation sequence, 8) Who assigned the random
allocation, 9) Who was blinded after assignment to the intervention, 10) Statistical methods
used to compare groups, 11) Results for each group and estimated size of effect and its
precision, 12) Trial limitations, addressing sources of potential bias, imprecision, and, if
relevant multiplicity of analysis, 13) Sources of funding and other support, 14) Where the
full trial protocol can be accessed. Each parameter was judged as reported (Yes) or not
reported (No).

2.4 Data analyses

Data analyses were carried out using Review Manager software version 5.3 (Cochrane
Collaboration). Papers evaluating cooling rate were categorized into those which used a fast
cooling (furnace opening and samples immediately removed) from above or below the T, of

the veneer porcelain. Distinct meta-analyses were performed using random effects for fast
(aboveTg) versus slow cooling, fast (belong) versus slow cooling, and for flexural strength

or critical load to failure data. Forest plots were created and significance level was set at 5%
(Z test). The heterogeneity among studies was evaluated by Cochrane Q test, where P<0.1
was considered statistically significant, and the inconsistency 12 test, where values higher
than 50% were considered indicative of substantial heterogeneity. 33

Studies that could not be included in meta-analyses due to lack of data (mean and standard
deviation values and sample size) and/or due to methodological differences that did not
allow comparisons with other studies, were only descriptively analyzed.

3. Results

3.1 Study selection

Figure 1 depicts a flowchart summarizing the selection process for studies. The search
strategy identified 393 potentially relevant records. The first screening, by title and abstract,
resulted in 21 studies that remained for full-text reading. Finally, 14 papers were included in
the systematic review: 8 for quantitative evaluation using meta-analyses and 6 restricted to
descriptive analyses. Manual searching through the reference lists of included studies
resulted in no additional papers. Table 1 describes the characteristics of included studies.
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The majority of studies evaluated cooling rate (10 studies),13:22-24.36-41 tyo evaluated
number of veneer firings,28:27 one evaluated self-glaze,?> and one investigated alternative
firings.28 The included studies used 9 different commercial brands of veneer porcelains,
presenting a range of physical characteristics, such as elastic modulus (E), coefficient of
thermal expansion (CTE) and glass transition temperature (Tg). These porcelains and their

characteristics are described in Table 2.

3.2 Risk of bias

Table 3 presents the estimated risk of bias of each included study. All included papers
properly presented a structured summary, specific objectives, and statistical analyses. Some
papers reported to have performed randomization,23:27:34.36.37 however, they have not
reported how this procedure was carried out. Not one study clearly reported information
about the mechanism used to implement the random allocation process, who performed it,
and where the full trial protocol can be assessed. Background and rationale (6%),
intervention description (19%), outcome description (12%), blinding (81%), limitations
(56%), and funding resources (25%) were not always clearly reported.

3.3 Data analyses

Data analyses were performed qualitatively (descriptive summary) and quantitatively (meta-
analyses), when appropriate, for each of the following treatments topics.

3.3.1 Cooling rate—Figure 1 shows the forest plot of the meta-analysis comprising 2
studies 3437 with high heterogeneity (65%), comparing the fast cooling from below T,

versus slow cooling effect on PVZ flexural strength. As a result, no statistical difference was
observed (P = 0.37) between cooling rates. A meta-analysis assessing the influence of fast
cooling from above T, Versus slow cooling on flexural strength was carried out including 3

studies (Figure 2).22:23:37 Heterogeneity was also considered high (61%) and no statistical
difference was detected (P = 0.08). However, when the fast cooling from above T, Versus

slow cooling effect on critical load to failure of PVVZ crowns was investigated, the results of
the meta-analysis involving 4 studies with low heterogeneity (33%)13:35.38.39 showed that
slow cooling yielded higher values of critical load to failure (P = 0.04) (Figure 3).

Paula et al.38 investigated the influence of cooling rates on mechanical behavior of bilayer
systems reporting only the number of cycles until failure. Thus, could not be included in
meta-analyses, being only descriptively analyzed. The authors investigated the influence of
fast cooling from above T, and slow cooling rates on the survival of crown-shaped PVZ

specimens. Their results showed that none of the fast cooled crowns survived 108 cycles,
whereas all slow cooled crowns survived until the end of the test (10° cycles).

Another included study that was only descriptively analyzed was Meirelles et al.24, which
evaluated the effect of cooling regiments on flexural strength of different porcelains on
bilayer samples. The slow cooling protocol adopted in this study is actually identical to the
fast cooling from beIong, in which the samples were immediately removed from the
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furnace once the firing cycle ended. The comparison group was fast cooling from aboveTg.

The authors observed that the cooling protocols had no influence on flexural strength of the
bar-shaped PVZ specimens.

3.3.2 Number of firings—As only two methodologically distinct studies evaluated
number of veneer firings, no meta-analyses could be performed. Vichi et al (2015)27
observed that 2 and 5 veneering firings led to higher values of flexural strength [78 (13)
MPa, and 78 (12) MPa, respectively] than only one firing cycle [52 (9) MPa], when tested
with the porcelain veneer in tension. Lu et al (2011)26 tested 2, 4, 6, 8 firing cycles and did
not find any statistical difference among flexural strength means [996 (145) MPa, 999 (120)
MPa, 1019 (51) MPa, and 1008 (103) MPa, respectively], tested with the zirconia layer in
tension.

3.3.3 Glaze and annealing—Only one included study compared groups with or
without glaze firing.2> The authors described that the load to failure of the polished and
glazed group (389 £202 N) was significantly greater than the polished-only group (301 £199
N).

No included study evaluated annealing treatments, however Taskonak et al.28 tested
extended firing cycles comprising a 60 min holding time stage in different temperatures
around theTg, followed by slow or fast cooling. The authors reported that the treatments at or

above the T, followed by fast cooling resulted in higher flexural strength, compared to

extended slow cooling to room temperature.

4. Discussion

The results of this systematic review showed that thermal treatments can influence flexural
strength and critical load to failure of PVZ restorations. Most of included studies evaluated
cooling protocols, which allowed us to perform three meta-analyses. For complex geometry
samples (crowns), the cooling protocol significantly affected the critical load to failure of
PVZ. However, when simple geometry samples (bars or discs) were used, no difference in
fracture resistance was detected between different cooling regimens. Self-glaze and repeated
veneer firings appeared to increase the mechanical strength of veneered systems based on
the few studies available. However, this effect could only be descriptively analyzed, thus any
inferences should be taken with caution.

A critical aspect regarding pooling data from various or multiple cooling rate studies is that
there is no clear definition of what is considered slow cooling, since a large variety of
protocols were used among the included studies (Table 1). Similarly, fast cooling regimens
also vary among studies. Studies were classified into those where specimens were fast
cooled from a temperature above the porcelain T, or from belong, considering that the

veneer porcelain behave completely different on each stage.*? Glassy materials are viscous
liquids aboveTg, and fast cooling them from above this point means that structural

contraction may lead to residual stress locked inside the material during the process. In
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contrast, retarding fast cooling of PVZ restorations from temperatures below the T, may

impede the deleterious temperature gradients. Thus, avoiding the development of transient
and residual stresses, which could weaken the ceramic material.21 These observations are in
agreement with the results of our meta-analysis, indicating that flexural strength is not
affected by cooling rate when the rapid cooling stage is performed from belong. One

should notice, though, that this meta-analysis pooled data from studies that used simple
geometry specimens for the precise calculation of flexural strength. Finite element analysis
(FEA) studies reported that cooling down restorations from 50°C below T, is enough to

decrease residual stresses and avoid thermal gradients;*2 and that an overextended cooling
protocol (closed furnace until 25°C at 2°C/min), besides time consuming, added more tensile
and compressive residual stresses throughout the porcelain layer, compared to a more
reasonable slow cooling regimen (closed furnace until 450°C). 41

Our two meta-analyses comparing fast cooling from above T, versus slow cooling, for

flexural strength (Fig. 2) and critical load to failure (Fig. 3), presented contradictory results.
The studies evaluating flexural strength use simple geometry specimens, in which case no
differences between the two cooling rates were observed. Nonetheless, when crown-shaped
specimens were used and the critical load to failure was recorded, slow cooling yielded
superior results. In addition to the geometric differences, bar and disc specimens (in the
flexural strength analysis) had porcelain veneer thickness of 0.5 — 1.0 mm; while, the crown
specimens (in the critical load to failure analysis) had 1.5 — 2.0 mm thick porcelain veneers.
Benetti et al.21, using FEA, observed that when porcelain layer increases from 1 to 2 mm,
thermal stresses gradients increase throughout the veneer. The authors also observed that the
fast cooling (furnace opening at 800°C — aboveTg) led to high levels of transient tensions,

which were associated to internal microcracks and, consequently, early failures. Moreover,
previous studies have observed distinct residual stresses in curved areas of PVZ crowns,41-43
especially when fast cooling was applied.*3 Thus, it is plausible that the difference in
residual stress distributions due to different geometries and thicknesses led to the
contradictory meta-analyses results regarding flexural strength and critical load to failure.

The only two included studies that evaluated number of firings in PVZ indicate that two
veneer firings may improve the flexural strength of the bilayer specimens, while no further
improvement is seen when more than two firings are applied. However, these results must be
interpreted with cautions, since one test was performed with porcelain in tension?’ and the
other one with zirconia in tension.2® Such contrast resulted in extremely different flexural
strength values between the two papers, since the mechanical properties of the specimens are
determined by the material under tension.*4 The study of Tang et al.#6, which is not included
in this systematic review, also did not observe differences in the flexural strength of most
monolithic veneering ceramics when fired for 2 up to 10 times. Nonetheless, other studies
evaluating monolithic porcelain specimens, observed that increasing number of firings can
improve hardness, density, and decrease porosity.4°:46

Among the included studies, only one evaluated the effect of glaze firing on bilayer
specimens.?® The experimental groups included one that was just polished and another
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polished and self-glazed, which presented higher flexural strength. Self-glaze is technically
convenient since it does not require the application of additional glazing material. This heat
treatment aims to expose a glass-based material to temperatures at or above the T, forl1-2

min in order to promote a superficial melting, improving gloss and healing surface deffects.
47 Previous literature is controversial, showing that self-glaze can either improve*8 or
decrease*® the flexural strength of monolithic porcelains, showing a lack of evidence
regarding the effect of self- or over- glaze in mechanical properties of porcelains for bilayer
systems.

Regarding annealing, not one study evaluating this heat treatment on PVZ met the inclusion
criteria of this systematic review. Previous investigations have shown that annealing can
promote crack healing®® and improve flexural strength®! of glassy ceramics. Nevertheless,
annealing is very time consuming, firstly, the glassy material is heated and kept at a
temperature above T, for a given time, usually 10 h, to allow for atomic rearrangement;

then, the material is slowly cooled in order to prevent new residual stresses.4? The time issue
is a practical disadvantage of annealing, which seems to discourage researchers to evaluate
its effects on bilayer systems. Nonetheless, Taskonak et al.28 studied extended firings at
different temperatures around the T, asan alternative thermal treatment. The authors tested

four different additional firing cycles at temperatures below, at, and above porcelainT o

followed by slow or fast cooling. They observed higher flexural strength for the groups
treated at or above T P then fast cooled. This may be associated with an atomic

rearrangement, which only happens in temperatures aboveTg, when the glass viscosity

decreases.*? Nonetheless, one should note that the authors compared fast cooling with an
overextended slow cooling regimen (down to room temperature, taking around 600 min). An
aforementioned FEA study! showed that overextended slow cooling below T, is deleterious

even for flat specimens.

Most papers in the literature do not clearly report the details of their methodological
approaches. Similar shortcomings were also observed in the included studies (Table 3).
Similarly, previous systematic reviews of /n vitro studies also found only a few papers with
low risk of bias,52:53 which demonstrates that poor methodological report is a common
problem.>* Furthermore, most of the included studies tested cooling rates, while only very
few, if any, investigated other thermal treatments. Thus, it was not possible to reach
substantial conclusions on other treatments, such as glazing, annealing, and humber of
veneer firings. Another limitation relies on the heterogeneity of included studies, specially
the lack of consensus about what is a slow or a fast cooling protocol. Interestingly, some
manufacturers already recommend, for all firing cycles, that the furnace should only be
opened below the porcelainTg, which is in agreement with the findings of our systematic

review. However, other manufacturers still disregard the deleterious effects of residual
thermal stresses and recommend fast cooling from sintering temperature or any other firings
(Table 2). In all included studies, compatible porcelains were used to veneer zirconia
substructures, as recommended by the dental ceramic manufacturers (Table 2). Nonetheless,
it is known that even small mismatches in CTE, along with the elastic properties of the
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porcelain, can affect the magnitude, location and type of residual stresses.1 Moreover, other
variables such as porcelain/zirconia thickness ratio23:35 and the indenter used for load
application®®°6 may also affect the results. Therefore, the high heterogeneity observed in
our meta-analyses, may also be explained by the pooling of data including distinct porcelain/
zirconia combinations and test configurations.

Despite all the methodological differences among the studies (Table 1), our results showed
that fast cooling PVZ from temperatures above the porcelain T, has deleterious effect on its

critical load to failure for complex geometries -- crowns. However, delaying furnace opening
to temperatures below theTg, seems to be enough to preserve the material’s mechanical

behavior. In addition, the geometry of specimens for /n vitro investigations of thermal
stresses should be considered, since it seems to affect the mechanical response of veneered
zirconia systems.

5. Conclusions

The systematic investigation of the literature has led to the recommendation to delay the
furnace opening at a temperature below the porcelain glass transition temperature for
porcelain-veneered zirconia restorations. This procedure improves the fracture resistance of
the restoration, while fast cooling from temperatures above the porcelain glass transition
temperature leads to a decrease in their critical load to failure. More studies are required to
confirm the seemingly positive effect of self-glaze and repeated firings on the mechanical
properties of these restorations. Nonetheless, future studies should concentrate on
anatomically-correct crown specimens in order to obtain conclusive and relevant evidence
regarding thermal treatments and the fracture resistance of PVZs.
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*Exclusions: Monolithic specimens (97), Bond strength studies (89), Evaluated another outcome on dental
ceramics (86), No thermal treatment (65), Review studics (13), In vivo studics (9), Metal ceramic studics (7),
Finite clement method studies (6)
**Exclusions: Did not perform mechanical tests in bilayer specimens (4), There is no control group (1)

Figure 1.
Selection of studies procedures according to PRISMA
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Slow Cooling Fast Cooling (Below Tg) Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Rand 95% Cl  Year IV, Rand 95% ClI
Almeida Jr et al. 2013 50.4 118 30 52.3 9.5 30 65.9% -1.90 [-7.32, 3.52] 2013
Passos et al. 2017 195.13 54.68 60 219.1  82.33 60 34.1% -23.97[-48.98, 1.04] 2017
Total (95% CI) 920 90 100.0% -9.42 [-29.92, 11.08]

Heterogeneity: Tau® = 158.32; Chi® = 2.86, df = 1 (P = 0.09); I = 65%

Test for overall effect: Z = 0.90 (P = 0.37) ~200.  -100 0 100 200

Slow Cooling Fast Cooling (Below Tg)

Figure 2.
Forest plot for flexural strength analysis of fast cooling (below Tg) versus slow cooling.
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Slow Cooling Fast Cooling (Above Tg) Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Rand 95% Cl_ Year IV, Rand 95% CI
Almeida Jr et al. 2013 50.4 11.8 30 64.2 15 30 30.4% -13.80[-20.63, -6.97] 2013 —
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Total (95% CI) 152 152 100.0% -5.76 [-12.88, 1.36] i
Heterogeneity: Tau® = 31.30; Chi* = 9.01, df = 3 (P = 0.03); I’ = 67% ' &5 ?:fS ) 50:

Test for overall effect: Z = 1.59 (P = 0.11)

Figure 3.

25
Slow Cooling Fast Cooling (Above Tg)

Forest plot for flexural strength analysis of fast cooling (above Tg) versus slow cooling.
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Slow Cooling Fast Cooling (Above Tg) Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean sD Total Weight IV, Rand 95% Cl  Year 1V, Random, 95% CI
Rues et al. 2010 641 155 10 481 178 10 46.7% 160.00 [13.71, 306.29] 2010 ——
Belli et al. 2013 2,447.03  493.08 64 2,332.63 636.19 64 35.3% 114.40 [-82.80, 311.60] 2013 T
Preis et al. 2013 2,025.6 385.4 7 1,841.8 257.1 6 16.1% 183.80 [-168.10, 535.70] 2013 ——p
Tang et al. 2017 3,913.55 2,265.56 20 2,530.7 1,372.04 20 1.8% 1382.85(222.06,2543.64] 2017
Total (95% CI) 101 100 100.0%  170.14 [11.16, 329.11] -
Heterogeneity: Tau® = 8511.74; Chi* = 4.49, df = 3 (P = 0.21); I* = 33% Moo 500 o 560 1000

Test for overall effect: Z = 2.10 (P = 0.04)

Figure 4.

Slow Cooling Fast Cooling (Above Tg)

Forest plot for critical load to failure analysis of fast cooling (above Tg) versus slow cooling.
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