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“Master” Neurons Induced by Operant Conditioning in Rat
Motor Cortex during a Brain-Machine Interface Task

Pierre-Jean Arduin, Yves Frégnac, Daniel E. Shulz, and Valérie Ego-Stengel
Unité de Neuroscience, Information et Complexité (UNIC), UPR CNRS 3293, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Operant control of a prosthesis by neuronal cortical activity is one of the successful strategies for implementing brain-machine interfaces
(BMI), by which the subject learns to exert a volitional control of goal-directed movements. However, it remains unknown if the induced
brain circuit reorganization affects preferentially the conditioned neurons whose activity controlled the BMI actuator during training.
Here, multiple extracellular single-units were recorded simultaneously in the motor cortex of head-fixed behaving rats. The firing rate of
a single neuron was used to control the position of a one-dimensional actuator. Each time the firing rate crossed a predefined threshold,
awater bottle moved toward the rat, until the cumulative displacement of the bottle allowed the animal to drink. After a learning period,
most (88%) conditioned neurons raised their activity during the trials, such that the time to reward decreased across sessions: the
conditioned neuron fired strongly, reliably and swiftly after trial onset, although no explicit instruction in the learning rule imposed a fast
neuronal response. Moreover, the conditioned neuron fired significantly earlier and more strongly than nonconditioned neighboring
neurons. During the first training sessions, an increase in firing rate variability was seen only for the highly conditionable neurons. This
variability then decreased while the conditioning effect increased. These findings suggest that modifications during training target
preferentially the neuron chosen to control the BMI, which acts then as a “master” neuron, leading in time the reconfiguration of activity

in the local cortical network.

Introduction

Understanding the neuronal code in motor cortical areas has
long been a key issue in neuroscience. It should allow scientists to
extract the relevant brain firing patterns preceding movement
execution (Evarts, 1968) to move a prosthetic device (Humphrey
et al., 1970; Schmidt et al., 1978). Multiple demonstrations of
neuronal control of a robotic limb or of a cursor in real-time have
been achieved in the last decade, giving rise to the new field of
brain-machine interfaces (BMI). These pioneering studies are
principally based on the decoding of a large neural ensemble
activity, i.e., activity from dozens to hundreds of neurons (Taylor
et al., 2002; Carmena et al., 2003; Velliste et al., 2008). An alter-
native way, envisioned already a long time ago (Olds, 1965; Fetz,
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1969; Fetz and Baker, 1973; Schmidt, 1980) but transposed to a
real robotic device only recently (Moritz et al., 2008), consists in
associating prosthesis movement rules with the neural output of
a small number of neurons, from 1 to 10. Repeated associations
between a self-generated neuronal pattern and an actuator that
controls access to reward (such as a prosthetic arm bringing the
reward to the mouth) result in the reactivation of the neural
process, which thus becomes operant in maximizing reward
probability. This strategy, i.e., imposing a predefined association
rule between neural activity and reward accessibility, does not
require knowing beforehand the exact role and function of the
conditioned neurons in terms of motor control; instead it relies
on behavioral adaptation and learning—and sometimes on the
forced coadaptation of the algorithm rule itself and brain circuits
(Gage et al., 2005; Marzullo et al., 2006).

Previous implementations of prosthetic control by one or a
few neurons mostly concentrated on optimizing the spatial pre-
cision with which a target could be reached. Less importance has
been given to the speed of neuronal reaction or success rate dur-
ing a session (Schmidt, 1980; Gage et al., 2005; Moritz et al.,
2008). However, the level of performance of a brain-machine
interface should also include measures of speed control and reli-
ability, two parameters important for the design of BMIs useful in
everyday life.

In the present study, motor cortex neurons of awake behaving
rats underwent operant conditioning one at a time, using a sim-
ple activity-based rule to drive a one-dimensional prosthetic ac-
tuator toward a fixed reward delivery position. We subjected the
same selected neuron to several successive sessions, allowing us to
estimate the best performance that can be expected for control of
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a BMI using the firing rate of a single-unit. After asymptotic
training, neuronal reaction times of the conditioned units were
fast, mostly under 200 ms. Because we always recorded multiple
single neurons simultaneously, we examined the activity of
neighboring nonconditioned units as well, and found that the
activity patterns underlying control of the BMI were specific to
the successfully conditioned neurons.

Materials and Methods

Animal handling and pretraining. Eight male Wistar rats weighing 250—
350 g were obtained from the in-house animal facility of the CNRS
Campus of Gif-sur-Yvette (French Agriculture Ministry Authorization B91-
272-105). Maintenance, manipulations, and surgery were performed in
conformity with French (JO 2001-464) and European legislation (86/
609/CEE) on animal experimentation. Before surgery, animals were
gently handled by the experimenter, and progressively trained to stay
quiet in a harness and drink from a bottle containing a solution of water
and glucose (strawberry syrup). While attached in the harness, the pos-
terior limbs laid on a platform, and the forelimbs were free to move.
Animals were kept at 85% of their free-feeding weight. The bottle was
mounted on a one-dimensional linear actuator (Festo) perpendicular to
the rat body, and moved to and away from the rat mouth on a left-right
axis (Fig. 1A). During preoperative training, the bottle followed four
successive steps: (1) a waiting period of randomized duration from 8—12
s,in the dark, and during which the bottle was kept away from the animal;
(2) a fast displacement of the bottle to the mouth position, during which
a green light-emitting diode (LED) placed close to the animal was “on”;
(3) a period of 3 s of drinking during which a blue LED was “on”; and (4)
a return travel back to the initial position. A new waiting period started
simultaneously with the start of the bottle return. Two sessions of 10—15
min occurred each day, consisting each of up to 50 repetitions approxi-
mately. The LEDs were switched “on” and “off” by a microcontroller
(Arduino Diecimila). The whole preconditioning period lasted several
weeks, after which the animal was well accustomed to the setup and
showed no sign of stress throughout an entire session.

Surgical procedure. Two days before surgery, the rat received subcuta-
neous injections of 0.1 ml of the anti-inflammatory drug meloxicam
(Metacam 0.5 mg.kg ') and 0.1 ml of the antibiotics cevofecin (Conve-
nia 25 mg.kg ~ ') to prevent pain and infections, respectively. On the day
of surgery, we placed the animal in a ventilated box and induced anes-
thesia with isoflurane at 3%. The animal was then transferred to a ste-
reotaxic frame. Anesthesia was maintained throughout surgery with
isoflurane, the level of which was progressively decreased down to
~1.5%. The ear bars were covered with lidocaine gel (Xylocaine) and we
injected 0.3 ml of lidocaine 2% under the head skin before incision. Once
the skull was exposed, seven to eight screws were inserted, both to ensure
a strong contact between skull and implant, and for electrical grounding
(see below). A craniotomy was drilled above the forelimb or hindlimb
region of the motor cortex, and the dura was resected. We implanted
arrays of 32 electrodes: for six rats, we used microwire arrays of 8 rows
and 4 columns with a grid spacing of 0.25 mm (Microprobes for Life
Sciences) and for two rats, we used custom-made tetrodes distributed
over an area of 0.25 mm 2. The electrodes were lowered to a cortical depth
of ~1300 wm. We verified in two instances that the electrode tip was
indeed in deep layers of the primary motor cortex, by performing elec-
trolytic lesions and Nissl staining of brain slices. Once the microwire
array was in place, a ground wire was coiled around one or several of the
ground screws (A-M Systems). Gelfoam was applied around the upper
part of the electrodes outside the brain to help prevent excessive bleeding.
Drops of cyanoacrylate were sparsely spread on the dry skull. The elec-
trode array was then fixed in place with dental acrylic (Henry Schein). Fi-
nally, a piece of polyvinyl chloride (PVC, custom-made) was embedded in
the dental cement to allow head-fixation in subsequent training sessions (see
below). The rat received a saline injection intraperitoneally before the anes-
thesia was stopped. Food was accessible ad libitum for 5 d during which the
rat was closely looked after to check proper recovery. Drops of an oral solu-
tion of meloxicam were given if signs of pain or disturbance were noticed.
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Head fixation. The rat was then submitted to the same food control
protocol than before surgery. The training sessions were similar and the
rat was trained to stay quiet during a strict head-fixation ensured with a
3D articulated arm (NMG700030, Noga). The arm extremity (NFA1100)
was designed to match the PVC piece glued to the skull (Fig. 1A). With
that device, the rat snout and mouth could be positioned precisely by the
experimenter in front of the bottle in the drinking position. The four
limbs were still free to move as before.

Data acquisition and control of the behavioral setup during training.
Neuronal activity was recorded and processed in real-time (Cerebus
hardware, BlackRock Microsystems). Each electrode output was filtered
between 250 Hz and 7.5 kHz and sampled at 30 kHz. Spikes were sorted
online (Central software, BlackRock Microsystems). Spike sorting was
performed at the beginning of each session, using a template-matching
method: assignment of a waveform to a unit depended on whether it
crossed all the criterion windows drawn by the experimenter (Fig. 1B,
inset). A putative unit was considered as well isolated if less than one
percentage of spikes was contained in the first bin (2 ms) of its autocor-
relogram. Spikes were considered to be emitted by the same unit from
one session to the next when their waveform remained invariant with-
standing the precision of the measure. Spikes of nonconditioned neurons
were not always successfully isolated throughout all successive sessions
for the currently conditioned neuron.

All information was sent to a computer (Dell Intel QuadCore at 2.66
GHz, 3.24 Gb of RAM, OS Windows XP) via a fiber-optic data link. A
custom-made software (Eclipse Qt C++) read in the spike information
in real-time and commanded the linear actuator holding the bottle
through a serial 56k bauds communication. The instantaneous bottle
position was recorded on the same file through another serial port when-
ever the bottle crossed from one spatial bin to another (10 bins spanning
the bottle course).

Neuronal control of the bottle position. Training during neural control
sessions broke down into repetitions of the same four steps described
above for the pretraining period: waiting, bottle travel to the mouth,
drinking, bottle travel back. However, during the second step (the trial),
the bottle did not move automatically toward the rat mouth as before
electrode implantation, but was now submitted to neural rules on the
basis of the ongoing recorded activity. A single unit was chosen as the
operantly conditioned neuron for controlling the bottle position. Crite-
ria for selection were stability of recording over days, high signal-to-noise
ratio, wide firing rate distribution, and modulation with limb movement.
During the experiment, spiking activity was computed every 62.5 ms, and
was smoothed over 500 ms by convolving each spike with a continuous
filter: h(¢) = 2 * (0.5 — t) between 0 and 0.5 s and h(#) = 0 otherwise.
When the green LED was turned on (playing the role of a “GO” signal and
marking the trial onset), the neuron had to increase the smoothed firing
rate above a high threshold f;;;, to make the bottle move toward the
mouth (Fig. 1B). The speed increased when the firing rate f increased
according to the relation: v( f) = vo.( f = fiow)/(fhigh = fiow) i f = frign,
v( f) = 0 otherwise. Note that there was no movement of the bottle when
the firing rate f crossed the low threshold; f,,, only affected the slope of
the v(f) function. The low and high thresholds fi,,, and f;;., were re-
evaluated every block of three successive trials. Their value was set respec-
tively to 10% and 90-94% of the firing distribution (see below). Once the
bottle entered the drinking zone, it was automatically stabilized in the
mouth position and the 3 s drinking period started. We carried on
the conditioning of the same neuron in the next session unless one of
three conditions occurred: (1) the neuron was trained successfully up to
the highest level of difficulty (see below); (2) the recording was lost, or the
waveform or firing rate changed so that we could no longer ascertain that
it was the same neuron; (3) 10 successive sessions were not sufficient to
induce successful conditioning.

Task difficulty was gradually increased across sessions to reach the
final parameters of neuronal control. Maximum trial length was set to
30 s for the first session and was progressively decreased to 7 s. The speed
factor of the bottle v, also decreased, from ~3 cm.s “lto ~1ems™ L
These parameters were fixed before starting the session. When in the
course of one session, a sudden drop in performance or motivation
threatened to greatly lower the number of trials, the task could then be
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Experimental setup and neuronal control protocol. A, Schematic of the experimental setup. A bottle containing water and syrup is held by a metal piece placed on a one-dimensional

linear axis rail, perpendicular to the rat’s body. The bottle always starts from the left of the rail and can only move in one direction (black arrow; the green rectangle indicates the bottle course). The
rat can drink when the bottle is close enough from the center (“drinking zone”, blue rectangle). Green and blue LEDs shown on the right indicated trial onset and reward, respectively. B, Bottom,
Spiking activity of a single neuron (see 60 superimposed action potentialsin the inset) during the waiting period (black), the trial (green), and the reward period (blue ticks). The smoothed firing rate
of the unit (middle black curve) controls the displacement of the bottle toward the rat from a lateral starting position (top). The speed depended on the difference between the firing rate and two
thresholds (purple and orange horizontal lines). The thresholds were set at fixed percentiles of the previous firing rate distribution (black histogram on the left). When close enough to tongue reach,
that s, upon entering the drinking zone (blue rectangle), the bottle automatically moved in front of the mouth and stayed there for 3 . The colored triangles (green and blue) below the time axis
represent the colored LEDs that were switched on for the different phases of the experiment. Intertrial intervals (waiting periods) were of a variable randomized duration of 8 —125s.

made easier or more difficult by modifying the threshold fi,;,, inside the
range 90-94% of the firing rate distribution.

Conditioning criterion and conditioning effect. All spiking activities were
analyzed with a custom-made program (Eclipse Qt C+ +). Results were
displayed with the same software or in Matlab (MathWorks).

Performance during a session was measured by counting the number
of trials during which reinforcement was obtained. However, we always
kept the task difficulty sufficiently low so that the animal received fre-
quent rewards during the session. This was necessary to avoid stress of the
head-fixed rat and maintain its behavioral motivation (Schwarz et al.,

2010). Thus, we devised a measure of the effect of the conditioning pro-
tocol during one session based on the comparison of test and control
trials completed under the same set of session parameters. Accordingly,
we compared the movements of the bottle during the trials to the virtual
movements of the bottle that would have been produced if the neural
activity of the waiting period had been used, together with the same
activity-to-speed rule as described above for trials. For these recon-
structed trajectories, we took the neural activity between 3 and 6 s of each
waiting period and concatenated these episodes to obtain periods of
activity with a duration as long as the real trials. To confirm the validity of
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Figure2. The conditioning effect for a single unit increases across sessions. A, Top, Spiking activity of a neuron submitted to operant conditioning during one trial (first line, green ticks) and the

subsequent reward period (first line, blue ticks), and during a waiting period (second line, black ticks). Bottom, Reconstruction of the bottle movements using the spike patterns for each of these
periods (green/blue: trial and reward; black: waiting). Additionally, the activity-based position for the trial is compared to the real position of the bottle (magenta points, see Materials and Methods).
The blue shaded area represents the drinking zone. B, The mean (= SEM) time-to-reward is plotted for eight several successive sessions using the reconstructed bottle position for the trial and
waiting periods (black and green lines) and the real bottle position (magenta line). Stars indicate significant conditioning (p << 0.01, two-tailed unpaired Student’s ¢ test; see Materials and
Methods). , Bottle trajectories reconstructed for session 2 (left) and session 7 (right) for the same neuron. We used the trial activity (up) and the waiting period activity (down) for reconstruction.
The percentage of trajectories that entered the drinking zone in the first second of the trials is displayed for each dataset.

our reconstruction algorithm, we applied it also to the real trial periods
and compared the real trajectories and time-to-rewards with the recon-
structed ones using trial activity (Fig. 2A,B, magenta vs green curves).
Trajectories were most often indistinguishable. We observed small dis-
crepancies due to the fact that whereas the offline algorithm indeed cal-
culates the smoothed neuronal activity precisely every 62.5 ms, the online
algorithm was sometimes delayed by a computer clock increment so that
the change in bottle speed was delayed as well. Thus, time-to-reward

values were consistently slightly longer during the real trials than when
simulated offline (Fig. 2B). To eliminate this bias in the rest of our
analysis, we always compared the waiting period time-to-reward distri-
bution to the offline (reconstructed) trial time-to-reward distribution,
and not the online (real) trial time-to-reward distribution.

The neuron was considered successfully conditioned for a session if
the distributions of time-to-reward of the waiting and trial periods were
significantly different (two-tailed unpaired Student’s ¢ test, p < 0.01). To
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estimate the strength of the conditioning effect, we used the normalized
mean difference to capture the distance between the time-to-reward dis-
tributions: d’ = (pyw — pr)/V/ (0% + 0F), with w and o representing the
mean and SD of the times-to-reward for waiting (W) and trial (T) recon-
structions. This measure gets larger when the activity of the neuron is
modulated quickly and strongly after trial onset. For analyses requiring
only one session per neuron, we defined the best session of the neuron as
the session with the highest conditioning effect d'.

The three parameters defining the task difficulty, i.e., fy;g,, the maxi-
mum trial length, and the velocity v, (see above), were the same for the
real trials and for the simulated (reconstructed) trials using the waiting
period activity.

Latency of individual trials, mean session latency, and rank of activa-
tion. To compute the latencies of firing rate increases for the individ-
ual trials, we convolved the instantaneous firing rate with a filter
pattern designed to signal an increase in activity h;,. = [0122.5]. The
bin width was 100 ms with 20 ms sliding steps. To detect high values,
we converted the filtered profile to a z-score waveform, using the
mean and SD in the window [—2 s 0 s] during the last five waiting
periods. The trial latency was then computed in two steps, by finding:
(1) the time after trial onset at which the z-score was first above a
value of 3 (p < 0.00135 for a one sided ¢ test), and (2) within that 100
ms window, the time abscissa of the first z-score >3 in the filtered
profile calculated with 20 ms bins. If no such variation of discharge
was found in 10 s, it meant either that no increase and no reward
occurred or that reward occurred without a measurable onset of in-
crease, and the trial latency was left unassigned. We defined the neu-
ronal reaction time of the neuron during one session by finding the
mode of the distribution of trial latencies, or the mean of the modes if
there were several local maxima.

Response latencies were sometimes not detected on individual tri-
als, even though the neuron exhibited a clear increase in activity when
averaged across trials. To quantify the delay of this increase, we de-
fined a mean session latency. A perievent time histogram (PETH)
between —2 s and +2 s relative to the trial start was constructed with
a sliding window of 100 and 20 ms step. The mean of the PETH was
computed within [—2 s; 0 s]. We transformed the raw PETH into an
equivalent normalized PETH of z-score values using this mean and
the corresponding variance value of a Poisson process. We first
searched for the earliest 100 ms duration bins where six successive
z-scores were found >2 (p < 0.023). Within this selected time win-
dow, the mean session latency was given by the earliest point in time
where the first z-score was found >1 using a discretization of 20 ms
bins. A second set of z-score thresholds, 5 (p < 1.10 *) and 2.5 (p <
0.00625), was used to detect high increases in firing rate. If, during a
session, a latency could be defined for at least one neuron, we looked
at the order of activation of all other neurons simultaneously re-
corded during that session based on their mean session latency. If
several neurons had the same latency, the rank of activation was
defined by the rounded mean position of those neurons.

Variability. For each session, we studied the evolution of the firing
variability of a neuron in the waiting periods between the end of one trial
and the beginning of the next one. These waiting periods were of ran-
domized duration, between 8 and 12 s. To quantify the trial-to-trial
variability, we computed the spike count within each 200 ms bin in the
waiting period, with time bins locked to the previous trial end. We cal-
culated the Fano Factor (FF) by dividing for each time bin the variance of
the spike count by its mean. This measure gives 1 for an ideal Poisson
process, as often reported for cortical neurons during ongoing activity
(for review, see Churchland et al., 2006).

Distances between recording sites were assessed from the known to-
pology of the microwire rectangular array. The minimum distance be-
tween two recording wires was 250 um (grid spacing) and the maximal
distance was 1.9 mm. Data from the two rats implanted with tetrodes
were discarded for analyses involving these distances (see Figs. 5D,E,
6A2,B2), as they could not be estimated accurately. We rarely recorded
activity from more than one neuron per electrode per session, so that we
could not estimate the average firing properties of nonconditioned neu-
rons at the same location site as conditioned neurons.
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Results

General features of neural-based operant conditioning

One hundred seventy-eight single units were recorded from the
primary motor cortex of eight rats. Seventeen neurons were
trained, one at a time, for neuronal operant conditioning, from 1
to 6 per animal.

Before surgery, the animals were accustomed to sit in a har-
ness and drink from a bottle containing a sweet liquid, while their
head was maintained fixed (Fig. 1A). For each trial of this pre-
conditioning period, the bottle moved automatically from its ini-
tial position to the drinking zone in front of the mouth. The
animal was then allowed to drink during 3 s, after which the bottle
returned to the start position and a waiting period of 8-12 s
elapsed before the next trial. Once a unit was chosen for neuronal
control, this conditioned unit had to increase its firing rate above
a high threshold to move the bottle toward the animal until it
reached the drinking zone (Fig. 1 B, blue area). Liquid reinforce-
ment was then allowed during 3 s. Above the threshold, the speed
of the bottle increased linearly with the smoothed firing rate of
the unit (see Materials and Methods). Animals were submitted to
two training sessions per day, each session consisting of ~50-100
trials both in the preconditioning and the conditioning period.
Task difficulty was progressively adjusted so that a sufficient
number of completed trials could be collected during any given
session, both for data analysis purposes, and for maintaining a
high reward level and motivation of the animal (Schwarz et al.,
2010).

To quantify the performance of the conditioned neuron dur-
ing one session, we compared the spiking activity patterns during
the trials to those recorded during the same session in the waiting
periods between trials (see Materials and Methods). This com-
parison was based on the ability of spike patterns to successfully
bring the bottle to the drinking position. Figure 2A shows the
action potentials of a conditioned neuron during one trial and
during a waiting period of same duration, as well as the virtual
control trajectories of the bottle calculated with the neural con-
trol algorithm using these two firing patterns as inputs (green and
black lines, respectively). The firing rate of the unit increased 500
ms after trial onset, resulting in a rapid movement of the bottle
toward the drinking zone until it entered it at 1 s. By contrast, the
firing activity of the waiting period remained low and resulted in
asimulated trajectory of the bottle that was still outside the drink-
ing zone after 3 s. We defined the time-to-reward as the time after
onset when the reconstructed position of the bottle first entered
the drinking zone. For this conditioned neuron, the average time-
to-reward varied little for the first three sessions (Fig. 2B, green
curve) and decreased progressively in the following sessions,
whereas the average time-to-reward calculated on the waiting
period activity remained relatively unchanged (black curve). We
defined a successful conditioning session as one for which the
average time-to-reward was significantly reduced during trials
compared with the one obtained with reconstructed values
from the waiting period (two-tailed unpaired Student’s ¢ test,
p < 0.01; Fig. 2 B, green stars). This neuron was thus success-
fully conditioned from session 4 to session 8, which was its last
conditioning session. On Figure 2C, all the trajectories of the
second (left) and seventh (right) session are plotted for the
trial (top) and waiting (bottom) periods. Bottle movements
were similar for both periods during the second session,
whereas in the seventh session, many more trajectories en-
tered the drinking zone during trial periods than waiting pe-
riods activity (40% vs 4% in the first second of the trials). This
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of sessions (Fig. 3C, r* = 0.69, p <
7.10 7%). Figure 3D shows that in paral-
lel, the average conditioning effect d’
increased significantly (r* = 0.82, p <
2.107°). On average, 896 trials were
necessary to reach the maximal task dif-
ficulty. This level was successfully
achieved in 4 neurons and required
10-25 consecutive sessions per condi-
tioned neuron.

Furthermore, we tested whether there
was an improvement of performance
within sessions. We divided each session
in two equal successive blocks of trials and
compared the conditioning effect in the
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lated relative to the trial start, on a trial-
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coefficients (r2) and significance levels (p) indicated.

analysis was applied to all neurons selected for operant condi-
tioning (n = 17). All but two neurons were successfully con-
ditioned in at least one session.

In addition to determining for each session whether the con-
ditioning protocol had a significant effect, we quantified the mag-
nitude of the associated changes. For example, for the fifth session
of the data displayed in Figure 3A (same neuron as Fig. 2 B), we
plotted the histograms of time-to-reward for the two recon-
struction datasets (Fig. 3B). As defined above, a conditioning
session was successful when these two distributions were sig-
nificantly different. We further defined the conditioning effect
(d’'—see Materials and Methods) as the distance (d) between
the means of these two histograms, normalized by the com-
bined SD. At the population level, the percentage of neurons
that were successfully conditioned increased with the number

13

The conditioning effect increases across sessions for the population of conditioned neurons. A, Mean (= SEM)
time-to-reward during trial and reconstructed from the waiting periods for 8 successive sessions for a single conditioned neuron
(same dataasFig. 2 B). B, Histograms of all time-to-reward values for session 5 (indicated by the magenta boxin 4), comparing the
times to get reward during trial (green) with the estimated (virtual) times to get reward during waiting (black). d represents the
distance between the two means, and is divided by the pooled SD to yield the conditioning effect ¢’ displayed in D (see Materials
and Methods). C, Percentage of neurons successfully conditioned for each session. The total number of neurons used is indicated
near each data point. Only sessions with n = 2 neurons were used. D, Mean conditioning effect for each session averaged across all
conditioned neurons, by comparing time-to-reward during trial and (reconstructed during) waiting periods. Error bars represent
SEM. E, Similar to D, but after dividing each session in two halves. Linear fits for graphs € and D are plotted and the correlation

by-trial basis, and how regular and
consistent were the fast modulations.
To that end we selected for each neuron
the session with the highest condition-
ing effect, to estimate a lower bound of
best performance that can be achieved
with this protocol with sufficient train-
ing. For such a session, we constructed a
raster plot centered on each trial start
and indicated the latency of the neuro-
nal activity increase for each trial (see
Materials and Methods), if measurable
(Fig. 4A1, magenta dots). On a few tri-
als, the neuron failed to show a significant increase and the rat
missed the reward. The average bottle movement and increase
of activity during trials for the whole session are displayed
below the raster plot (Fig. 4A2,A3), confirming that the activ-
ity rose in the first few hundreds of milliseconds. We estimated
the neuronal reaction time for that session by determining the
mode of the distribution of individual trial latencies (150 ms;
Fig. 4 A3). Figure 4 B shows the distribution of those modes for
the population of conditioned neurons, and this for the best
session of each neuron as defined above. We observed that the
discharge rate of 13 of the 17 conditioned neurons had a peak
reaction time shorter than 500 ms, and 8 among them consis-
tently fired in the first 200 ms after trial onset. Among these 8
fastest neurons, 7 had 100% successful trials during the ses-
sion, and the last one 98%. In total this corresponds to 1 failure

14 15 16
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per 500 trials. This shows that for nearly half of the neurons
that were conditioned, the increase in firing was very reliable
and fast, despite the absence of any requirements on the neu-
ronal reaction time during the trial. This performance was
only reached in sessions with the highest conditioning effect.
When averaging over all sessions and all neurons, the percent-
age of trials for which the animal obtained the reward was
85%.

The conditioned neurons are the first activated in the

local network

The conditioned neuron and many neighboring neurons were
recorded simultaneously with electrodes arranged in a 250 uwm
grid around the conditioned neuron electrode. In total, 161
neighboring neurons were recorded in the eight rats (~15-20 per
session). We often observed increases in the firing rate of non-
conditioned neurons after trial onset, as displayed by the PETHs
of Figure 5A for one conditioned neuron (green line) and three
neighboring neurons (blue and red lines). To assess the temporal
organization of activity in the local network, we computed the
latency of activation of each neuron for each session, if measur-
able (see Materials and Methods; Fig. 5A, filled and open circles
for two levels of sensitivity). Each neuron was assigned a rank of
activation based on the response latencies of all the neurons re-
corded simultaneously. We divided the rank data for all sessions
into three categories, depending on whether the neuron was con-
ditioned at that session, had been submitted to operant condi-
tioning previously, or had never been submitted to operant
conditioning.

Across all sessions, the conditioned neurons responded faster
than neurons from the two other categories. The distribution of
ranks for conditioned neurons was significantly shifted toward
lower values compared with the distributions for the two other
groups (Fig. 5B; Mann-Whitney Utest, p < 10 ®and p < 10 ™%,
n = 165 sessions). This was especially true for ranks 1 and 2,
which indicates that the conditioned neuron was often among the
first neurons to respond. To confirm that the conditioned neuron
was reacting both fast and strongly, we raised the threshold of
latency detection from 2 to 5 SD above the mean (see Materials
and Methods), so that only neurons with highly significant in-
creases in firing rate were now considered for determining the
activation order in the network. As expected, fewer neurons re-
sponded according to that criterion, and the number of sessions
where we could measure the latency of at least one neuron de-
creased (Fig. 5C, n = 109 sessions). However, taking into account
only those sessions, the proportion of conditioned neurons with
rank 1 or rank 2 increased from 33% to 42%, whereas it decreased
for the two other categories of neurons. This confirmed that the
conditioned neuron tended to react more often, faster and more
strongly than the surrounding nonconditioned neurons.

<«

times and they are colored depending on the experiment phase (black: waiting; green: trial;
blue: reward periods). Small magenta dots mark the calculated individual trial latencies.
A2, Bottle position averaged over trials for the same session. The blue area represents the
drinking zone. A3, Perievent time histogram for the session shown in A7, for the waiting
period (black line before 0) and the trials (green line after 0). The activity during reward
periods (blue spikesin A7) was not included. Bin size, 50 ms. A4, Distribution of individual
trial latencies for the same session, plotted in 100 ms bins. The peak of the distribution,
defining the neuronal reaction time, is indicated by an arrow. B, Distribution of the best
neuronal reaction time for all 17 conditioned neurons, in 100 ms bins. The session with the
highest conditioning effect was used for each neuron (best session, see Materials and
Methods).
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Figure 5.  Differences in the rank of activation between conditioned neurons and simultaneously recorded neighboring neu-

rons. A, Perievent time histogram of neuronal activity normalized and centered on trial onset, for four neurons simultaneously
recorded during the same session (green: the conditioned neuron; blue: a previously conditioned neuron; red: two neurons never
conditioned). Filled and empty circles of different colors represent the session latency for thresholds at 2 and 5 SD (see Materials and
Methods). One of the neurons (red dashed line) did not have ameasurable latency for that session. The latency of the blue neuron could only
be defined for the 2 SD threshold. Additional (n = 20) neurons that were simultaneously recorded during that session have not been
included for sake of clarity. Bin size: 20 ms; each value is the z-transform of the firing rate integrated over a sliding window of 100 ms.
Latencies were calculated using a 20 ms bin scale (see Materials and Methods). B, €, Distributions of the ranks of activation for all sessions,
based on the latencies defined as in A, for thresholds at 2 SD (B) and 5 SD (C). Only sessions where a latency could be measured for at least
one neuron are included (B, n = 165 sessions; €, n = 109 sessions). All the neurons are partitioned into three categories (green: condi-
tioned at that session, B, 165 and €, 109 latency values; blue: previously conditioned, B, 237 and (, 183 latency values; red: never condi-
tioned, B, 2758 and C, 1836 latency values). D—E, Response integral for the conditioned (green) and nonconditioned neurons (red) as a
function of the distance relative to the recording site of the conditioned neuron. Values are averaged over all sessions during which
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We also quantified directly the
strength of activation of each neuron by
integrating the firing rate above the base-
line value in the first second after trial on-
set, whenever it exceeded the mean by two
times the SD value (Fig. 5D, inset). For
this analysis, the conditioned neurons
were classified in two categories: those
that showed significant conditioning in at
least half of the sessions, called “highly
conditionable” (n = 10), and those that
failed in more than half of the sessions,
called “weakly conditionable” (n = 7).
During all training sessions, conditioned
neurons (green) associated with a strong
conditioning efficacy (highly condition-
able) exhibited on average a larger re-
sponse integral than nonconditioned
neighboring neurons (Fig. 5D, red). The
response integral of nonconditioned neu-
rons did not depend on the distance to the
conditioned neurons. During training
sessions with weakly conditionable neu-
rons, all neurons displayed similar re-
sponse integrals (Fig. 5E).

Firing rate variability of the
conditioned neuron increases before
trial onset

Trial-to-trial variability of spiking activity
in a neuronal network has been previously
proposed to be inversely related to the de-
gree of preparation before a movement
(Churchland et al., 2006). In addition, it
can facilitate learning and adaptation in a
dynamic environment by favoring the ex-
ploration of more network states (Faisal et
al., 2008). In particular, it is exacerbated
at the time and location where sensori-
motor learning is supposed to happen
(Mandelblat-Cerf et al., 2009). To estab-
lish a possible relation between variability
in the ongoing activity and success of the
conditioning, we quantified the trial-to-
trial variability of the firing rate of each
neuron during the waiting period using
the FF index (see Materials and Methods).
At the beginning of the waiting period,
there was no significant difference be-
tween the conditioned and noncondi-
tioned neurons (Fig. 6A1,Bl, early).
However, the highly conditionable neu-
rons showed a strong increase of their
mean variability index at the end of the
waiting period (Fig. 6A1, green curve)

<«

highly conditionable (D, n = 10 neurons, 111 sessions) and
weakly conditionable (E, n = 5 neurons, 44 sessions) neurons
were trained. Inset, The response integral was defined by the
area between the neuron PETH corresponding to firing rates
higher than the baseline activity by 2 SD, during a one-second
period following trial onset.
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Figure 6. The firing rate variability of the conditioned neuron builds up during the waiting period. A7, B1, Average time course of the trial-to-trial variability of the discharge rate, measured by
the FF, for conditioned (green) and never conditioned (red) neurons using 200 ms bins. All sessions during which a highly conditionable neuron (47, 111 sessions on 10 conditioned neurons) and a
weakly conditionable neuron (BT, 63 sessions on 7 conditioned neurons) was conditioned were analyzed separately. Stars indicate a significant difference between the conditioned and noncon-
ditioned neurons at the p < 0.01 level. Arrows indicate the two time points (early and late) during each waiting period, used for the data displayed in A2 and B2. Variability of a Poisson process is
represented by the horizontal dotted line at FF = 1. For waiting periods terminating before the end of the time scale, only spikes from the waiting periods themselves were included in the

calculation; i.e., the activity recorded after trial onset was not considered. The horizontal black/gray bar below the graphs indicates the range of waiting period durations, and the blue bar indicates
the drinking period. In A7, the gray curve displays the mean normalized activity of the conditioned neurons over the same window (scale on the right of the graph). A2, B2, (Figure legend continues.)
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compared with the nonconditioned population average (Fig.
6A1, red curve; Mann—Whitney U test, p < 0.01 are noted with
stars). No trend was noticeable for the weakly conditionable cat-
egory (Fig. 6 B1). Also, the increase in variability was not accom-
panied by a concomitant trend of the mean firing rate (Fig. 6 A1,
gray line).

To assess whether this increase was due to a bias in the selec-
tion of conditioned neurons, we looked at the mean variability
index during the waiting period for neurons that had been sub-
mitted to a conditioning protocol in previous sessions. Indeed, if
we just happened to select neurons with a propensity for high
variability to start with, we expect all conditioned neurons—
currently or previously conditioned—to exhibit the same vari-
ability profile in any session. In contrast, the curve for the
previously conditioned neurons did not differ significantly from
that of the nonconditioned neurons (Mann—Whitney U test, p <
0.01, data not shown). It is thus unlikely that the high variability
that we observed was due to a selection bias of the neurons.
Similarly, we wanted to assess the possibility that the high trial-
to-trial variability emerges from correct patterns of activity trig-
gered in the local network in anticipation of trial start. We
averaged the variability for the group of nonconditioned neurons
that were responsive after trial onset, i.e., neurons for which the
session latency could be measured and thus are most susceptible
to participate in patterns of activity related to the task. Again,
there was no significant difference with the nonconditioned av-
erage (Mann—Whitney U test, p < 0.01, data not shown). This
implies that task-related increases in firing did not generate by
themselves increased variability before trial onset, because in that
case the increased variability should have been visible for these
neurons as well. These results suggest that the increase in Fano
Factor index before trial onset is a correlate of the learning spe-
cific to the currently conditioned neuron.

This was further confirmed by plotting the variability index as
a function of the distance between the recorded neuron and the
conditioned neuron. Again, the variability increase was found to
be selective for the conditioned neuron. The mean variability
computed for the neurons located at each distance did not signif-
icantly differ from the average variability of the population (Fig.
6 A2, late; Mann—Whitney U test, stars indicate significance at the
p < 0.01 level). For sessions involving weakly conditionable neu-
rons, no significant difference from the population level was no-
ticeable at any distance either (Fig. 6 B2, late). Overall, these data
indicates no observable spatial trend of the variability increase
depending on the distance to the conditioned neuron. This ob-
servation does not contradict the fact that neurons other than the
one used to control behavior also modified their activity during
the learning process (Fig. 5D), but it excludes a possible gradient
of variability, or at least indicates that it is very localized with a
length constant smaller than 250 wm. In summary, an increase in
the trial-to-trial variability of the firing rate of the conditioned
neuron develops during the waiting period, for highly condition-
able neurons, but this modification does not seem to involve any
specific motor cortex region around it, except possibly a small
one.

<«

(Figure legend continued.) ~ Average variability (FF) in the early (left, t = 1) and the late
(right, t = 11 s) parts of the waiting period between successive trials for the conditioned
(green) and nonconditioned neurons (red) as a function of the distance relative to the recording
site of the conditioned neuron, for sessions during which a highly conditionable neuron (42) or
aweakly conditionable neuron (B2) was trained. Stars indicate significant differences with the
variability of the population (Mann—Whitney U test, p << 0.01).
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Finally, to examine how the transient increase in variability
before trial onset changes in the course of learning, we computed
the variability of the highly conditionable neurons at the end of
the waiting period as a function of session number and con-
fronted it with the learning curve of those neurons. The late vari-
ability was high during the first sessions of the training and
progressively decreased throughout the sessions (Fig. 7, solid
green curve). During the last sessions, the variability was close to
the variability of a Poisson process (FF = 1), that is, it was at the
same level than during the early part of the waiting period, and at
the same level than that of nonconditioned or weakly condition-
able neurons. Interestingly, the curve of performance (Fig. 7,
dashed green curve) increased in the first sessions as long as the
variability was high, and stabilized in the last sessions when the
variability returned to its intrinsic level, confirming that the vari-
ability decrease time course was indeed related to the learning
process. The time course of the variability throughout sessions
for the nonconditioned neurons did not follow the same trend, as
it slightly increased over days (Fig. 7, red curve), possibly dem-
onstrating a refocus of learning (Mandelblat-Cerf et al., 2009).

Discussion

We applied operant conditioning on single neurons in the rat
motor cortex, to assess whether the reactivity and response reli-
ability of a single-unit provides an output signal efficient enough
for controlling brain-machine interfaces. Our results support the
concept that using one neuron at a time may be suitable for BMI
control. Most neurons tested (88%) successfully learnt the operant
task at least in one of the sessions during which they were submitted
to conditioning. The conditioning effect strengthened over succes-
sive sessions with the same neuron. The conditioned neurons dis-
played a number of specific functional modifications compared with
simultaneously recorded neurons, notably a larger increase in firing
rate, a shorter neuronal reaction time, and a transient change in
discharge variability in anticipation of the trial onset.

Improvement in the operant task often required up to 5-10
sessions with the same neuron. This was similar to results re-
ported from the few other operant conditioning studies con-
ducted with rats (Gage et al., 2005; Marzullo et al., 2006). By
contrast, operant conditioning of neurons in the primate motor
cortex can be achieved much faster, within minutes (Moritz et
al., 2008).

Previous operant conditioning studies focused on mean firing
rate changes (Olds, 1965; Fetz, 1969) or mean changes at trial
onset (Gage et al., 2005; Marzullo et al., 2006). Only a few works
reported single trial reaction times, but without quantification
for all neurons and trials (Evarts, 1966; Schmidt et al., 1978).
Here, we examined the kinetics of activity for each single trial,
and focused for each conditioned neuron on the session with the
highest conditioning effect. Despite the fact that units had poten-
tially the whole trial of several seconds to increase their firing rate,
most of the conditioned units consistently responded within 500
ms, and nearly half of them below 200 ms. These latencies com-
pare to the ones found by Schmidt et al. (1978) when condition-
ing motor cortex neurons in the hand-arm area or by Evarts
(1966) when monkeys performed a fast movement of grasping,
while recording pyramidal tract cells in motor cortex.

In the eight neurons exhibiting a reduced latency of the oper-
ant response output, we observed a high reliability across trials,
such that the percentage of successful trials reached 99.8% for the
best sessions recorded for these neurons. This might appear un-
expected, in light of recent studies suggesting that the motor
representation may be continuously changing at the single cell
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level, even for a given stable output

Arduin et al. @ Neuronal Operant Conditioning in a BMI Task

(Cohen and Nicolelis, 2004; Carmena et
al., 2005; Rokni et al., 2007). However, 1.8}
other studies have argued on the contrary
for a strong stability of functional proper-
ties of motor cortex neurons (Chestek et
al., 2007; Stevenson et al., 2011). In our
experiments, the decoding rule of the
prosthesis was fixed and only one neuron
was used. This could have forced the
emergence of a stable and precise map, in
which the conditioned neuron was the
sole operant output. For the sessions that
were less reliable, it remains to be deter-
mined whether the failures were caused by
changes in the internal states like atten-
tion or motivational drops, intrinsic sto-
chasticity of some of the conditioned
neurons, or a motor strategy limiting the
precision of the firing rate.

Most remarkably, we found that the
conditioned neuron fired on average be- 0.8+
fore neighboring neurons recorded si-
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multaneously, and exhibited stronger
modulations. This was unexpected, be-
cause our protocol did not require the
conditioned neuron to increase its firing
rate first or more strongly. Indeed, if con-
ditioned responses had occurred in syn-
chrony with increased activity in the
network a few hundred milliseconds later,
this would essentially have produced the
same number of drinking reinforcements
by the end of the session. Our results show
that the neuron responsible for the instrumental control acquires
the functional role of a “master” cell, taking the lead of activation
of the local cortical network.

We wondered whether conditioned neurons responded to
bottle movements, so that a positive sensory feedback might be
responsible for the conditioned neurons modulation of activity.
PETHs aligned with the onset of bottle movement of each trial
showed a phasic peak of response around the movement in the
conditioned master neurons only, which was absent in noncon-
ditioned neurons. We cannot exclude that a positive feedback
loop triggered by the bottle displacement participates to later
phases of maintained activity, but the differential patterns ob-
served between conditioned and nonconditioned cells suggests
that the time course of the activity does not reflect simply visual
reafference.

Several observations strengthen the concept of a specificity of
the conditioned cells developing progressively during learning of
the operant task. First, master cells exhibited a surprisingly large
firing rate variability in the waiting periods between trials. This
was in contrast with the smaller variability observed for noncon-
ditioned neurons and for conditioned neurons that failed to
reach a high performance threshold (weakly conditionable neu-
rons). For those categories, the variability was at the level of a
Poisson process, as reported in other cortical studies (for review,
see Churchland et al., 2006). Examination of the time course
showed that the variability of the master cells started at baseline
level and increased progressively throughout the waiting period,
until it became significantly higher than control values before
trial onset. High variability has been reported in the literature in

Figure 7.

34 56 78 910 1112 13-14 15-16
session

Time course of variability changes and conditioning effects across successive sessions. Evolution of the trial-to-trial
variability of activity measured during the late phase of the waiting period for the conditioned neuron. The measures, taken from
highly conditionable neurons only, are averaged for pairs of consecutive sessions, starting from the first day of conditioning (solid
green curve). The red curve plots the variability of the simultaneously recorded nonconditioned neurons for those same sessions.
Performance is represented by the conditioning effect d' (dashed green line, scale on the right; see Fig. 2D). The dotted line at
variability = 1indicates the variability of a Poisson process.

situations involving uncertainty of the action to be executed and
arelated lack of preparation of the motor plan (Churchland et al.,
2006; Afshar etal.,2011). Here, all trials have identical constraints
for completion. However, because the duration of the waiting
periods was variable, the high variability in firing rate could re-
flect the building up of expectancy of the next trial start. Alterna-
tively, the high variability of master cells could reflect intrinsic
mechanisms of learning. Similar observations have been reported
during trace eye blink conditioning (Disterhoft et al., 1988) and
in motor cortex during Pavlovian learning (Woody et al., 1991;
Saar and Barkai, 2003). Both studies report the same temporal
dissociation between an early phase of increased excitability and
its extinction during the asymptotic phase of learning (Moyer et
al., 1996). Indeed, such excitability process could facilitate learn-
ing by exploring patterns of discharge that are not commonly
triggered (Rokni etal., 2007; Mandelblat-Cerfet al., 2009). This is
further supported by the temporal relationship between the mas-
ter cell variability and the conditioning effect (Fig. 7), showing
that this mechanism is necessary for learning but not for perfor-
mance afterward. The transient nature of increased excitability
also suggests that some regulatory processes restore the normal
baseline state, which is an important property for a mechanism
supporting memory consolidation (Byrne, 1987). In our case, the
fact that the mean variability of the nonconditioned population
slowly increases in late sessions additionally suggests that once
the master cell has been established, plasticity mechanisms could
occur in the local network and consolidate task-related modifi-
cations of nonconditioned neurons (Mandelblat-Cerf et al,
2009).
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Another indication that the master cell occupies a unique po-
sition comes from the unexpected spatial selectivity of both the
firing rate response and the increase in variability between trials.
Whereas most studies of learning-related changes noticed wide-
spread phenomena (Pascual-Leone et al., 1994), or modifications
that are common to all cells tuned for the task (Churchland et al.,
2006; Mandelblat-Cerf et al., 2009), in our study the functional
modifications are largely restricted to the successfully condi-
tioned neurons. Of course, we do not exclude the possibility of
nondetected plastic modifications since our recording sample is
limited, but they would be necessarily sparsely distributed in the
network, or very close to the master neuron (<250 um).

Two mechanisms could lead the master neuron to fire earlier
and more strongly than others: a change in intrinsic excitability
and/or a change in the synaptic circuitry of the pathways that
ultimately activate the conditioned neuron. In the motor cortex,
enhanced excitability and signal transduction are dependent on
neuromodulatory dopamine projections, known to be active
duringlearning and reward (Yasumoto et al., 2002; Schultz, 2007;
Hosp et al., 2009; Hosp et al., 2011). A possible interpretation of
our results is that dopamine levels may change progressively and
affect selectively the neurons of the motor cortex that are in-
volved actively in the task. Other processes could come into play
such as the unmasking of latent priming effects revealed when the
learning context reappears, tagging (Redondo and Morris, 2011),
and state-dependent learning (Shulz et al., 2000). However, it is
difficult to explain how such modifications could be restricted
only to the master neuron. Alternatively, plasticity changes of the
master neuron may reflect synaptic modifications distributed up-
stream in the sensory and sensorimotor networks recruited by the
task (Meftah and Rispal-Padel, 1994). Again, dopamine release
triggered by the task reinforcements could be an important factor
for the induction of such modifications (Rioult-Pedotti et al.,
2000; Bao et al., 2001; Molina-Luna et al., 2009).

In the context of the development of efficient brain-machine
interfaces, the demonstration of operant conditioning of the fir-
ing rate of a single neuron, almost in real time, should help build-
ing bottom-up strategies for higher dimensional control, in
particular n-D as required for sophisticated actuators. To design
a full BMI with our paradigm, each of several conditioned neu-
rons—or small groups of neurons, to increase reliability even
more—should be assigned to control different state variables (ki-
nematic, dynamic, or even higher level parameters) or different
task-related values of a prosthetic device (Snyder et al., 1997;
Musallam et al., 2004). This requires that neurons can function
independently. Such independence has been previously observed
for motoneurons (Smith et al., 1974), motor units (Basmajian,
1963), and between motor cortex neurons and muscles (Fetz and
Finocchio, 1971; Fetz and Baker, 1973; Moritz et al., 2008). The
operant conditioning approach, exploiting the plasticity proper-
ties of cortical neurons, should be pursued in parallel to the fruit-
ful advances obtained with the neural ensemble decoding
approach. Initially based on the recording of very large popula-
tions of neurons, this strategy was recently implemented using a
few tens of cortical motor neurons in order for tetraplegic pa-
tients to successfully control a robotic arm (Hochberg et al.,
2012).

The functional changes induced in the cortical network by
operant conditioning may be explained by different but not ex-
clusive scenarios. A first scheme posits that the primary changes
are not restricted to the conditioned cell and that the operant
control of the bottle is established through dynamic restructura-
tion of correlations in the premotor and motor networks. Such
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network changes may result both from synaptic and excitability
changes, as often observed during classical behavioral (Disterhoft
etal., 1986) or cellular (Daoudal and Debanne, 2003) condition-
ing. Unfortunately in our experiments, the sampling of noncon-
ditioned cells was not dense enough to have a chance to reveal
coupling changes in a distributed assembly.

However, the comparison between simultaneously recorded
cells in our experiments showed that (1) the conditioning does
not result in a spatial gradient centered in the vicinity of the
conditioned cell whose activity changes drove the bottle displace-
ment, and (2) that activation latencies point to a temporal reor-
dering of the network activity. This latter observation suggests a
second interpretative scheme, where the conditioned neurons
would become master units encoding for the causality established
through operant conditioning between the cell’s firing rate and
the bottle movement. Note that this concept, popular in electron-
ics and robotics (e.g., tinkertrons) and invertebrate literature
[“orchestra leaders” in the study by Meyrand et al. (1994)], share
strong similarities to that of “grand-mother” cells (for review, see
Bowers, 2009) and “iconic memory” cells (Sakai et al., 1994),
except that the emergence of these highly specialized neurons
through learning applies here to anticipation of action/decision
rather than perception.
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