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Activity-dependent protein synthesis at synapses is dysregulated in the Fragile X syndrome (FXS). This process contributes to dendritic
spine dysmorphogenesis and synaptic dysfunction in FXS. Matrix Metalloproteinase 9 (MMP-9) is an enzyme involved in activity-
dependent reorganization of dendritic spine architecture and was shown to regulate spine morphology in a mouse model of FXS, the Fmr1
knock-out mice. Here we show that MMP-9 mRNA is part of the FMRP complex and colocalizes in dendrites. In the absence of FMRP
MMP-9 mRNA translation is increased at synapses, suggesting that this mechanism contributes to the increased metalloproteinase level
at synapses of Fmr1 knock-out mice. We propose that such a local effect can contribute to the aberrant dendritic spine morphology
observed in the Fmr1 knock-out mice and in patients with FXS.

Introduction
The Fragile X syndrome (FXS) is the most common form of
inherited intellectual disability and also the most common
known single gene cause of autism (Hagerman et al., 2005; Bagni
et al., 2012). One of the characteristic features of FXS neurons is
an abnormal dendritic spine morphology (Rudelli et al., 1985).
Immature, long and thin dendritic spines are also observed in the
Fmr1 knock-out (KO) mouse, a model of FXS (Comery et al.,
1997). FXS results from the loss of FMRP, an RNA binding pro-
tein largely characterized for its role in regulating synaptic pro-
tein synthesis (Bassell and Warren, 2008; Bhakar et al., 2012;
Darnell and Klann, 2013).

FMRP controls distinct aspects of mRNA metabolism in neu-
rons, such as dendritic transport and translation at synapses or
stability (Bagni et al., 2012). FMRP associates with a subset of
mRNAs and is transported in a stimulus-dependent manner
(Antar et al., 2004). At the synapse, it can regulate translation
in at least two different levels: initiation through the neuronal
eIF4E-BP CYFIP1 (Napoli et al., 2008) or other eIF4E-BPs
(Sharma et al., 2010) and elongation through reversible stalling of

ribosomes (Darnell et al., 2011). Local protein synthesis is ele-
vated in Fmr1 KO mice and, importantly, it cannot be regulated
by neuronal stimulation (Zalfa et al., 2003; Lu et al., 2004; Mud-
dashetty et al., 2007). A number of FMRP target mRNAs identi-
fied to date encode for postsynaptic and presynaptic proteins,
structural and scaffolding proteins, neurotransmitter receptors,
and signaling molecules (Darnell et al., 2011).

In a recent study, it was shown that Matrix Metalloproteinase
9 (MMP-9) levels were increased in a mouse model for FXS and
that reduction of MMP-9 by the antibiotic minocycline was suf-
ficient to rescue dendritic spine dysmorphogenesis in vitro and in
vivo (Bilousova et al., 2009). This effect was accompanied by
behavioral improvement in young mice and ameliorated perfor-
mance in general cognition, activity, and anxiety tests (Bilousova
et al., 2009). This is an intriguing observation considering that
MMP-9 is involved in activity-dependent reorganization of den-
dritic spine architecture (Michaluk et al., 2007, 2011; Dityatev et
al., 2010). On the other hand, application of MMP-9 onto
cultured neurons induces formation of filopodia-like imma-
ture dendritic spines that resemble FXS spines (Michaluk et
al., 2011). Based on those findings clinical trials to test mino-
cycline have been undertaken and there is evidence that mi-
nocycline provides some functional benefits to FXS patients
(Paribello et al., 2010; Utari et al., 2010; Leigh et al., 2013).
However, how absence of FMRP results in an increase of
MMP-9 has never been investigated.

Recently, we have reported that MMP-9 mRNA is transported
to the dendrites and locally translated in the synaptodendritic
compartment after neuronal stimulation (Dziembowska et al.,
2012). Here, we show that FMRP is involved in transport of
MMP-9 mRNA to the synapses where it regulates its translation.
Increased translation of the MMP-9 mRNA in the Fmr1 KO mice
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leads to excessive protein synthesis at the synapse. Since MMP-9
activity has an effect on the processing of extracellular matrix as
well as proper function of adhesion molecules (Dziembowska
and Wlodarczyk, 2012), we propose that increased MMP-9 levels
in FXS can partially explain the dendritic spine dysmorphology
observed in this syndrome.

Materials and Methods
Animals. We have used 1- to 2-month-old Fmr1 KO mice on FVB back-
ground with age-matched FVB wild-type (WT) mice. Before the experi-
ment, the animals were kept in the laboratory animal facility with ad
libitum access to food and water with a 12 h light/dark cycle.

Gel zymography. The gel zymography on synaptoneurosomes isolated
from cortices and hippocampi of Fmr1 KO and WT mice (of either sex)
was performed according to Szklarczyk et al. (2002). Protein concentra-
tions were measured using BCA protein assay (Pierce). Synaptoneuro-
somes were lysed in 2� sample buffer and subjected to electrophoresis in
SDS-PAGE Tris-glycine 8% acrylamide gels containing 0.5% gelatin
(POCH) under nondenaturating, nonreducing conditions. Gels were
washed twice for 30 min in 2.5% Triton X-100 and incubated in the
zymography buffer (50 mM Tris, pH 7.5, 10 mM CaCl2, 1 �M ZnCl2, 1%
Triton X-100, and 0.02% sodium azide) for 5 d at 37°C. Gels were stained
with 0.5% Coomassie.

RNA coimmunoprecipitation. Immunoprecipitation was performed
according to the modified protocol of Brown et al. (2001). Synaptoneu-
rosomes from WT and Fmr1 KO mice of either sex (1800 �g of total
protein) were resuspended in 1200 �l of precipitation buffer (10 mM

HEPES, pH 7.4, 400 mM NaCl, 30 mM EDTA, and 0.5% Triton X-100)
supplemented with protease inhibitor cocktail (Sigma-Aldrich) and 100
U/ml RiboLock (Fermentas), then precleared with 180 �l of Dynabeads
A for 2.5 h. Afterward, 1/3 of each supernatant was saved as input fraction
for WB and RNA isolation. Precipitation was performed overnight in
4°C with 120 �l of antibody-bound Dynabeads Protein A, blocked
beforehand with either anti-FMRP antibody (7G1–1 or rAM2) or
normal mouse IgGs. Next, 1/6 of the beads was boiled with sample
buffer for WB. From the remaining beads, total RNA was isolated with
TRIzol (Invitrogen).

For the quantitative real-time (qRT)-PCR, RNA was suspended in
11 �l of RNase free H2O and its concentration was determined by
NanoDrop. External control “spike” mRNA (LSM gene from Arabi-
dopsis thaliana) was added into the reaction mix (1 pg per reaction).
Then the RNA was reverse-transcribed using random hexamer prim-
ers (Fermentas).

Reverse transcription PCR and qRT-PCR. RNA isolated from synaptoneu-
rosomes, prepared from WT and Fmr1 KO female mice, was reverse tran-
scribed using SuperScript III Reverse Transcriptase (Invitrogen) and
random hexamer primers. Real-time PCR was performed using SYBR Green
PCR Master Mix (Applied Biosystems) and primers: MMP-9F:gcgctgggct-
tagatcattc, MMP-9R:agccacgaccatacagatgc,�CaMKIIF:gcctgaagaagttcaat-
gcc, �CaMKIIR:ctcaatggtggtgttggtgc, PSD95(Dlg4)F:tgagctatgagacggtgacg,
PSD95(Dlg4)R:cgcttaggacgtgtcgtatg, beta2mF:ctgaccggcctgtatgctat,
beta2mR:cagtctcagtgggggtgaat. LSM(spike)F: tcttctctctccgtgtcca R:tgat-
caattcgccaatgcg. In the coimmunoprecipitation experiment, for both In-
put fraction and immunoprecipitated RNA, TaqMan primer/probe set
for MMP-9 (Applied Biosystems, Mm00442991_m1) was used. Values
were calculated according to the ddCT method, using Input WT as a
normalizer and spike mRNA as an external control.

3,4-dihydroxyphenylglycol stimulation, in situ hybridization, and
immunostaining. Primary rat hippocampal neurons (14 d in vitro
(DIV)) were pulse stimulated with 50 �M 3,4-dihydroxyphenylglycol
(DHPG) for 5 min, medium was then washed out, replaced with the
conditioned medium, and cells were fixed at different time points at 0,
10, and 20 min. In situ hybridization and immunostaining with rabbit
anti-FMR1 (sc-28739; Santa Cruz Biotechnology) were performed
according to Dziembowska et al. (2012). We have counted MMP-9
mRNA-positive granules per 50 �m of dendrite in the minimum
distance of 10 �m from the cell body and we have assayed their
colocalization with FMRP.

Synaptoneurosomes and polysomes-mRNP assay. Synaptoneuro-
somes prepared from cortices and hippocampi of 1- to 2-month-old
WT and Fmr1 KO female mice as described previously (Dziembowska
et al., 2012) were stimulated with 100 �M DHPG (Tocris Bioscience)
for 15 min at 37°C. Next, synaptoneurosomes were lysed using buffer
A (20 mM Tris-HCl, pH 7.4, 125 mM NaCl, 5 mM MgCl2, 2 mM dithio-
threitol, 100 �g/ml cycloheximide, and protease and RNase inhibi-
tors) containing 1.5% Triton X-100. Resulting supernatant was
loaded on a 10 –50% linear sucrose gradient prepared in buffer A and
spun at 38,000 rpm for 2 h in a Beckman SW-41 rotor. Each gradient
was separated into 11 fractions. Before the RNA extraction spike
mRNA, an in vitro transcribed fragment of A. thaliana LSM gene was
added to each of the fractions. RNA was next isolated by TRIzol
(Invitrogen) and mRNAs of interest were analyzed by quantitative
radioactive RT-PCR. Puromycin (Sigma) was added to synaptoneu-
rosomes in 2 mM concentration for 30 min.

Western blotting. Western blotting was performed as before (Dziem-
bowska et al., 2012). Antibodies used were as follows: rabbit anti-
FMRP H-120 (sc-28739; Santa Cruz Biotechnology) or D14F4
(#7104; Cell Signaling Technology), anti-ribosomal protein L13
(sc-98525; Santa Cruz Biotechnology), anti-GAPDH (MAB374; Mil-
lipore), anti-GFAP (sc-166458; Santa Cruz Biotechnology), and anti-
�-DG (NCL-b-DG; Novocastra).

Results
MMP-9 protein levels are increased at synapses from Fmr1
KO mice
To investigate if the increase of MMP-9 protein level in the brain
from the Fmr1 KO mice (Bilousova et al., 2009) was also detected
at synapses, we studied the presence of MMP-9 gelatinolytic ac-
tivity in synaptoneurosomes isolated from cortices and hip-
pocampi of either WT or Fmr1 KO mice by gel zymography. As
shown in Figure 1A, synaptoneurosomes (SN) from Fmr1 KO

Figure 1. MMP-9 level is increased in synaptoneurosomes from Fmr1 KO mice. A, Gel
zymography on protein extracts from synaptoneurosomes prepared from WT and Fmr1
KO. The activity of MMP-9 was quantified by densitometry. ***p � 0.001, n � 7 males
per group, unpaired t test. Error bars indicate SEM. B, Characterization of protein content
of synaptoneurosomal fraction isolated from WT and Fmr1 KO mice. Crude homogenate
(H), filtrate (F), synaptoneurosomes (SN), and supernatant (cytosolic, C) fractions were
analyzed by Western blotting. Synaptoneurosomes were analyzed for the synaptic protein
PSD-95, the transmembrane protein �-DG and the glial protein GFAP. Glyceraldehyde-3-
Phosphate Dehydrogenase (GAPDH) was a loading control.
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mice show an increase of MMP-9 activity. The enrichment in
synaptoneurosomes was evaluated by Western blotting. In the SN
fraction synaptic proteins such as postsynaptic density protein
(PSD)-95 and �-dystroglycan (�-DG) were detected whereas the
glia-expressed Glial fibrillary acidic protein (GFAP) was strongly
reduced (Fig. 1B).

FMRP interacts with MMP-9 mRNA in
mouse synaptoneurosomes
In silico analysis of the murine MMP-9 mRNA sequence revealed
a set of paired Gs within 3�UTR of the transcript. Paired Gs form-
ing an intramolecular G-quartet, or G-rich sequences (Zalfa et al.,
2007), are RNA sequence motifs bound by FMRP (Darnell et al.,
2001; Schaeffer et al., 2001; Subramanian et al., 2011). To inves-
tigate whether MMP-9 mRNA interacts with FMRP in the brain,
we performed RNA coimmunoprecipitation on synaptoneuro-
somes isolated from the cerebral cortex and hippocampi of WT
and Fmr1 KO mice. As shown in Figure 2A, FMRP was precipi-
tated by the 7G1–1 anti-FMRP antibody (Brown et al., 2001)
from synaptoneurosomes prepared from WT hippocampi and
cortex, while it was not detected from the Fmr1 KO immunopre-
cipitates (IPs). Next, we performed RT quantitative-PCR on both
input and immunoprecipitated fractions, to assess levels of
MMP-9 mRNA and control mRNAs. The mRNA levels of
MMP-9, PSD-95, and �-2-microglobulin (B2M) mRNAs were
not significantly different between WT and Fmr1 KO mice (Fig.
2B). On the contrary, MMP-9 mRNA was significantly enriched
in the IPs from the WT mice compared with the Fmr1 KO.
PSD-95 mRNA, a known target of FMRP (Muddashetty et al.,
2007; Zalfa et al., 2007), was also significantly enriched in the IPs
from the WT mice when compared with the Fmr1 KO. B2M
mRNA levels did not differ between both IP fractions, further
supporting the specificity of the MMP-9 mRNA-FMRP interac-
tion (Fig. 2C). The coimmunoprecipitation was also performed
independently with a different anti FMRP antibody (Ferrari et al.,
2007) confirming these results (Fig. 2D,E).

FMRP and MMP-9 mRNA colocalize in dendrites and
dissociate after mGluR stimulation
FMRP can act as an adaptor for kinesin light chain to promote
stimulus-induced transport of specific mRNAs (Antar et al.,
2005; Ferrari et al., 2007; Charalambous et al., 2013). Therefore
we have next investigated whether MMP-9 mRNA is transported
to the dendrites in FMRP-containing granules. To address this
question, we first studied the colocalization of MMP-9 mRNA
and FMRP in the dendrites of cultured hippocampal neurons
(19 —21 DIV). To directly visualize MMP-9 mRNA and FMRP in
the dendrites, we transfected neurons with an MS2-GFP reporter
system (Zenklusen et al., 2007). This system consists of three
plasmids, one contains 24 MS2 binding sites fused with MMP-9
coding sequence and its 3�UTR (pMS2-BS-MMP9), containing
the G-rich sequence possibly required for its dendritic localiza-
tion (Subramanian et al., 2011). The second plasmid contains
GFP fused with the MS2 protein able to bind the 24 MS2 binding
sites (pMS2-GFP). The third plasmid contains FMRP-mCherry.

Neurons were cotransfected with pMS2-BS-MMP-9; pMS2-
GFP and FMRP-mCherry, the latter expressing red-FMRP fusion
protein. As shown in Figure 3A, GFP-labeled MMP-9 mRNA
granules colocalize with FMRP-mCherry in dendrites consistent
with the data generated upon immunoprecipitation. Several con-
trols were performed to address the specificity of our findings:
neurons were either transfected with FMRP-mCherry with the
pMS2-GFP plasmid or with FMRP-mCherry and pMS2-BS-

Figure 2. FMRP coprecipitates with MMP-9 mRNA in mouse synaptoneurosomes. A, West-
ern blot analysis of the immunoprecipitated FMRP from mouse synaptoneurosomes shows
FMRP precipitated by the anti-FMRP 7G1–1 (Brown et al., 2001) antibody in WT mice. Fmr1 KO
extracts as well as IgG IPs were used as negative controls. B, Steady-state levels analyzed by
RT-qPCR of PSD-95, MMP-9, and B2M mRNAs in synaptoneurosomes from WT and Fmr1 KO
mice. p � 0.03, n � 3, one-sample t test. Values were normalized to WT. C, RT-qPCR analysis of
mRNAs immunoprecipitated by anti-FMRP antibody. MMP-9, PSD-95, and B2M (negative con-
trol)mRNAsdetectedintheWToverFmr1KOIPs.Valueswerenormalizedtotheexternalspikecontrol
gene. Error bars indicate SD, n�3, *p�0.03, **p�0.01 by Student’s t test. D, E, Same as in A and
C using a different FMRP antibody: rAM2 antibody (Ferrari et al., 2007) analyzing PSD-95, MMP-9, and
hypoxanthine phosphoribosyltransferase (HPRT; negative control) mRNAs, n � 1.
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Figure 3. MMP-9 mRNA colocalizes with FMRP in dendrites and dissociates from FMRP-containing granules after mGluR stimulation. A, Hippocampal neurons were cotransfected with the
MS2-GFP reporter system pMS2-BS-MMP9 to visualize MMP-9 mRNA (green) and FMRP-mCherry (red); the colocalization is indicated by white arrows. B, Control transfections of hippocampal
neurons. FMRP-mCherry and pMS2-GFP vector; FMRP-mCherry and pMS2-BS-vector. C, In situ hybridization combined with immunofluorescence shows the MMP-9 (Figure legend continues.)
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vector without MMP-9 mRNA sequence. GFP showed uniform
diffuse staining in the controls and no colocalization with red
fluorescent FMRP protein was detected (Fig. 3B).

To investigate if neuronal stimulation causes a change in the
association of MMP-9 mRNA with FMRP, hippocampal neurons
were pulse stimulated with a Gp1 agonist of mGluRs (DHPG) for
5 min, the cell culture medium was then washed out, replaced
with the conditioned medium, and cells were fixed at 10 and 20
min. Endogenous MMP-9 mRNA was revealed by in situ hybrid-
ization combined with immunodetection of FMRP. MMP-9
mRNA was localized in granules along the dendrites and exhib-
ited abundant colocalization with FMRP (Fig. 3C). The number
of double-positive MMP-9 mRNA and FMRP granules was
counted in control conditions and after stimulation with DHPG.
We observed a significant decrease in the number of double-
positive (MMP-9 and FMRP) granules, 10 and 20 min after
DHPG stimulation, whereas the total number of MMP-9 gran-
ules and the intensity of fluorescence detected in the dendrites
with the anti-FMRP antibody did not change (Fig. 3C–F). The
percentage of MMP-9 mRNA-positive granules, which colocal-
ized with FMRP protein in WT resting neurons, was 66.8%
(SEM � 1.5) for unstimulated and 68.6 (SEM � 1.9). After
mGluR stimulation with DHPG (10 –20 min) we observed a sig-
nificant decrease in the number of MMP-9-positive granules that
colocalized with FMRP: 10 min after DHPG 52.9% (SEM � 2.0),
20 min after DHPG 53.8% (SEM � 1.9).

Analysis of the polysomes-mRNP distribution of MMP-9
mRNA at synapses
To investigate if MMP-9 mRNA is efficiently delivered to the
synapses of Fmr1 KO mice, we detected the level of MMP-9
mRNA, as well as other dendritically localized FMRP target mR-
NAs, calcium/calmodulin-dependent protein kinase II alpha
(�CaMKII) and postsynaptic density protein PSD-95, in synap-
toneurosomes isolated from cortices and hippocampi of WT and
Fmr1 KO mice (Hou et al., 2006; Muddashetty et al., 2007; Zalfa
et al., 2007). No significant difference in the level of MMP-9
mRNA was detected between WT and Fmr1 KO synaptoneu-
rosomes (Fig. 4A). Considering the elevated level of MMP-9
protein detected in the synaptoneurosomes of Fmr1 KO mice
(Fig. 1A), we hypothesized that a deregulated local synthesis of
MMP-9 occurs in the Fmr1 KO mice at synapses.

To investigate if local production of MMP-9 protein is regu-
lated by FMRP, we analyzed the polysome-mRNP profile of
MMP-9 mRNA in synaptoneurosomes from WT and Fmr1 KO
mice under basal and stimulated conditions. Lysed synaptoneu-
rosomes were separated by ultracentrifugation on linear sucrose
gradient. Collected fractions were divided into five groups, which
correspond, from the top to the bottom of the gradient, to free
messenger ribonucleoprotein complexes (mRNP), monosomal
fraction, light polysomes, heavy polysomes, corresponding to the
actively translating polyribosomal fraction, and RNA granules
(Dziembowska et al., 2012). Total RNA was extracted from the

gradient fractions and then analyzed by nonsaturating radioac-
tive RT-PCR. For normalization the same amount of a spike
mRNA was added to each fraction before RNA extraction. After
DHPG stimulation of WT synaptoneurosomes MMP-9 mRNA
shifted to actively translating heavy polyribosomal fraction, from
�30 to �40% (Fig. 4B), in agreement with the fine-tuned local
protein synthesis. Fmr1 KO mice showed instead already 45% of
MMP-9 mRNA associated with heavy polysomal fraction in basal
status. After DHPG stimulation we could not observe an increase
of MMP-9 mRNA translation in synaptoneurosomes from Fmr1
KO, indicating a lack of response to synaptic stimulation. These
findings suggest that absence of FMRP leads to increased basal
translation and impaired activity-mediated translation of
MMP-9 mRNA at the synapse.

To reveal the fractions that contain polysomes actively trans-
lating MMP-9 mRNA we studied the effect of puromycin on
MMP-9 mRNA distribution along the gradient. Puromycin is an
amino-acyl tRNA analog that inhibits active translation on
polyribosomes. Synaptoneurosomes from WT mice brains were
stimulated with 100 �M DHPG and then treated with 2 mM pu-
romycin or 100 �M cycloheximide (CHX). Puromycin treatment
resulted in a shift of MMP-9 mRNA from the heavy and light
polysomal fractions to the fraction containing monosomes
(translationally silent; Fig. 4C). The cosedimentation of the ribo-
somal protein rpL13 detected by Western blot shifted after puro-
mycin treatment from heavy to lighter polysomal fractions (Fig.
4C, right).

Discussion
In the present study we identify MMP-9 mRNA as a specific
target of FMRP and provide evidence that FMRP regulates its
dendritic translation at the synapse. Our data support a model in
which synaptic MMP-9 is translationally regulated by FMRP. In
the case of FXS the lack of FMRP leads to excessive synaptic
synthesis of MMP-9 protein. We propose that such a local effect
can contribute to the aberrant dendritic spine morphology ob-
served in patients with FXS.

Recently 842 FMRP target transcripts have been identified by
the CLIP method (Darnell et al., 2011). However, MMP-9 mRNA
was not identified in this approach, probably due to its low abun-
dance in neurons when compared with other transcripts. Also in
a second study, which identified a larger number of FMRP target
mRNAs, MMP-9 was not detected (Ascano et al., 2012). Of note,
in a recent study performed in cancer cells MMP9 mRNA appears
as a strong FMRP target (Lucá et al., 2013).

Our work in neurons shows that MMP-9 mRNA is detected at
low levels in the dendrites compared with Arc and its level in-
creases after long-term potentiation induction (Dziembowska et
al., 2012).

Enhanced MMP-9 activity has been described in hippocampal
extracts of Fmr1 KO mice (Bilousova et al., 2009). In agreement
with those findings we also observed an increase in MMP-9 ac-
tivity in the cerebral cortex and more importantly in synaptoneu-
rosomes isolated from the Fmr1 KO mice (Fig. 1).

Sequence analysis of the 3�UTR of MMP-9 mRNA revealed
the presence of a G-rich sequence, similar to that found in several
FMRP-associated mRNAs, such as MAP1b (Darnell et al., 2011)
and PSD-95 (Zalfa et al., 2007). RNA-IP with two independent
FMRP antibodies confirmed the presence of the MMP-9 mRNA
in the complex with FMRP (Fig. 2). These findings were further
supported by colocalization of the MMP-9 mRNA with FMRP in
the dendrites (Fig. 3A). However, to confirm direct interaction

4

(Figure legend continued.) mRNA (red) colocalization with FMRP (green) in primary dendrites of
hippocampal neurons stained with MAP2 (blue). The insert is an enlarged area that shows colocaliza-
tion (white granules). In situ hybridization performed with sense (s-probe) or antisense (as-probe)
probe (bottom). D, E, Quantification of FMRP and MMP-9 mRNA granules. Fifty micrometer dendrite
segments before (D) or after DHPG treatment (E) (10 and 20 min). ***p � 0.001, nonparametric
ANOVA with Dunn’s post-test. Data were analyzed from at least 10 dendrites in each group from four
independent experiments. Error bars indicate SEM. F, As in D and E measuring the fluorescence inten-
sity detected with anti-FMRP antibody. Error bars indicate SD.
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between FMRP and MMP-9 mRNA further experiments are
needed.

In an earlier study Kao et al. (2010) show that FMRP can
mediate spatial mRNA delivery for local protein synthesis in re-
sponse to synaptic stimulation. After DHPG stimulation they
found that the total number of CaMKII� mRNA granules in the
dendrite did not change; however, the fraction of mRNA local-
ized in dendritic spine versus dendrite increased (Kao et al.,

2010). We also observed no change in the number of MMP-9
mRNA granules in the dendrite after DHPG stimulation, but the
number of MMP-9 mRNA and FMRP colocalizing granules de-
creases from 66.8% (SEM � 1.5) in unstimulated and 68.6
(SEM � 1.9) in control neurons to 52.9% (SEM � 2.0) 10 min
and 53.8% (SEM � 1.9) 20 min after DHPG stimulation (Fig. 3).
RNA granules can disassemble in response to neuronal activity,
which leads to release of translationally silenced mRNAs and

Figure 4. Translational regulation of MMP-9 mRNA at synapses. A, Quantitative analysis (RT-qPCR) of MMP-9, PSD-95, and �CaMKII mRNA levels in synaptoneurosomes isolated from WT and
Fmr1 KO mice (unpaired t test, p � 0.05; n � 4 males per group). B, Polysome-mRNP distribution of MMP-9 mRNA in WT and Fmr1 KO synaptoneurosomes. Radioactive RT-PCR showing the level
of MMP-9 mRNA and control (LSM) in five fractions without and after DHPG stimulation. Polysomal incorporation of MMP-9 mRNA was compared between WT and Fmr1 KO synaptoneurosomal
fractions in basal and DHPG stimulated conditions. The distribution of MMP-9 mRNA across the fractions is expressed as a percentage of mRNA in each fraction. n � 3 for each group; **p � 0.01,
*p � 0.03, two-way ANOVA with Fisher’s LSD post hoc test. Histograms represent mean values � SEM. C, The effect of puromycin on the MMP-9 mRNA distribution in the gradient fractions (left).
Western blotting with anti-ribosomal protein L13 on protein extracts prepared from the gradient fractions (right).
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their association into actively translating polysomes (Krichevsky
and Kosik, 2001). This would allow MMP-9 mRNA to dissociate
from its transporting, translationally silent FMRP-mRNP and to
be loaded on the polysomes.

Previous studies indicated that mRNAs transported in
FMRP containing mRNPs (such as �CaMKII, PSD-95, GluR1,
and NR1) can be properly delivered to the synapse of Fmr1 KO
mice since their level in synaptoneurosomes is not different
from in WT mice. (Muddashetty et al., 2007). In agreement
with previously published work, our data show that dendritic
transport of MMP-9 mRNA does not decrease in the Fmr1 KO
mice (Fig. 4A).

It is well established that one of the major consequences of
FMRP loss is deregulated synaptic protein synthesis (Bassell
and Warren, 2008; Bhakar et al., 2012). Here, we show im-
paired mGluR-dependent translation of MMP-9 in synap-
toneurosomes from Fmr1 KO mice. Stimulation with DHPG
leads to significantly increased association of MMP-9 mRNA
with polyribosomes. In the case of Fmr1 KO mice, the fraction
of MMP-9 cosedimenting with the polysomes does not change
following DHPG stimulation (Fig. 4B). This is consistent with
previous studies that show other transcripts regulated by
FMRP behave in the same way (Zalfa et al., 2003; Muddashetty
et al., 2007).

Activity-dependent local translation of MMP-9 mRNA at the
synapse is important for structural and functional dendritic spine
remodeling. Our findings for dysregulated synaptic translation of
MMP-9 mRNA in the Fmr1 KO explain higher activity of MMP-9
at the synapse of Fmr1 KO mice contributing to the aberrant
morphology of FXS dendritic spines (Michaluk et al., 2011).
Hence, our data further support clinical trials aimed at reducing
MMP-9 activity in FXS.
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