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Abstract

Background

Trypanosoma cruzi, the protozoan causative of Chagas disease, is classified into six main

Discrete Typing Units (DTUs): TcI-TcVI. This parasite has around 105 copies of the minicir-

cle hypervariable region (mHVR) in their kinetoplastic DNA (kDNA). The genetic diversity of

the mHVR is virtually unknown. However, cross-hybridization assays using mHVRs showed

hybridization only between isolates belonging to the same genetic group. Nowadays there is

no methodologic approach with a good sensibility, specificity and reproducibility for direct

typing on biological samples. Due to its high copy number and apparently high diversity,

mHVR becomes a good target for typing.

Methodology/Principal findings

Around 22 million reads, obtained by amplicon sequencing of the mHVR, were analyzed for

nine strains belonging to six T. cruzi DTUs. The number and diversity of mHVR clusters was

variable among DTUs and even within a DTU. However, strains of the same DTU shared

more mHVR clusters than strains of different DTUs and clustered together. In addition,

hybrid DTUs (TcV and TcVI) shared similar percentages (1.9–3.4%) of mHVR clusters with

their parentals (TcII and TcIII). Conversely, just 0.2% of clusters were shared between TcII

and TcIII suggesting biparental inheritance of the kDNA in hybrids. Sequencing at low depth

(20,000–40,000 reads) also revealed 95% of the mHVR clusters for each of the analyzed

strains. Finally, the method revealed good correlation in cluster identity and abundance

between different replications of the experiment (r = 0.999).

Conclusions/Significance

Our work sheds light on the sequence diversity of mHVRs at intra and inter-DTU level. The

mHVR amplicon sequencing workflow described here is a reproducible technique, that
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allows multiplexed analysis of hundreds of strains and results promissory for direct typing on

biological samples in a future. In addition, such approach may help to gain knowledge on

the mechanisms of the minicircle evolution and phylogenetic relationships among strains.

Author summary

Chagas disease is an important public health problem in Latin America showing a wide

diversity of clinical manifestations and epidemiological patterns. It is caused by the para-

site Trypanosoma cruzi. This parasite is genetically diverse and classified into six main lin-

eages. However, the relationship between intra-specific genetic diversity and clinical or

epidemiological features is not clear, mainly because low sensitivity for direct typing on

biological samples. For this reason, genetic markers with high copy number are required

to achieve sensitivity. Here, we deep sequenced and analyzed a DNA region present in the

large mitochondria of the parasite (named as mHVR, 105 copies per parasite) from strains

belonging to the six main lineages in order to analyze mHVR diversity and to evaluate its

usefulness for typing. Despite the high sequence diversity, strains of the same lineage

shared more sequences than strains of different lineages. Curiously, hybrid lineages shared

mHVR sequences with both parents suggesting that mHVR (and DNA minicircles from

the mitochondria) are inherited from both parentals. The mHVR amplicon sequencing

workflow proposed here is reproducible and, potentially, it would be useful for typing

hundreds of biological samples at time. It also provides a valuable approach to perform

evolutionary and functional studies.

Introduction

The protozoan parasite Trypanosoma cruzi (Kinetoplastea: Trypanosomatidae) is the causative

agent of Chagas disease. This parasite infects millions of people throughout its distribution in

Latin America. Chagas disease can display a broad pathological spectrum, including poten-

tially fatal cardiological and gastrointestinal dysfunctions [1].

T. cruzi is a monophyletic taxon showing a remarkable genetic heterogeneity, with at least

six phylogenetic lineages formally recognised as Discrete Typing Units (DTUs), TcI–TcVI [2,

3]; and a seventh lineage, named TcBat [4–6]. The genetic diversity of T. cruzi was firstly

revealed by Multilocus Enzyme Electrophoresis [7, 8] and posteriorly by very diverse tech-

niques including Multilocus Sequence Typing (MLST) [9–12], microsatellite typing (MLMT)

[13–18], target-specific PCR [19–21], PCR-RFLP [22, 23], PCR-DNA blotting with hybridiza-

tion assays [24–26], and recently by amplicon deep sequencing [27, 28]. The different

approaches have their own advantages and disadvantages and bring out the genetic diversity of

T. cruzi at different levels. Approaches that allow direct typing from biological samples (blood,

tissues, etc.), avoiding parasite culture, are more suitable for clinical and epidemiological stud-

ies. However, nowadays there is no methodologic approach with a good sensibility, specificity

and reproducibility for direct typing on biological samples.

Because there is usually a low number of parasites in infected tissues or blood samples,

genetic markers with high number of copies are required to achieve good sensitivity of detec-

tion [29]. In this regard, T. cruzi, as all the kinetoplastids, has a unique and large mitochon-

drion which contains a complex network of DNA, the kinetoplastic DNA (kDNA). The kDNA

represents approximately 20–25% of the total cellular DNA in T. cruzi and consists of two kind
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of circular DNA molecules: maxicircles and minicircles. Maxicircles contain mitochondrial

genes characteristic of other eukaryotes [30]. Minicircles are present in tens of thousands of

copies [31]. Each of them is organized into four highly conserved regions located 90˚ apart

each other, and an equal number of hypervariable regions (mHVRs) interspersed between the

conserved regions [32]. The highly conserved regions of minicircles have been widely used as

targets for molecular detection of T. cruzi DNA. The used primers show a good sensitivity and

specificity [29] and amplify a region of about 330 bp that totally include the mHVRs present

between conserved regions. This amplified region has been used in hybridization assays

(mHVR probes) and DTU-specific hybridization was observed only between isolates belong-

ing to the same genetic group [25, 26, 33–35]. This specificity observed in hybridization assays

suggests the presence of DTU specific sequences and even genotype-specific sequences (i.e.

sequences showing specificity at intra-DTU level). However, technical limitations that existed

until a few years ago for sequencing these highly variable kDNA regions, prevented the identi-

fication of the sequences in which the specificity relies. Some attempts were made by cloning

and sequencing some mHVRs [36, 37] but the limited number of studied sequences were not

enough to obtain a complete picture of the genetic diversity of these sequences. Thus, the

observed hybridization patterns between mHVRs continue being a black box system and the

sequence diversity of T. cruzi mHVRs virtually unknown.

Beyond the potential utility for strain typing, studying mHVR diversity is also interesting

because these sequences are involved in functions that are only known in kinetoplastids and in

no other eukaryotic organism. mHVRs code for short RNAs called guide RNAs (gRNAs).

gRNAs are involved on edition of several mitochondrially-coded mRNAs. This edition varies

from addition of some Us to building almost the full open reading frame of the mRNA [38,

39]. In this sense, gRNAs can be inferred from sequences of the mitochondrial mRNAs and

diversity on edition among strains can be addressed [40]. In addition, studying mHVR diver-

sity can shed light on how such sequences evolve and how they are inherited.

Here, we propose an amplicon deep sequencing approach that allows an accurate knowl-

edge of the sequence diversity of the hypervariable region of kDNA minicircles of T. cruzi and

opens the possibility of functional and evolutionary studies. This approach can be also used as

a typing method for hundreds of samples at time.

Materials and methods

Strains

DNA from nine cloned T. cruzi strains belonging to the six main DTUs was examined in this

study (Table 1). All the strains were typified by using an optimized Multilocus Sequence Typ-

ing scheme based on four gene fragments (HMCOAR, GPI, TcMPX and RHO1) according to

Diosque et al. [7], in order to confirm DTU for each strain.

Primer design and library construction

In order to amplify the minicircles hypervariable region, kDNA specific primers 121 (5’-ACA

CTCTTTCCCTACACGACGCTCTTCCGATCTAAATAATGTACGGG(T/G)GAGATGCAT

GA-3’) and 122 (5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTTCGATTG

GGGTTGGTGTAATATA-3’) were modified by adding an oligo adapter to be used in an Illu-

mina platform. The mHVR libraries were generated by a one-step PCR performed in 5 μl reac-

tion volumes containing 5 ng of DNA, 250 nM of each primer, 2 μM of barcode primers, 5 U

of Fast Start High Fidelity Enzyme Blend (Roche), 0.50 μl of 10X buffer (supplied with the Fast

Start High Fidelity Enzyme Blend), 25 nM of MgCl2 (Roche), 0.25 μl of DMSO (Roche), 10

mM of PCR grade nucleotide mix (Roche). The PCR reaction was carried out on a Veriti
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Thermal Cycler (Life Technologies) and ran as follow: an initial denaturation step (10 min at

95˚C), 10 cycles (95˚C for 15 seconds, 60˚C 30 seconds, 72˚C 1 min), 2 cycles (95˚C for 15 sec-

onds, 80˚C 30 seconds, 60˚C 30 seconds, 72˚C 1 min), 8 cycles (95˚C for 15 seconds, 60˚C 30

seconds, 72˚C 1 min), 2 cycles (95˚C for 15 seconds, 80˚C 30 seconds, 60˚C 30 seconds, 72˚C

1 min), 8 cycles (95˚C for 15 seconds, 60˚C 30 seconds, 72˚C 1 min) and 5 cycles (95˚C for 15

seconds, 80˚C 30 seconds, 60˚C 30 seconds, 72˚C 1 min). Amplicons were then purified using

the magnetic beads Agencourt AMPure XP-PCR Purification (Beckman Genomics, USA).

The concentration of the purified amplicons was controlled using Qubit Fluorometer 2.0

(Invitrogen, USA). All libraries were validated using the Fragment Analyzer system (Advanced

Analytical Technologies, USA). The average size of the mHVR amplicons was ~480bp. All

samples were then pooled and prepared according to the manufacturer’s recommendations

(Illumina Protocols: Sequencing Library Preparation) and sequenced on an Illumina MiSeq

using a 500 cycle v2 kit (Illumina, San Diego, USA) to produce amplicons of approximately

~480 bp in length (250 bp paired-end reads).

Bioinformatics

Read pre-processing. Reads were demultiplexed and adaptors were removed using Illu-

mina Miseq Reporter, according to the manufacture recommendations. Raw sequence reads

for all samples were quality filtered using the pair-end mode of Trimmomatic v0.36 [41]. This

software was used to remove low quality bases from the beginning and end of sequence reads

pairs (trimming). Also, a sliding window of 8 bases from left to right was performed. Sequence

reads were cut whenever the average quality into the window fell below the threshold (<15,

Phred score) and the right side of the read sequence was deleted. Sequences with a minimum

read length of 150 nt, were retained. Then, the retained paired-reads were merged into a con-

sensus sequence with its associated corrected base quality scores and chimeras were removed

using LeeHom software [42] with default parameters.

Clustering. The following steps in the workflow were all performed using QIIME v1.9.1

[43]. A further quality check of sequence reads was carried with the “split_fastq_libraries.py”

script. Default parameters were used, except for the quality threshold for trimming, which was

raised to 25. Then, preprocessed sequences were clustered with the “pick_de_novo_otus.py”

script. The de novo approach groups sequences based on sequence identity using the uclust

algorithm [44]. Default parameters were used, and sequences were clustered according to

three different identity thresholds—85%, 90% and 95%—in order to determine different

mHVR clusters. The terms “minicircle class” or “mHVR class” are used in the bibliography

without any clear definition and sometimes referring to mHVRs that codes the same gRNA.

Table 1. Strains used in this study.

Strain DTU Origin Host

1. PalDa20cl3 TcI El Palmar, Argentina Didelphis albiventris
2. TEV55cl1 TcI Tres Estacas, Argentina Triatoma infestans
3. Esmeraldo TcII Sao Felipe, Brazil Homo sapiens
4. TU18cl93 TcII Potosı́, Bolivia Triatoma infestans
5. X109/2 TcIII Makthlawaiya, Paraguay Canis familiaris
6. CANIIIcl1 TcIV Belém, Brazil Homo sapiens
7. MNcl2 TcV Región IV, Chile Homo Sapiens
8. LL014R1 TcV Las Leonas, Argentina Triatoma infestans
9. LL015P68R0cl4 TcVI Las Leonas, Argentina Canis familiaris

https://doi.org/10.1371/journal.pntd.0007536.t001
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Here, we used the term “mHVR cluster” defined as a group of mHVRs that share a minimum

sequence identity percentage with a cluster centroid without considering if a gRNA is coded

by it. The mHVR cluster size is defined as the number of reads that belongs to such cluster.

The following analyses were performed for these three identity thresholds.

Output tables were filtered at 0.005% using the “filter_otus_from_otu_table.py” script, in

order to discard mHVR clusters with low abundance which are more probably sequencing

artifacts [45], remaining parameters were used by default. The presence of a cluster into a

strain was discarded when its abundance was lower than 20 read sequences. Diversity was

measured by subsampling mHVR clusters tables using the “multiple_rarefactions.py” script.

Clusters tables were rarefied including a maximum of 10,000 reads/sample in order to deter-

mine the minimum number of reads needed to detect all the clusters of mHVR. Alpha diver-

sity measures—Simpson index and observed clusters—were estimated to determine the

composition of each strain in sampling units using the “alpha_diversity.py" script. The output

files of “alpha_diversity.py” were concatenated into a single file for generating rarefaction

curves with the “collate_alpha.py” script followed by the “make_rarefaction_plots.py” script.

In order to estimate compositional dissimilarity among strains, the “jackknifed_beta_diver-

sity.py” script was used. Default parameters and the Bray-Curtis measure were chosen. The

jackknifed beta diversity workflow calculates the beta diversity between each pair of previously

resampled input strains, forming a distance matrix. The distance matrix then was visualized

using UPGMA and Principal Coordinate Analysis (PCoA).

Rarefactions. In order to determine the minimum number of reads required to obtain

the correct assignment of DTU for each strain, beta diversity was estimated at different sub-

sampling levels. For each of the identity thresholds, the resampling of mHVR clusters was per-

formed using decreasing amount of sequence reads, from 820,000 to 10,000 reads, with

intervals of 10,000 reads and for 100 replications at each subsample.

Reproducibility assessment. To evaluate the reproducibility of the mHVR amplicon

sequencing, two independent amplifications (PCR1 and PCR2) for LL015P68R0cl4 strain were

performed. The data obtained were processed following the pipeline previously described.

Clusters shared between PCR1 and PCR2 were evaluated, the Pearson’s correlation coefficient

was calculated and the linear regression curve that best fitted the data was estimated.

Accession numbers

The raw data set has been deposited in the NCBI SRA database (BioProject ID:

PRJNA514922).

Results

mHVR abundance and diversity

A total of 22,092,382 paired reads were obtained by amplicon sequencing of the mHVR from

nine strains belonging to six DTUs. A total of 14,766,753 sequences were retained (an average

of�1.4 million of sequences per strain) after trimming low quality ends, merging paired reads

(forward and reverse), elimination of chimeric reads and filtering by base quality (S1 Table).

Surviving sequences were clustered according to different identity thresholds (85%, 90% and

95%) (Table 2, S2 and S3 Tables). The number of mHVR clusters for each strain was very simi-

lar using different thresholds (with differences less than 10% in all comparisons between 85%

and 95% thresholds). However, clustering at 85% threshold returned few more mHVR clusters

than clustering at 90% and 95% identity (See Table 2, S2 and S3 Tables). In addition, most clus-

ters were highly divergent among them (S1 Fig). At any threshold, the number of mHVR clus-

ters was variable among strains and DTUs (Table 2), ranging from 71 (Mncl2 –TcV) to 373
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(X109/2 –TcIII) clusters. Additionally, strong intra-DTU variations in the number of clusters

were observed in strains of TcI and TcII (Table 2). Finally, rarefactions of each dataset dis-

carded that these differences among strains are the effect of different sequencing depths

(Table 2, S2 and S3 Tables).

Strains belonging to TcIV, TcV and TcVI showed some dominant clusters containing a

high proportion of reads (i.e. the cluster size) (Fig 1). The sum of the six most abundant clus-

ters in TcIV, TcV and TcVI represent in all cases more than 50% of the clustered sequences

(80.9% and 69.1% in the TcV strains LL014R1 and MNcl2, respectively; 58.7% in TcIV strain

CANIIIcl1; and 52.5% in the TcVI strain LL015P68R0cl4). Even more, in LL014R1 and MNcl2

(TcV strains) the most abundant cluster represented the 29.7% and 17.8% of the total mHVR,

respectively. Instead, none of the clusters present in TcI, TcII and TcIII strains represented

more than 5.2%. This higher diversity in TcI, TcII and TcIII is also revealed by a higher Simp-

son diversity index than other DTUs (Table 2). Moreover, intra-DTU differences in mHVR

cluster diversity were observed in TcII. Particularly, Tu18cl93 had relatively less cluster diver-

sity than Esmeraldo (Table 2 and Fig 1).

Shared and non-shared mHVR clusters at intra- and inter- DTU level

As expected, shared mHVR clusters were mostly observed in strains belonging to the same

DTU. However, the percentage of shared clusters was highly variable depending on DTU. TcV

strains (LL014R1 and MNcl2) showed the higher proportion of shared clusters (97.3%; 72/74).

However, we observed strong differences in the cluster sizes (Fig 2C) although a positive corre-

lation was detected (correlation coefficient, r = 0.75) and some shared clusters were highly

abundant in both strains (Fig 2C). TcI strains (PalDa20cl3 and TEV55cl1) shared 17.5% (83/

475), and TcII strains (Tu18cl93 and Esmeraldo) shared 7.1% (33/466). Conversely, when we

look for shared mHVR clusters between strains belonging to different DTUs, we detected

none or few shared clusters (Fig 2D–2I and S2 Fig).

Strain clustering based on mHVR supports DTU-based classification and

supports the hypothesis of biparental inheritance of minicircles in TcV and

TcVI

The Bray-Curtis dissimilarity between strains was calculated using mHVR clusters conformed

at the different identity thresholds (85%, 90% and 95%). Such dissimilarities were used to ana-

lyze principal coordinates (PCoA) and to build UPGMA trees (Fig 3 and S3 Fig). Strains from

the same DTU clustered together (Fig 3) despite the high dissimilarities between strains

belonging to the same DTU (Fig 3C). These high dissimilarities between strains belonging to

Table 2. Number of mHVR clusters defined at a threshold of 85% sequence identity for different strains.

TcI TcII TcIII TcIV TcV TcVI

PalDa20

cl3

TEV55cl1 Esmeraldo Tu18

cl93

X109/2 CANIIIcl1 LL014

R1

MNcl2 LL015

P68R0 cl4

mHVR clusters 324 234 347 151 373 149 72 71 108

Rarefaction at 820,000 sequences

mHVR clusters 324 233.7 346.8 151 369 144.4 72 69.4 108

Simpson Index(diversity)� 0.991 0.989 0.994 0.978 0.994 0.885 0.827 0.902 0.942

� Average over 10 replications

https://doi.org/10.1371/journal.pntd.0007536.t002
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the same DTU determine that the three first axis in the PCoA explain just 49.1% of the vari-

ance. TcV strains clustered distant from other DTUs. TcIII and TcIV strains clustered near to

each other. Interestingly, TcVI strain was placed between TcII and TcIII in the PCoA. More-

over, TcVI was clustered with TcII in the UPGMA tree (Fig 3C). Such results are not in agree-

ment with the hypothesis of uniparental inheritance of the minicircles in the hybrid TcVI,

which comes from hybridization between TcII and TcIII. Consequently, we analyzed shared

clusters between TcII, TcIII and the hybrids DTUs (TcV and TcVI) in order to analyze the

hypotheses of uniparental or biparental inheritance of minicircles. We used a 90% identity

threshold in order to be more confident about the identity by descendance of the clusters. We

observed that TcV and TcVI share 11/530 and 19/559 mHVR clusters with TcII, respectively.

Likewise, TcV and TcVI shared 12/429 and 9/469 mHVR clusters with TcIII, respectively (Fig

4). Instead, TcII and TcIII share only 2 mHVR clusters between them out of a total number of

clusters of 842 combining TcII and TcIII. These results suggest that minicircle inheritance is

biparental. In addition, TcV and TcVI shared more mHVR clusters with their parental DTUs

than between them (Fig 4) which is concordant with the hypothesis of independent origins of

TcV and TcVI.

Fig 1. mHVR clusters distributed by size in nine strains. X-axis represent mHVR clusters ordered by decreasing size. The y-axis indicates the mHVR cluster size (i.e.

number of reads in the cluster). The cluster size was standardized assuming a total of 120,000 mHVR sequences per parasite (i.e. the value represents the expected cluster

size in a kDNA network with 120,000 mHVRs) in order to compare strains with different sequencing depths. Clusters with more than 6,000 sequences were observed for

MNcl2, LL014R1, LL015P68R0cl4 and CANIIIcl1 but the bars were cut at this value in order to a clearer comparison among strains.

https://doi.org/10.1371/journal.pntd.0007536.g001
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Potential suitability of the amplicon sequencing for NGS-based typing of T.

cruzi
In order to test if parallel amplicon sequencing would be useful for simultaneous typing of

hundreds of strains, we first evaluated rarefaction curves. In general, the minimum number of

reads required to detect at least 95% of the observed clusters was 20,000 filtered reads. The

only exception was MNcl2, which required 40,000 filtered reads. Increasing the number of

reads per sample beyond 20,000 slightly increased the number of detected mHVR clusters (Fig

5A). In addition, we evaluated the minimum number of reads required to observe the right

DTU assignment described in Fig 2. As few as 10,000 reads were enough to accurate clustering

of the strains (Fig 5B and 5C) at 100% of the rarefactions.

Amplicon sequencing of the mHVR could be useful to identify intra-DTU clusters, particu-

larly in TcV or TcVI where strains may have the same composition of mHVR clusters but with

high differences in abundance of each one. In order to develop future methods to assign strains

to intra-DTU clusters is pre-requisite that amplicon sequencing can be reproducible to deter-

mine mHVR cluster abundance. Consequently, we assessed reproducibility by sequencing and

Fig 2. Strains belonging to the same DTU share more abundant mHVR clusters than strains of different DTUs (85% identity threshold). Each dot in the graph

represents a mHVR cluster and the coordinates represent its standardized size in different strains (A-C) and in different DTUs of epidemiologic relevance (D-I). Dots

that do not localize in the axes represent shared clusters. mHVR clusters for: TcI (A), TcII (B), TcV (C), TcI vs TcII (D), TcI vs TcV (E), TcI vs TcVI (F), TcII vs TcV

(G), TcII vs TcVI (H) and TcV vs TcVI (I).

https://doi.org/10.1371/journal.pntd.0007536.g002
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comparing two independent PCR reactions of the mHVR in LL015P68R0cl4 strain (TcVI).

High correlation in cluster abundances in different PCRs of the same sample was observed

(r = 0.999 for the three different identity thresholds) (Fig 5D).

Discussion

Here, we made a deep amplicon sequencing of the hypervariable region of kDNA minicircles

in the six main lineages (DTUs) of T. cruzi. To the best of our knowledge, this is the first time

that these kDNA regions were sequenced at millions of reads of depth. Our results shed light

on different and very interesting aspects of these intriguing DNA sequences. We accurately

show the level of sequence diversity of mHVR within strains, between strains belonging to the

same DTU, and between strains belonging to different DTUs. Although it was already known

that mHVR were highly diverse [36], the magnitude of this diversity at the intra- and inter-

DTU level has not been demonstrated with the high precision provided by an NGS approach,

as we made here.

We propose a method for typing/elucidating intra-specific diversity of T. cruzi based on the

deep sequencing of the hypervariable region of kDNA minicircles. The idea is based on the

outdated but highly sensitive method of mHVR probes [25, 26, 35, 46–48]. Such probes are

Fig 3. Principal coordinates analysis and UPGMA clustering. Both analyses were based on the mHVR clusters identified at a threshold of 85% for each strain.

(A) 2D graphs combining two out of the three first axes resulting from PCoA. (B) Graph representing the three first axes of the PCoA. (C) Consensus UPGMA

based on 10 rarefactions of the mHVR clusters at 820,000 sequences.

https://doi.org/10.1371/journal.pntd.0007536.g003
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useful to detect T. cruzi diversity in biological samples. However, this methodology has the dis-

advantages of being technically cumbersome, relying on visual interpretation of bands and

requiring representative strains of the diversity of T. cruzi in every assay (used as probes). The

deep amplicon sequencing approach proposed here is reproducible and based on objective

sequence data which can be stored in online databases. Also, the method is multiplexable for

hundreds of samples at time and it would be directly applied to biological samples as the

mHVR probes. The method may be potentially useful to address epidemiological questions

about associations between intra-specific diversity and variability in clinical manifestations of

the chronic disease or the different rates of congenital transmission in different endemic areas.

Such questions have been unsuccessfully addressed using molecular markers with low resolu-

tion and/or low sensitivity on biological samples. We determined that around 20,000 filtered

reads are enough to reveal most mHVR diversity in a strain and theoretically allowing for run-

ning hundreds of samples in a single run of a MiSeq with costs similar or lower than MLST.

However, a wider set of strains belonging to the six main lineages must be studied. In addition,

new bioinformatic methods of analysis will be required for a direct application of the method

to biological samples.

In order to develop such typing method, we preliminarily analyzed and compared the

diversity of mHVR sequences in reference strains of six DTUs and at millions of reads of

sequencing depth. We observed that strains of the same DTU share more mHVR clusters than

strains of different DTUs. However, unprecedented high differences in mHVR cluster compo-

sition was observed for strains of the same DTU with less than 20% of shared mHVR clusters

in TcI and TcII. Instead, almost all mHVR clusters were shared between different TcV strains.

In addition, the patterns of DTU specificity observed by using mHVR probes may be explained

in TcV and TcVI by the presence of some shared and abundant clusters. Instead, considering

the higher diversity and low abundance of clusters in TcI, TcII and TcIII, the global pattern of

sequences is probably the responsible of specificity in the hybridization assays involving these

DTUs.

Fig 4. Shared mHVR clusters between parental (TcII and TcIII) and hybrids (TcV and TcVI) strains suggest biparental inheritance of minicircles in hybrids. Each

dot represents a shared mHVR cluster (i.e. abundance> 0 in both analyzed DTUs). TcII, combination of Esmeraldo and Tu18cl93. TcIII, X109/2 strain. TcV,

combination of clusters of LL014R1 and MNcl2. TcVI, LL015P68R0cl4 strain.

https://doi.org/10.1371/journal.pntd.0007536.g004
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Interestingly, our data revealed that diversity of mHVR sequences was variable even within

a DTU. This was particularly evident in TcII, where the number of mHVR clusters in Esmer-

aldo strain doubled that of Tu18cl93. Such differences may be caused by long times in culture

as it has been observed for other trypanosomatids [40, 49]. However, both strains were isolated

in the eighties and although it is possible that they had different times in culture, such times

would be not very different (i.e. not in the order of decades). According to this, we suppose

that the observed difference in mHVR diversity between the two TcII strains is not due to long

time in culture. In support of the hypothesis of no influence of the time in culture, we observed

no differences in mHVR diversity between the two TcV strains examined, despite they have

very different times of isolation and maintenance mode in the laboratory. One of them was

isolated in the 1980s and subjected to long periods of maintenance in culture (Mncl2); and the

other TcV strain (LL014R1) was isolated in 2008 and maintained in triatomine-mouse

passages.

Our results also shed some light on the evolutionary mechanism determining the large

genetic distances in mHVR sequences among strains and DTUs. The focus should be first

Fig 5. Suitability of amplicon sequencing of the mHVR for typing. (A) Proportion of clusters in relation to the maximum observed in Table 2 at different sequencing

depths. (B) Principal Coordinates analysis based on Bray-Curtis dissimilarities showing the first three axes at a sequencing depth of 10,000 reads. (C) UPGMA based on

Bray-Curtis distance showing relationships among strains at a sequencing depth of 10,000 reads. (D) Correlation between mHVR cluster sizes in two independent PCRs

from the strain LL015P68R0cl4 (TcVI).

https://doi.org/10.1371/journal.pntd.0007536.g005
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placed on TcV strains which are identical according to MLST and which shared most mHVR

clusters. Despite this, they strongly varied in relative frequencies of mHVR clusters. Such vari-

ations cannot be attributed to simple stochasticity of the PCR amplification because we

observed good correlation between different PCR reactions from the same sample (Fig 5D).

Consequently, it is probable that minicircle diversity is mainly driven by genetic drift. We pro-

pose that when two strains diverge, the frequencies of mHVR cluster varies stochastically,

some clusters increasing their relative frequency and other decreasing it. The next step can be

seen in strains of TcI which are more genetically distant than the TcV ones. Such TcI strains

show clusters with high abundance in one strain and with very low (or null) abundance in the

other one (look at most clusters located on the axes in Fig 2). Therefore, some clusters will be

lost if such lost is not deleterious (i.e. replaced by a different mHVR class that codes a gRNA

editing the same mRNA fragment). Thus, strains would diverge by variations in frequency of

the mHVR classes faster than by changes in their sequences. These variations in the frequency

of mHVR classes probably are not under selective pressure. mHVR frequency variations are

apparently allowed because the effective edition of the mRNA is not dependent on the abun-

dance of a minicircle [50, 51]. Variations in the frequency of mHVR classes have been also

inferred for T. brucei and Leishmania [52] and by a theoretical study assuming random or par-

tially random segregation of minicircles [53].

With the purpose of developing in the future DTU specific PCRs, we analyzed if different

DTUs share common mHVR clusters. Telleria et al. [36] did not detected shared sequences

between DTUs probably because the low sequencing depth. With a different approach, Velaz-

quez et al. [37] detected that most abundant mHVR classes in CL-Brener (TcVI) were also

present in other DTUs but in a considerably lower frequency. We detected shared mHVRs

between different DTUs but we did not detect any sequence shared by the six DTUs. Interest-

ingly, we observed shared clusters between TcVI and TcIII (2.1%). This is expected consider-

ing that TcIII is a parental DTU of the hybrid TcVI and maxicircle sequences of TcIII are

closely related to the TcVI ones [54–58]. However, the TcVI strain also shared 2.5% of mHVR

clusters with Esmeraldo strain (belonging to TcII, the other parental DTU of TcVI). Some-

thing similar is observed for the also hybrid DTU TcV (Fig 3). Instead, only 2 mHVR clusters

were shared between TcII and TcIII strains (0.2%). This clearly suggests that although maxicir-

cles have apparently uniparental inheritance in TcV and TcVI, minicircles were probably

inherited from both parentals and some of them persisted for 60,000 years since hybridization

[59]. Biparental inheritance of minicircles and maxicircles has been proposed for Trypanosoma
brucei hybrids [60–62]. In this parasite, it has been observed that maxicircle and minicircle

inheritance is biparental in hybrids. However, maxicircles (20–50 copies) are homogenized by

genetic drift resulting in the loss of whole maxicircles of one parental in few generations. How-

ever, minicircles have much more copies and they resist the fixation effect of genetic drift for

more time. Consequently, maxicircle inheritance is biparental and just seems to be uniparental

due to genetic drift. As consequence of the biparental inheritance of minicircles, it has been

proposed that such inheritance may help to preserve mHVR diversity in T. brucei preventing

the effect of the drift, and even that T. brucei requires genetic exchange to prevent the deleteri-

ous effect of loss of essential minicircle classes [53]. Nevertheless, genetic exchange has

remained elusive to be detected in T. cruzi. Experimental hybrids obtained by Gaunt and

coworkers showed that maxicircles are from one parental but minicircles were not analyzed

[63] and kDNA inheritance was still not addressed in more recent experimental hybrids [64].

In addition, the frequency of genetic exchange may be variable among different DTUs. TcV

and TcVI (which display a clearly clonal genetic structure at population level) [9, 10, 12, 57]

have very low mHVR diversity. Instead, TcI, TcII and TcIII, for which genetic exchange has

been proposed in the nature [11, 13, 15, 65], have higher mHVR diversity.
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Moreover, our data may help elucidate the origin of hybrid DTUs. It has been proposed

that TcV and TcVI are the result of a single hybridization event between TcII and TcIII and

both DTUs diverged posteriorly [66, 67]. However, the alternative hypothesis (two indepen-

dent hybridization) gain weight in the last years. Particularly, Multilocus Microsatellite Typing

(MLMT) and Multilocus Sequence Typing (MLST) analyses favored the two independent

hybridizations hypothesis [57, 59]. Considering biparental inheritance, and assuming a single

hybridization event, the two hybrid DTUs (TcV and TcVI) should share more mHVR classes

between them than with the parentals. However, our analyses show the contrary with very few

classes shared between TcV and TcVI (Fig 4). This result supports independent hybridizations

for the origin of TcV and TcVI. Alternatively, because both DTUs would have lost many

mHVR clusters, the high divergence among them may have been caused by simple stochasti-

city, although is less likely. Interestingly, if minicircle are biparentally inherited it is expected

that they will behave like the nuclear genes. So, it is expected that nuclear phylogenies will be

similar to the mHVR phylogeny and both discordant to maxicircle phylogeny in cases of

hybridization or introgression. However, some hypotheses about events that occurred very dis-

tant in time (e.g. mitochondrial introgression in the origin of TcIII [57–58]) might not be

addressed by mHVR-based phylogenies because the almost null number of shared mHVR

clusters between some DTUs.

Concluding, massive amplicon sequencing of the mHVR is reproducible and suitable for

typing hundreds of T. cruzi strains at time because few thousands of reads are required per

sample. However, some drawbacks still need solution. The main problem in biological samples

are mixed infections of different genotypes or DTUs which are very frequent [48]. However,

such problem can be overpassed by developing new bioinformatic methods comparing mHVR

composition of a sample against a reference mHVR database which should collect information

about the diversity in the DTUs of T. cruzi. In addition, the develop of an online database

where mHVR representative sequences are stored is needed. We are currently working on

such items. In addition, some rare events of mitochondrial introgression observed in natural

populations of T. cruzi lead to discordant typing between nuclear and maxicircle markers [16,

68, 69]. However, it is unknown the effect of mitochondrial introgression on minicircles. In

this sense, a Multilocus deep Sequence Typing (MLdST) may be good alternative and a second

step. The deep sequencing of amplicons of the mHVR plus satDNA (a 195 bp sequence with

105 sequences per genome) [70] may help elucidate such rare events and may increase sensitiv-

ity for typing on biological samples.
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