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Histone demethylases control root elongation in response to stress-signaling
hormone abscisic acid
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ABSTRACT
Abscisic acid (ABA) plays critical roles during plant growth and development in response to various
stresses. Arabidopsis thaliana histone demethylases JUMONJI-C DOMAIN-CONTAINING PROTEIN 30
(JMJ30) and JMJ32 control ABA-mediated growth arrest during the post-germination stage (2–3 days
after germination). However, the roles of JMJ30 and JMJ32 in ABA responses at later stages of plant
development remain largely unknown. Here, we show that JMJ30 and JMJ32 mediate ABA responses
during root development. In the presence of ABA, jmj30 jmj32 double mutants display longer primary
roots than the wild type. Loss-of-function mutation in the SNF1-RELATED PROTEIN KINASE 2.8 (SnRK2.8)
gene also led to a longer primary root phenotype in response to ABA. Analysis of JMJ30/JMJ32 and
SnRK2.8 expression suggested that they act in the same pathway to mediate ABA responses during root
elongation at the seedling stage. Our findings highlight the importance of the JMJ30/JMJ32-SnRK2.8
module at two different developmental stages.
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External stress negatively impacts growth, development, and
productivity of plants.1 One major stress is categorized as
abiotic or environmental stress, such as unfavorable atmo-
sphere, chemical elements, sunlight/temperature, wind and
water. Because plants are sessile organisms, they have devel-
oped various mechanisms to protect themselves against stres-
ses. In the last two decades, much research has focused on
understanding plant molecular frameworks toward improving
crop yield even under stress conditions.2-4

Abscisic acid (ABA) is a key stress-signaling hormone.5,6 In
response to stress such as water deficit and high salt, not only the
amount of ABA, but also ABA perception and response are
modulated. Osmotic stress caused by drought and high salt
triggers ABA biosynthesis, and the resulting ABA accumulates
in the cytosol and binds to the ABA receptors PYRABACTIN
RESISTANCE1 (PYR1)/PYR1-LIKE(PYL)/REGULATORY
COMPONENTS OF ABA RECEPTORS (RCAR).7,8 The acti-
vated ABA receptors bind to type 2C protein phosphatases
(PP2Cs) like ABSCISIC ACID-INSENSITIVE1 (ABI1) or
ABI2, inhibiting the catalytic activity of PP2C.9 SNF1-
RELATED PROTEIN KINASE2 (SnRK2) kinases are then
released from PP2C-mediated inactivation and trigger gene
expression through phosphorylation.10-12 After reaching
a certain threshold of ABA concentration or signaling, stomata
are closed and gene expression is changed through cis-acting
ABA-responsive elements (ABREs).13 ABRE and a group of
ABRE-binding transcription factors have pivotal roles in ABA-
dependent gene expression. Although ABA-dependent gene
induction is well characterized, how it is controlled at the levels
of histone modification remains unclear.

Histones function both positively and negatively in the
regulation of gene expression.14 The N-terminal tail of histone
H3 is modified post-translationally through acetylation, phos-
phorylation, methylation and ubiquitination.15 Histone mod-
ification enzyme complexes catalize reversible lysine
methylation central to epigenetic regulation by specifying
when, where and which histone residues need to be modified.
Despite their importance, the role of histone modification
enzymes in ABA responses is not well characterized.

We recently reported that the histone demethylases JUMONJI-
C DOMAIN-CONTAINING PROTEIN 30 (JMJ30) and JMJ32
control ABA-mediated growth arrest during the post-germination
stage.16 Under unfavorable environmental conditions, the B3
domain transcription factor ABSCISIC ACID INSENSITIVE3
(ABI3) is activated by ABA.17 ABA-activated ABI3 promotes
expression of JMJ30, presumably by direct binding via the evolu-
tionally conserved RY motif.16 JMJ30 and JMJ32 then remove
repressive H3K27me3 marks at the SnRK2.8 locus to activate its
expression.16 The upregulated SnRK2.8 promotes ABA-depen-
dent gene expression, which feeds forward to ABI3 activation.16

A comprehensive expression study of JMJ genes in response
to stress revealed that JMJ30 is upregulated by ABA during the
vegetative stage in Arabidopsis thaliana.18 However, the func-
tion of JMJ30 and JMJ32 in the ABA response during the
vegetative stage remains unknown. To understand their roles,
we performed phenotypic analysis using jmj30 jmj32 double
mutants in the absence and presence of ABA at the vegetative
stage (Figure 1A–D). Three-day-old wild-type and jmj30-2
jmj32-1 double mutant seedlings were transferred to half-
strength MS plates with or without ABA. When grown and
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maintained on half-strength MS plates without ABA, wild-type
and jmj30-2 jmj32-1 plants showed no obvious phenotypic
differences (Figure 1A); both displayed leaves of normal size
and color and well-grown primary roots with many lateral
roots (Figure 1A). No significant difference in primary root
length was observed between the wild type and jmj30-2 jmj32-1
without ABA (p > .05 by two-tailed Student’s t-test) (Figure
1D). ABA-treated plants of both genotypes had smaller and
paler leaves and shorter roots compared with control plants
(Figure 1A–C). In the presence of 5 µM ABA, primary root
length in the wild type was 3.7 ± 0.1 cm while roots of jmj30-2
jmj32-1 plants were significantly longer at 4.2 ± 0.1 cm (p < .01
by two-tailed Student’s t-test). Root elongation was inhibited
more in the presence of 10 µM ABA than 5 µM ABA (Figure
1B, C); however, there were still significant differences in root
length between the wild type and jmj30-2 jmj32-1 (p < .01 by
two-tailed Student’s t-test) (Figure 1D). These results suggest

that JMJ30 and JMJ32 are required for ABA-dependent inhibi-
tion of root growth during the vegetative stage.

To understand the role of SnRK2.8 in ABA-mediated root
elongation at the vegetative stage, we conducted phenotypic
analyses of wild-type and snrk2.8–1 plants. There was no
significant difference in phenotype between wild-type and
snrk2.8–1 plants when grown and maintained on half-strength
MS plates without ABA (p > .05 by two-tailed Student’s t-test)
(Figure 2A, C). When transferred onto 10 µM ABA plates,
root growth was inhibited in both the wild type and snrk2.8–1
(Figure 2B). However, the snrk2.8–1 mutant was less sensitive
to ABA, similar to jmj30-2 jmj32-1 double mutants (p < .01 by
two-tailed Student’s t-test) (Figure 2C). These results suggest
that SnRK2.8 is required for ABA-dependent inhibition of
root growth during the vegetative stage.

To examine the relationship between JMJ30/JMJ32 and
SnRK2.8 in response to ABA during the vegetative stage, we

a b c d

Figure 1. Root elongation in jmj30 jmj32 double mutants is less sensitive to ABA. (A–C) Representative images of wild-type (WT) and jmj30-2 jmj32-1 plants in the
absence and presence of ABA. Wild-type and jmj30-2 jmj32-1 seeds were sown on half-strength MS with 1% sucrose and stratified at 4°C for 3 days. Plants were
grown under 24 h of light for 3 days and then transplanted onto half-strength MS plates with 1% sucrose supplemented with 0 µM ABA (A), 5 µM ABA (B), or 10 µM
ABA (C) and grown vertically under 24 h of light for an additional 7 days. Bar = 1 cm. (D) Quantification of root length in wild-type and jmj30-2 jmj32-1 plants shown
in (A–C). Asterisks indicate significant differences based on two-tailed Student’s t-test; p < .01; NS, nonsignificant. Values represent mean ± SD of 24 plants.
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Figure 2. Root elongation in snrk2.8 mutants is less sensitive to ABA. (A, B) Representative images of wild-type (WT) and snrk2.8–1 plants in the absence and
presence of ABA. Wild-type and snrk2.8–1 seeds were sown on half-strength MS with 1% sucrose and stratified at 4°C for 3 days. Plants were grown under 24 h of
light for 3 days and then transplanted onto half-strength MS plates with 1% sucrose supplemented with 0 µM ABA (A) or 10 µM ABA (B) and grown vertically under
24 h of light for an additional 7 days. Bar = 1 cm. (C) Quantification of root length in wild-type and snrk2.8–1 plants shown in (A, B). Asterisk indicates significant
difference based on two-tailed Student’s t-test; p< .01; NS, non-significant. Values represent mean ± SD of 24 plants.
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conducted reverse-transcription quantitative polymerase chain
reaction (RT-qPCR) analysis (Figure 3A–D). JMJ30 is upregulated
during the postgermination stage by ABI3 in response to ABA.16

To understand JMJ30 and JMJ32 expression in response to ABA
during the vegetative stage, we first examined JMJ30 and JMJ32
expression levels (Figure 3A, B). Consistent with previous obser-
vations, JMJ30 was upregulated in response to ABA (p < .01 by
two-tailed Student’s t-test) (Figure 3A). Similar to the postgermi-
nation stage, upregulation of JMJ32 expression was not observed
(Figure 3B). To further confirm whether JMJ30 upregulation in
response to ABA is dependent on ABI3 function, we examined
ABI3 expression at the vegetative stage. Although we observed
a significant difference in ABI5 expression in response to ABA,
there was no difference in expression of theABI3 gene (Figure 3C,
D). These data suggest that JMJ30 is upregulated by a factor other
than ABI3 in vegetative stage, unlike in post-germination stage.

We next addressed the expression levels of SnRK2.8
(Figure 3E). ABA-treated wild-type plants had more
SnRK2.8 transcripts than mock-treated wild-type plants
(p < .01 by one-way ANOVA test) (WT with ABA vs. WT
without ABA: p < .01 by post-hoc Tukey’s HSD) (Figure 3E).
In addition, SnRK2.8 was not upregulated in the jmj30-2
jmj32-1 background with or without ABA treatment (jmj30-
2 jmj32-1 with ABA vs. jmj30-2 jmj32-1 without ABA: p > .05
by post-hoc Tukey’s HSD) (Figure 3E). This result implies
that SnRK2.8 expression is controlled by JMJ30 in response to
ABA during the vegetative phase.

We previously showed that the function of the JMJ30/
JMJ32-SnRK2.8 module is dependent on the ABA-dependent
transcription factor ABI3 during the postgermination stage.
Here, we demonstrated the role of the JMJ30/JMJ32-SnRK2.8
module in response to ABA during root elongation at the
vegetative stage. Although the function of the JMJ30/JMJ32-
SnRK2.8 module in response to ABA is well conserved
between the two different developmental stages, the upstream
regulators are different. Thus, we conclude that an unknown
factor(s) – X(s) – activates JMJ30 in response to ABA during
root elongation at the vegetative stage. It will be interesting to
identify such a factor in the future.

Materials and methods

Plant materials and growth conditions

All Arabidopsis thaliana lines used in this study were in the
Columbia (Col-0) background. The jmj30-2 jmj32-1 mutant
was described previously.19 The snrk2.8-1 (SALK_073395)
mutant was obtained from the Arabidopsis Biological Resource
Center (ABRC). Prior to growth, genotypes were confirmed by
PCR using Emerald Amp polymerase (Takara). Primers for
genotyping were as follows: jmj30-2 genotyping-FW,
CAAACTCTGCTGCAATCGATTTC; jmj30-2 genotyping-RV,
GAAAATGTCACAAGCTCTTGCTTC; jmj32-1 genotyping-
FW, GACTGAGAAAACCTGAACTCAGC; jmj32-1 genotyp-
ing-RV, GTCGTGTAAAGGACTGAAGGTTG; snrk2.8-1 gen-
otyping-FW, CAAACCATGACACATCAGCAC; snrk2.8-1
genotyping-RV, AGGCTCCTGTTAATCACCAGG. All plants
were grown at 22°C in a growth chamber under continuous light
conditions after stratification at 4°C for 3 days.

Phenotypic and statistical analyses

Procedures for preparation of half-strength MS plates and
seed surface sterilization were described previously.16 For
root elongation assays, sterilized wild-type, jmj30-2 jmj32-1,
and snrk2.8-1 seeds were placed on half-strength MS plates,
stratified at 4°C for 3 days, and then placed in a growth
chamber at 22°C under continuous light for 3 days. Three-
day-old plants were transplanted onto half-strength MS plates
with 1% sucrose supplemented with 0, 5, or 10 µM ABA and
grown vertically under 24 h of light for an additional 7 days.
Primary root length was measured, and statistical analyses
were conducted using Microsoft Excel. Statistical significance
was computed using a two-tailed Student’s t-test.

Expression analysis

For ABA treatment, 4-day-old stratified plants grown on half-
strength MS plates with 1% sucrose were treated with 10 µM
ABA to induce rapid changes in gene expression. After 3 h of
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Figure 3. JMJ30 and SnRK2.8 expression is induced by ABA. (A–D) Expression of JMJ30 (A), JMJ32 (B), ABI3 (C), and ABI5 (D) in wild-type (WT) plants in response to
10 µM ABA. Results are from three independent experiments. Values represent mean ± SEM. Asterisks indicate significant differences based on two-tailed Student’s
t-test; p < .01; NS, nonsignificant. (E) Expression of SnRK2.8 in wild-type and jmj30-2 jmj32-1 plants in response to 10 µM ABA. Results are from three independent
experiments. Values represent mean ± SEM. Asterisk indicates significant differences based on one-way ANOVA test; p < .01. Different letters indicate significant
differences based on post-hoc Tukey’s HSD test; p < .01.
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treatment, seedlings were used for RNA extraction. RNA isolation
and RT-qPCR methods followed a previously described
protocol.20 Three independent biological replicates were per-
formed for qPCR analyses, and four technical replicates were
conducted for each experiment. Statistical significance was com-
puted using either one- way ANOVA test followed by post- hoc
Tukey’s HSD test or two- tailed Student’s t-test for multiple- and
single-paircomparisons, respectively. Primers for expression ana-
lyses were as follows: EIF4A1- FW,
TCTTGGTGAAGCGTGATGAG; EIF4A1-
AATCAACCTTACGCCTGGTG; JMJ30- FW
GAATCACTTGGACTACCT CAATGC; JMJ30- RV, CATT
GGAGACGATTTATT GGTCC; JMJ32- FW, GTTTCATTGTA
CTGTCAAGGCTGG; JMJ32- RV, CATACTTGAT
GTCAAACTGCA TGTC; ABI3- FW, ATGTATCTCC
TCGAG AACAC; ABI3- RV, CCCTCGTATCAAATATTTG
CC; ABI5- FW, ACCTAATCCAAACC CGAACC; ABI5- RV,
TACCCTCCTCCTCCTGTCCT; SnRK2.8- FW, GTTGCCA
ACCCT GAAAAGAG; SnRK2.8- RV, CCGAGCTTCTTCAA
TGATCC.
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