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Abstract

Introduction—Gemcitabine is an important component of pancreatic cancer clinical 

management. Unfortunately, acquired gemcitabine resistance is widespread and there are 

limitations to predicting and monitoring therapeutic outcomes.

Objective—To investigate the potential of metabolomics to differentiate pancreatic cancer cells 

that develops resistance or respond to gemcitabine treatment.

Results—We applied 1D 1H and 2D 1H-13C HSQC NMR methods to profile the metabolic 

signature of pancreatic cancer cells. 13C6-glucose labeling identified thirty key metabolites 

uniquely altered between wild-type and gemcitabine-resistant cells upon gemcitabine treatment. 

Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the 

pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine 

phosphate exhibited a “binary switch” in response to gemcitabine treatment and acquired 

resistance.
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Conclusion—Metabolic differences between naïve and resistant pancreatic cancer cells and, 

accordingly, their unique responses to gemcitabine treatment were revealed, which may be useful 

in the clinical setting for monitoring a patient’s therapeutic response.

Keywords

NMR metabolomics; pancreatic cancer; gemcitabine; drug resistance

Introduction

A drug has to pass through a variety of complex biological systems and must survive 

different cellular processes in order to reach its molecular target and exhibit a positive 

therapeutic response. In many instances, both the drug and the exposed cells undergo 

molecular change that either favors the desired outcome or leads to the development of 

resistance. Acquired resistance has been well-documented in the application of antibiotics 

and is commonly due to the overexposure or incorrect administration of the drugs. In this 

regard, bacteria rapidly acquire antibiotic resistance by altering their genetic expression, 

protein structure or metabolic processes. Since antimicrobial resistance is such a common 

problem, an array of therapeutic approaches and improved sensitivity tests have been 

developed to monitor a patient’s response to treatment and to improve therapeutic outcomes 

(Davies and Davies 2010; Housman et al. 2014). Similar efforts are on-going to combat 

acquired resistance for anticancer therapeutics. This has led to increased efforts to 

understand mechanisms of drug resistance and for the development of methods to test 

patient-specific drug sensitivity (Uhr et al. 2015). However, there are still serious unmet 

needs to achieving precision cancer therapies by identifying an optimal cancer-cell specific 

treatment (Bardin et al. 2014).

Cancer cells employ a variety of mechanisms to acquire resistance against 

chemotherapeutics (Rahman and Hasan 2015). In which, metabolic rewiring of tumors has 

been identified as a critical step in drug resistance. Cancer cells alter their metabolism by 

monitoring nutrient uptake (such as glucose and glutamine), which results in modulating 

certain metabolic pathways in response. Gemcitabine is an antimetabolite drug widely used 

in the treatment of breast, lung and pancreatic cancers. It is a prodrug activated by the effect 

of kinases in the cytoplasm. Gemcitabine is the first treatment of choice for pancreatic 

cancer patients, and is commonly used by its self or in combination therapies. Unfortunately, 

it is routine for patients to develop gemcitabine resistance shortly after beginning treatment 

(Fryer et al. 2011). We recently demonstrated that acquired resistance to gemcitabine results 

in the reprograming of glucose metabolism and an enhanced carbon-flow through the 

pyrimidine synthesis pathway (Shukla et al. 2017). This metabolic phenotype for pancreatic 

cancer cell lines is regulated by MUC1 and HIF1α cross-talk.

1D 1H NMR metabolomics is a versatile tool of systems biology that is routinely used to 

elucidate various metabolic alterations (Gebregiworgis and Powers 2012). Accordingly, we 

have utilized NMR metabolomics to study the impact of MUC1 overexpression (Chaika et 

al. 2012), to monitor tumor microenvironment alteration (Gebregiworgis et al. 2017), and as 

a means to reverse antibiotic resistance (Gaupp et al. 2015; Gardner et al. 2018). NMR 
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metabolomics provides a detailed and specific analysis of metabolic perturbations by 

combining stable isotope labeling schemes (e.g., 13C glucose) with two dimensional (2D) 

NMR experiments (e.g., 1H-13C HSQC, HMBC, etc.). In this communication, we extend our 

investigation into the altered metabolism of gemcitabine resistance cell lines; and describe a 

global metabolic response to gemcitabine treatment.

Results and Discussion

Unique metabolic phenotype for gemcitabine resistant cells.

Briefly, ten replicates for each of the wild-type (WT, human pancreatic cancer cell line: 

T3M4 or Capan-1), gemcitabine resistant (GemR), WT treated with 10 nM of gemcitabine 

(WT+), and GemR treated with 10 nM of gemcitabine (GemR+) cell cultures were prepared 

as previously described for the 1D 1H NMR experiments (Shukla et al. 2017). As previously 

reported, the 10 nM gemcitabine dosage is significantly below a dosage (~1 μM) required to 

induce cell death in any of the cell lines (Shukla et al. 2017). Similarly, three additional 

replicates of WT, GemR, WT+, and GemR+ Capan-1 cells were prepared where the glucose 

in the culture media was replaced with 0.5 mM of 13C6-glucose. Please see the supplemental 

material for additional experimental details.

The 1D 1H NMR spectra collected from each cell lysate was analyzed using our MVAPACK 

metabolic toolkit (http://bionmr.unl.edu/mvapack.php) to generate a principal component 

analysis (PCA) model (Worley and Powers 2014). An unsupervised PCA model was used to 

illustrate the unique metabolic signature for each cell type, and to identify metabolic 

alterations that resulted from either gemcitabine resistance or from gemcitabine treatment 

(Gebregiworgis and Powers 2012). The resulting PCA scores plots and associated tree 

diagrams shown in Figures 1A, B and Figure S-1 clearly indicates that the metabolomes 

from the WT and WT-treated cells form distinct and separate groups. Conversely, the 

metabolomes from GemR and GemR-treated cells clustered together but separately from the 

gemcitabine-sensitive metabolomes.

The PCA scores plot demonstrates the overall metabolic impact of gemcitabine treatment on 

sensitive cells; and the corresponding lack of a response for resistant cells. Furthermore, the 

PCA scores plot identifies the presence of a metabolic adaptation for gemcitabine resistant 

cells. In effect, a distinct metabolic phenotype was observed for pancreatic cancer cells 

resistant to gemcitabine treatment. Furthermore, the observed alteration in metabolism may 

facilitate our understanding of the mechanism of gemcitabine resistance and provide a 

means to reverse the process (de Sousa Cavalcante and Monteiro 2014). Importantly, our 

results demonstrate a potential utility in precision medicine since the distinct metabolic 

phenotypes observed for WT and GemR cell lines may be leveraged for predicting a 

patient’s response to a gemcitabine treatment.

An orthogonal projection to latent structures - discriminant analysis (OPLS-DA) model was 

also generated from the 1D 1H NMR datasets to identify key metabolites that contribute to 

group specific separations (Figure S-2). Accordingly, the OPLS-DA model comparing the 

WT and WT-treated metabolome identified key-metabolic changes in response to 

gemcitabine treatment. The high-quality and statistical validity of the resulting OPLS-DA 
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model from the WT/WT+ NMR dataset is evident by an R2 of 0.99, a Q2 of 0.90, a CV-

ANOVA p-value of 7.9 × 10−7, and a permutation test p-value of 0. A back-scaled loadings 

plot generated from the OPLS-DA model is shown in Figure 1C. A total of sixteen 

metabolite changes were identified from the back-scaled loadings plot that significantly 

contributes to the metabolome differences between WT and WT-treated cells. The key 

metabolite changes between WT and WT+ are summarized in the pathway diagram shown 

in Figure 1D. An OPLS-DA model was similarly generated from the WT/GemR NMR 

dataset to identify key metabolite changes associated with gemcitabine resistance. The high-

quality and statistical validity of the resulting OPLS-DA model from the WT/GemR NMR 

dataset is evident by an R2 of 0.99, a Q2 of 0.96, a CV-ANOVA p-value of 2.52 × 10−7, and 

a permutation test p-value of 0. Notably, the same set of sixteen metabolites w identified 

from the WT/GemR OPLS-DA back-scaled loadings plot as was observed in the WT/WT+ 

OLPS-DA model (Figures 1E, F). But, significantly, the relative metabolite trends are 

reversed when these two statistical models are compared. Specifically, acetate, alanine, and 

glutathione are increased in GemR cells compared to WT, while glycine, myo-inositol, 

taurine, glycerophospocholine, and creatinine phosphate are decreased in GemR cells 

relative to WT (Figure 1D and 1F). Again, these metabolic trends are completely reversed 

when WT-treated cells are compared to WT cells. Importantly, the metabolites involved in 

this metabolic “switch” have been previously linked to pancreatic cancer.

Myo-inositol and its metabolites regulate cancer cell proliferation, migration and the 

phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway (Vucenik and Shamsuddin 

2003). Accordingly, many genes and pathways associated with myo-inositol synthesis and 

its biological activity have also been correlated with pancreatic cancer. Interestingly, natural 

and synthetic derivatives of myo-inositol have a demonstrated anticancer activity by 

reducing HIF1α expression and by decreasing the cellular concentration of nucleotides. 

Furthermore, the myo-inositol induced reduction in nucleotide concentrations also enhances 

gemcitabine efficacy (Raykov et al. 2014). Thus, drugs that target myo-inositol metabolism 

may also reverse gemcitabine resistance, and may be useful as part of a combination therapy.

Serine derived glycine is a precursor of single carbon metabolism and de novo purine 

nucleotide synthesis, which are critical processes in cancer pathogenesis (Yang and Vousden 

2016). As noted above, a reduction in the cellular concentration of nucleotides enhances 
gemcitabine efficacy. Alternatively, an increase in glycine uptake and its metabolism has 

been observed to promote tumorigenesis (Amelio et al. 2014). Glycine is also an important 

metabolite in glutathione biosynthesis (Lu 2009). An increase in the expression of 

glutathione generating enzymes has been previously associated with gemcitabine resistance 

(Ju et al. 2015). Gemcitabine is known to increase reactive oxygen species and, presumably, 

an increase in the production of glutathione would negate the impact of this additional ROS. 

Consistent with these prior observations, we observed a decrease in glycine and a concurrent 

increase in glutathione in GemR. This could be attributed to an increase in the 

transformation of glycine into glutathione to combat gemcitabine-induced ROS. The 

reduction in glycine may also be a result of an increase of carbon-flow into nucleotide 

synthesis.
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Alanine metabolism is a critical source of stromal cell derived fuel for cancer cell 

proliferation and survivability (Sousa et al. 2016). Thus, alterations in alanine metabolism 

may be an important process for acquiring gemcitabine resistance. Our observation that 

alanine metabolism was altered in both GemR and WT-treated cells are consistent with this 

viewpoint. Specifically, we observed a decrease in alanine in WT-treated cells and a 

corresponding increase in GemR cells. This result is also consistent with the observation that 

elevated alanine transaminase serum levels is linked to a poor therapeutic outcome and the 

development of gemcitabine resistance (Matsubara et al. 2010).

Acetate is a major carbon source for fatty acid and phospholipid biosynthesis, particularly in 

proliferating cancer cells and during metabolic stress. Acetyl-CoA synthetase 2 (ACSS2) 

catalyzes the conversion of acetate to acetyl-CoA. ACSS2 has been observed to inhibit 

tumor growth when depleted in hepatocellular carcinoma xenografts (Comerford et al. 

2014). Our observation that acetate is depleted in WT-treated, but increased in GemR cells, 

highlights that acetate could serve as an important fuel for proliferating cancer cells.

Taurine has been previously observed to have an anti-proliferative effect on breast, colon, 

cervical, and hepatic cancers (Tu et al. 2015). In this regard, an increase in taurine 

concentration leads to apoptosis. Taurine was increased in the WT+ cells, but decreased in 

GemR. Our observations align with previous reports indicating that an acquired gemcitabine 

resistance inhibits gemcitabine-induced apoptosis.

A connection between creatine/creatine phosphate and pancreatic cancer has not been 

previously observed. Nevertheless, an alteration in the expression of creatine kinase, the 

enzyme that catalyzes the reversible conversion of creatine to creatine phosphate, has been 

strongly associated with other tumors such as small cell lung carcinoma (Gazdar et al. 

1981).

A notable decrease in glycerophosphocholine was also observed in GemR cells with a 

corresponding increase in WT+ cells. This is consistent with abnormal choline metabolism 

that is a characteristic of multiple cancers and the associated changes in the expression of 

important choline metabolizing enzymes and choline transporters (Glunde et al. 2015). Since 
11C Choline PET imaging is already used for diagnosing cancer (Hara et al. 1998), choline 

metabolism might yield a promising biomarker for gemcitabine-sensitive pancreatic cancers.

A receiver operating characteristics (ROC) analyses was applied to further asses the 

predictive power of the NMR metabolomics data to discriminate WT (T3M4 and Capan-1) 

cells from WT+ and GemR cells. The ROC curves (Figure S-3) show that the WT, WT+ and 

GemR cells were all confidently identified (AUC > 0.9) using only five spectral features 

from the 1D 1H NMR data sets. Notably, each of these spectral features was similarly 

identified from the OPLS-DA loadings plots. Thus, the essentially identical results obtain 

from both univariate and multivariate analysis for two different cell lines provides strong 

validation for the observed alteration in the cellular metabolomes.
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Altered metabolism in gemcitabine resistant cells.

We have previously demonstrated that glucose metabolism is altered in gemcitabine resistant 

cells (Shukla et al. 2017). The application of stable isotope-resolved metabolomics (SIRM) 

techniques provides further confirmation for the role of metabolism in gemcitabine 

resistance. 2D 1H-13C heteronuclear single quantum coherence (HSQC) NMR spectra was 

used to analyze the metabolites derived from 13C6-glucose in WT Capan-1, WT-treated, 

GemR and GemR-treated cell lysates. A total of thirty metabolites were identified from the 

2D 1H-13C HSQC NMR spectra. The relative metabolite concentrations are plotted in a 

heatmap with hierarchical clustering (Figure 2A). Consistent with the PCA analysis of the 

1D 1H NMR dataset (Figures 1 and S-1), two major branches consisting of WT/WT+ and 

GemR/GemR+ was observed in the heatmap. Again, this indicates that a metabolic 

phenotype associated with gemcitabine-resistance was the major feature differentiating the 

four cell cultures. Furthermore, the gemcitabine sensitive cells formed two distinct branches 

based on gemcitabine treatment status. In contrast, the GemR cells formed a single branch 

irrespective of gemcitabine treatment.

In addition to clustering based on group membership, the metabolites in the heatmap were 

also hierarchically clustered (Figure 2A). As a result, the metabolites formed three distinct 

branches. The top branch contains metabolites that exhibited a decrease in concentration in 

response to acquiring gemcitabine resistance. This branch includes important metabolites 

such as glucose, glucose 6-phosphate, aspartate, and citric acids. The middle branch contains 

metabolites that all increased in concentration upon developing gemcitabine resistance. 

These metabolites include nucleotide analogs of adenine, cytidine, guanine and uracil along 

with amino acids such as glutamine, and alanine. The bottom cluster contains metabolites 

with distinct patterns dependent on the cell lines gemcitabine treatment. In effect, these 

metabolites primarily reflect the response of WT cells to treatment and are major 

contributors to distinguishing WT from WT+ cells.

The pathway shown in Figure 2B summarizes the metabolic changes that resulted from 

either gemcitabine resistance (first arrow) or from WT cell’s response to treatment (second 

arrow). The acquisition of gemcitabine resistance resulted in a major metabolic “switch”. 

This is further evident by the complete pairwise reversal in metabolite concentration changes 

as depicted in Figure 2B. Specifically, if a metabolite increased as a result of acquiring 

gemcitabine resistance, it was then observed to decrease in the WT cell’s response to 

gemcitabine treatment or vice-versa.

Our NMR metabolomics analysis indicated that GemR cells exhibited an altered nucleotide 

biosynthesis, which resulted from a redirection in carbon-flow from other major metabolic 

pathways. Specifically, metabolites from glycolysis and the pentose phosphate pathway were 

decreased in GemR. Presumably, this was a result of carbon flowing from glycolysis and 

PPP into nucleotide biosynthesis in order to increase the cellular concentration of 

nucleotides. This is consistent with prior observations that gemcitabine efficacy is affected 

by the nucleotide cellular pool (Raykov et al. 2014) and our observation that deoxycytidine 

triphosphate is a competitive-inhibitor of gemcitabine (Shukla et al. 2017). Again, the 

metabolic response of gemcitabine sensitive cells (e.g., wild-type cells) to a gemcitabine 

treatment was a complete reversal of the response in gemcitabine-resistant cells (e.g., 
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GemR). In summary, GemR cells and WT-treated cells metabolize glucose differently. In 

GemR, glucose is primarily funneled into nucleotide synthesis to negate gemcitabine 

activity; whereas, glucose is primarily directed into aerobic glycolysis in a WT cell’s 

response to gemcitabine treatment.

Conclusion

A unique metabolic phenotype was identified for pancreatic cancer cells with an acquired 

resistance to gemcitabine. A metabolic “switch” was observed when comparing 

gemcitabine-resistant cells to a wild-type cell’s response to gemcitabine treatment. This 

metabolic switch enabled gemcitabine-resistant cells to funnel carbon from glucose into 

nucleotide biosynthesis, where the increased cellular pool of nucleotides function as a 

competitive inhibitor of gemcitabine. The distinct metabolic profiles for both a response to 

treatment and an acquired-drug resistance suggest a potential utility of metabolomics for 

monitoring a patient’s response to gemcitabine therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Unique metabolic phenotype for gemcitabine resistant cells.
(A) PCA scores plot generated from 1D 1H NMR spectra from cell lysates of wild type 

T3M4 cells (WT,  n=8), WT cells treated with 10 nM of gemcitabine (WT+,  n=9), 

gemcitabine-resistant (GemR,  n=10) cells, and GemR cells treated with 10 nM of 

gemcitabine (GemR+,  n=8). Please see supplemental methods and Figure S-4 for 

explanation of excluded outliers. The ellipses correspond to 95% confidence intervals for a 

normal distribution. (B) Metabolic tree diagram generated from the PCA score plots. The 

number at each node is the p-value calculated from the Mahalanobis distance between each 

group. The coloring is identical to the PCA scores plot. (C) Back-scaled loadings plot 

generated from a validated OPLS-DA model (R2 0.99, Q2 0.90, CV-ANOVA p-value 7.94 × 

10−7, permutation test p-value 0) comparing the WT and WT+ 1D 1H NMR datasets. 

Positive peaks indicate an increase in WT+ and negative peaks are a decrease in WT+. (D) 

Metabolic pathway summarizing the key metabolite differences between WT and WT+ as 

determined from the OPLS-DA back-scaled loadings plot in C. An up arrow indicates an 

increase in the metabolite in WT+ and a down arrow indicates a decrease in the metabolite 

in WT+. (E) Back-scaled loadings plot generated from a validated OPLS-DA model (R2 

0.99, Q2 0.96, CV-ANOVA p-value 2.52 X 10−7, permutation test p-value 0) comparing the 

WT and GemR 1D 1H NMR datasets. Positive peaks indicate an increase in GemR and 
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negative peaks are a decrease in GemR (F) Metabolic pathway summarizing the key 

metabolite differences between WT and GemR as determined from the OPLS-DA back-

scaled loadings plot in E. An up arrow indicates an increase in the metabolite in Gem R and 

a down arrow indicates a decrease in the metabolite in GemR. The metabolite labeling in the 

OPLS-DA back-scaled loadings plots in C and E are numbered as follows: 1, branched 

chain amino acids (leucine, isoleucine, valine); 2, lactate; 3, alanine; 4, acetate; 5, glutamate; 

6, glutamine; 7,glutathione; 8,malate; 9,aspartate; 10, creatinine; 11, creatinine phosphate; 

12, glycerophosphocholine; 13, taurine, 14, glycine, 15, myo-inositol 16, AXP (AMP, ADP, 

and ATP).
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Figure 2. Altered metabolism in gemcitabine resistant cells.
(A) Heatmap and hierarchical clustering analysis generated from 2D 1H-13C HSQC spectra 

of WT, WT+, GemR and GemR+ cell lysates. Peak intensities for each metabolite was 

normalized by the mean of all the peaks and then scaled by the maximum peak intensity for 

the metabolite across the four groups. The column clustering identifies group membership 

and the row clustering identifies metabolites with similar trends across the groups. (B) A 

metabolic pathway summarizing the metabolite differences between WT and GemR (first 

arrow); and between WT and WT+ (second arrow), respectively. A red arrow indicates a 

decrease in the metabolite in WT+ or GemR relative to WT. A green arrow indicates an 

increase in the metabolite in WT+ or GemR relative to WT.
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